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Deep Learning-Based Identification Algorithm
for Transitions Between Walking Environments

Using Electromyography Signals Only
Pankwon Kim , Jinkyu Lee , Jiyoung Jeong , and Choongsoo S. Shin

Abstract— Although studies on terrain identification
algorithms to control walking assistive devices have been
conducted using sensor fusion, studies on transition clas-
sification using only electromyography (EMG) signals have
yet to be conducted. Therefore, this study was to suggest
an identification algorithm for transitions between walking
environments based on the entire EMG signals of selected
lower extremity muscles using a deep learning approach.
The muscle activations of the rectus femoris, vastus medi-
alis and lateralis, semitendinosus, biceps femoris, tibialis
anterior, soleus, medial and lateral gastrocnemius, flexor
hallucis longus, and extensor digitorum longus of 27 sub-
jects were measured while walking on flat ground, upstairs,
downstairs, uphill, and downhill and transitioning between
these walking surfaces. An artificial neural network (ANN)
was used to construct the model, taking the entire EMG
profile during the stance phase as input, to identify tran-
sitions between walking environments. The results show
that transitioning between walking environments, including
continuously walking on a current terrain, was successfully
classified with high accuracy of 95.4 % when using all
muscle activations. When using a combination of mus-
cle activations of the knee extensor, ankle extensor, and
metatarsophalangeal flexor group as classifying parame-
ters, the classification accuracy was 90.9 %. In conclusion,
transitioning between gait environments could be identified
with high accuracy with the ANN model using only EMG
signals measured during the stance phase.

Index Terms— Artificial neural network (ANN), deep
learning (DL), electromyography (EMG), transitions, walk-
ing assistive devices.
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I. INTRODUCTION

IN THEIR daily activities, pedestrians encounter various
walking environments such as flat ground, stairs, and

hills, and they either walk continuously on current terrain
or transition between existing terrain and another. When a
person’s physical abilities have weakened, wearable walking
assistive devices allow them to walk safely [1], [2], [3].
Walking assistive devices have a distinct control strategy based
on terrain types [4], [5], [6]. When such a device does not
obtain information about a user’s intention and/or upcoming
gait environments in advance, it cannot accomplish the desired
control strategy [7]. As a result, recognizing users’ intentions
and/or gait environments in advance is required to properly
control walking assistive devices safely based on walking
conditions.

Currently, intention recognition based on electromyography
(EMG) signals has been used for communication between
devices and human motion [8], [9]. EMG signals containing
neural information can predict user intentions in advance
before human movement. EMG signals also provide valuable
information for estimating walking speed and environmental
conditions in the control system [10], thereby enhancing
synchronization between users and machines [11], [12]. In
addition, as the amplitude of EMG signals is positively
correlated with the force during muscle contraction [13],
EMG signals can be incorporated into the control criteria for
torque estimation of a walking assistive device [14]. Previous
studies have attempted to control wearable walking assistive
devices and identify various situations, including turning left,
turning right, standing up, and sitting down, and walking
environments, such as flat ground, hill, and stair walking, using
only EMG signals [9], [15]. The literature above suggests that
EMG signals alone could help recognize user intention and
identify the current walking environment to control wearable
walking assistive devices.

Pedestrians modify gait patterns to safely transit between
different walking environments [16], [17]. Sheehan and
Gottschall reported the alteration in gait strategy by adjusting
spatial–temporal parameters such as stride length and walk-
ing speed based on the environment being approached [18].
Moreover, transitioning between stairs and flat ground during
walking affects the kinematics and kinetics of the knee, ankle,
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Fig. 1. Thirteen walking tasks tested in this study: (a) flat ground, (b) upstairs, (c) downstairs, (d) uphill walking, (e) downhill walking, and
(f) transitions from flat ground to upstairs, (g) upstairs to flat ground, (h) downstairs to flat ground, (i) flat ground to downstairs, (j) flat ground to
uphill, (k) uphill to flat ground, (l) downhill to flat ground, and (m) flat ground to downhill. The brown box indicates the force plate.

and hip joints compared with stair walking [19]. In addition,
transitioning between different walking environments requires
higher neuromuscular recruitment [20]. Therefore, upcoming
terrain identification is required to properly control walking
assistive devices when changing walking environments.

Neural networks based on machine learning and deep
learning (DL) algorithms have significant potential for rec-
ognizing user intention and solving classification problems
such as walking environment identification and gait phase
detection [15], [21]. Recently, an artificial neural network
(ANN) method demonstrated robust mapping capability for
both linear and nonlinear data [22]. Given the high nonlinearity
of mapping from EMG signals to motion intent [23], neural
networks can serve as an appropriate coupler for solving
the EMG-based intention recognition problem. In particular,
DL methods improve the performance of neural networks.
Kim et al. used a DL approach based on the whole EMG
signal profile during the stance phase to classify five walking
environments (flat ground, upstairs, downstairs, uphill, and
downhill) and reported a classification accuracy of 96.3% [15].
However, their study considered only environments where
people were walking continuously in the existing terrain.
To mimic human motion seamlessly, an algorithm classi-
fying walking environments, including transitions from one
terrain to another, is required for wearable walking assistive
devices. To the best of the authors’ knowledge, no study has
attempted to classify transitions between various terrains using
only EMG signals. Therefore, the purpose of this study was
to propose an identification algorithm for transitions between
various walking environments based on EMG signals using a
DL approach.

II. METHODS

A. Subjects
Twenty-seven male students (n = 27; age: 24.5 ± 2.7 years;

height: 1.73 ± 0.04 m; mass: 69.0 ± 8.0 kg; body mass
index: 22.9 ± 2.2 kg/m2) participated in this study. The study
was conducted according to the guidelines of the Declaration
of Helsinki and approved by the Institutional Review Board.
Before participating in the experiment, all subjects were asked
to sign an informed consent form approved by the institutional
review board. All subjects had no history of lower extremity
injuries and could ascend and descend stairs and slopes
without any external assistance.

B. Experimental Protocol
All subjects were asked to walk in the following thirteen

walking tasks: flat ground (FG), upstairs (US), downstairs
(DS), uphill (UH), downhill (DH), and transitions from flat
ground to upstairs (FGUS), upstairs to flat ground (USFG),
flat ground to downstairs (FGDS), downstairs to flat ground
(DSFG), flat ground to uphill (FGUH), uphill to flat ground
(UHFG), flat ground to downhill (FGDH), and downhill to flat
ground (DHFG) (Fig. 1).

The subjects walked along a straight and flat 6 m walkway
for the FG environment. For the US and DS environments, the
subjects walked up and down five steps (with each step 0.24 m
in height, 0.25 m in width, and 0.60 m in length). For the
UH and DH environments, the subjects walked up and down
slopes with a slope angle of 15 ◦. The hill walkway consisted
of three pieces, each with dimensions of 0.61 m in length
and 0.76 m in width. The three pieces were connected so
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that the subjects did not walk unnaturally. For stair transitions,
an experimental apparatus with three steps and a flat 1.5 m
walkway before and after the stairs was installed. For FGUS,
the subjects walked a flat walkway and then ascended the
stairs. For USFG, the subjects ascended the stairs and then
walked a flat walkway. For FGDS, the subjects walked a
flat walkway and then descended the stairs. For DSFG, the
subjects descended the stairs and then walked a flat walkway.
For hill transitions, an experimental apparatus with three parts
and a flat 1.5 m walkway before and after hills was installed.
The subjects were asked to walk in the same manner as stair
transitions for FGUH, UHFG, FGDH, and DHFG.

Prior to the experiments, each subject was instructed to
practice the 13 walking tasks to become familiar with the
experiment procedures and apparatuses. During the experi-
ments, the subjects walked at self-selected speed over the
installed walkway in barefoot condition and were instructed
to step on a force platform with their dominant leg (defined
as the leg used in kicking a ball). Walking duration of each
trial was generally less than 5 seconds. All subjects performed
five successful trials for each walking task and rested between
each task.

C. Data Collection
A wireless EMG system (Wave plus wireless, Cometa,

Milan, Italy) was used to record activations from the vastus
lateralis and medialis (VL and VM), rectus femoris (RF),
biceps femoris (BF), semitendinosus (ST), tibialis anterior
(TA), soleus (Sol), lateral and medial gastrocnemius (LG and
MG), flexor hallucis longus (FHL), and extensor digitorum
longus (EDL) at a sampling rate of 1200 Hz during walking.
Surface electrodes were attached to muscle bellies between an
interelectrode distance of 20 mm in recommended locations.

The force platform (9260AA6; Kistler, Winterthur, Switzer-
land) synchronized the EMG system to record EMG signal
data simultaneously at a sampling rate of 1200 Hz. EMG
signals were collected during the stance phase of each walking
task; this is defined as the period between the initial contact
and toe-off, as determined by the force platform recordings.
Ground reaction forces measured from the force platform were
used to determine the stance phase.

D. Data Processing
Muscle activations acquired from the VL, VM, RF, BF,

ST, TA, Sol, LG, MG, FHL, and EDL were processed using
MATLAB (MATLAB R2018b, Mathworks, Inc., Natik, MA,
USA). Raw EMG signals from walking on FG, US, DS, UH,
DH, FGUS, USFG, FGDS, DSFG, FGUH, UHFG, FGDH,
and DHFG were passed through a bandpass filter for 20 to
500 Hz. After rectifying the EMG signals, the signals were
passed through a fourth-order Butterworth low-pass filter with
a 10 Hz cutoff frequency [15]. The filtered EMG signals
measured from selected muscles in the lower extremity for
all walking tasks were normalized for each peak muscle
activation amplitude of each subject during FG walking [24].
All normalized EMG signals were linearly interpolated to

TABLE I
THE HYPERPARAMETER CONFIGURATION

SETTING OF THE NEURAL NETWORKS

1000 points to match the data size for training and evaluating
the classification model. The processed entire EMG profile
obtained from each trial of each subject during the stance
phase was used as the sole input into the model for classifying
the 13 walking tasks.

E. Identification of Walking Tasks

The processed EMG signal data from all walking tasks were
separated into the individual muscle, and the separated EMG
signals were matched to the walking tasks through labeling.
EMG profiles of 1,755 successful trials (27 subjects × 5 suc-
cessful trials for each walking task × 13 walking tasks) for
13 walking tasks acquired from 27 subjects during the stance
phase were used as input into the identification model. 1,404
trial data were used as input for training the identification
model, and 351 trial data were used as input for evaluating
the identification model.

The ANN was used to employ the identification of walking
tasks. The ANN architecture consisted of input layers, three
hidden layers with the rectified linear unit as an activation
function to address the nonlinearity of EMG patterns in
our data, and output layers. The entire EMG signal profiles
measured from the muscles during the stance phase were
fed into the input layer. The output layer was provided a
classified walking task. The loss function used a softmax
cross-entropy with logits, and the optimizer used adaptive
moment estimation to minimize the loss function [15], [25].
A regularization technique named dropout was used to pre-
vent overfitting problems in neural networks (Fig. 2) [26].
The hyperparameters configuration for our model is listed in
Table I.

Thirty-three classification models were trained to identify
the current environment and transition from one environment
to another as follows: 1 model when using all muscle acti-
vations; 6 models when using the activation of the flexor or
extensor group for each joint (i.e., knee extensor: RF, VM,
and VL; knee flexor: BF and ST; ankle extensor: LG, MG,
and Sol; ankle flexor: TA; MTP extensor: EDL; MTP flexor:
FHL); 26 models when using a combination of extensor and
flexor muscle activations. In addition, the number of electrodes
was presented in each model (Table II). The accuracy of
each model was computed using the evaluation dataset. The
calculation of accuracy and confusion matrix was used for the
method defined in previous studies [15], [27], [28]. Precision,
recall, and F1-score of thirty-three models were calculated to
evaluate model performance (supplementary material).
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Fig. 2. Artificial neural networks. (a) block diagram for an artificial neural network consisting of input layers, three hidden layers, and output layers.
(b) each neuron structure. To prevent the gradient vanishing problem, the rectified linear unit was used as an activation function. The dropout
technique was used to prevent overfitting problems in our model.

TABLE II
TRAINING MODELS, PARAMETERS, AND NUMBER OF ELECTRODES

III. RESULTS
The ANN classifier identified each current environment and

transition between different terrains during walking with a high
degree of accuracy, achieving a success rate of 95.4 % when
using muscle activation data from all of the examined muscles
(Model #1 in Table II, Fig. 3).

The classification accuracy of the model using the activation
of the ankle extensor group (MG, LG, and Sol) showed
the highest at 78.1% when the classification accuracy of six
models (Models # 2 to # 7 in Table II) trained using the
activation of either the flexor or extensor group for each
joint was evaluated (knee extensor: 68.1 %; knee flexor:
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Fig. 3. Confusion matrix for identification of 13 walking tasks using the entire EMG profiles of all muscles (Model #1 in Table II) during the stance
phase as input. FG, US, DS, UH, DH, FGUS, USFG, FGDS, DSFG, FGUH, UHFG, FGDH, and DHFG indicate walking on flat ground, upstairs,
downstairs, uphill, downhill, and transitions from flat ground to upstairs, upstairs to flat ground, flat ground to downstairs, downstairs to flat ground,
flat ground to uphill, uphill to flat ground, flat ground to downhill, and downhill to flat ground, respectively.

Fig. 4. Classification accuracy when using the activations of the
flexor and extensor muscle groups for each joint (Model #2 to #7
in Table II). Knee flexors indicate semitendinosus and biceps femoris.
Knee extensors indicate rectus femoris, vastus medialis, and vastus
lateralis. Ankle flexor indicates tibialis anterior. Ankle extensors indicate
soleus, medial gastrocnemius, and lateral gastrocnemius. MTP flexor
and extensor indicate flexor hallucis longus and extensor digitorum
longus, respectively.

62.4 %; MTP flexor: 48.4 %; ankle flexor: 45.9 %; MTP
extensor: 39.9 %) (Fig. 4).

The classification model using a combination of the knee
extensor (RF, VM, and VL), ankle extensor (LG, MG, and
Sol), and MTP flexor (FHL) among the 26 models (Models
# 8 to # 33 in Table II) showed the highest classification
accuracy of 90.9 % (Model #30 in Table II, Fig. 5).

When comparing continuous walking, hill transitions, and
stair transitions, the lowest classification accuracy obtained
with the model using EMG data from all muscles (Model #1

in Table II) was 89.8 % for hill transitions. Even when using
only the ankle extensor and a combination of extensor/flexor
muscles for each joint, the hill transition exhibited the lowest
classification accuracy, as was the case when all muscle
activations were used (Model #4 and #30 in Table II, Fig. 6).

IV. DISCUSSION

The main contribution of this study is that the proposed
algorithm using a DL approach based on EMG signal data on
the knee, ankle, and MTP joint can identify walking tasks from
one environment to another (i.e., FGUS, USFG, FGDS, DSFG,
FGUH, UHFG, FGDH, and DHFG). Furthermore, the model
trained by the knee extensors, ankle extensors, and MTP flexor
provided comparable identification performance to the model
trained by all muscle activation. The results of this study indi-
cate that detecting a change in a walking environment using
the muscle activation signal of the selected lower extremities
during the stance phase could provide the possibility of more
accurate device control by obtaining information about the
upcoming environment in advance.

The identification accuracy of walking environments,
including terrains where the subjects are walking continuously
in the existing terrain and transitioning from one terrain to
another, was the highest at 95.4 % when using the entire
muscle activation profile obtained from all monitored muscles
(VL, VM, RF, BF, ST, LG, MG, Sol, TA, EDL, and FHL) of
the knee, ankle, and MTP joint during the stance phase (Model
#1 in Table II). It should be noted that the high identification
accuracy of walking environments using only EMG sensors
in this study is comparable to results from previous studies,
which used multiple sensors. Su et al. reported identification
accuracy of 96.3 % when training and evaluating their model
using EMG signal, acceleration, and angular velocity data
[29]. Liu et al. also reported high classification accuracy
of 95.1 % based on data obtained from EMG and inertial
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Fig. 5. Confusion matrix for identification of 13 walking tasks using the entire EMG profiles of the knee extensor, ankle extensor, and MTP flexor
muscle activation (Model #30 in Table II) during the stance phase. FG, US, DS, UH, DH, FGUS, USFG, FGDS, DSFG, FGUH, UHFG, FGDH, and
DHFG indicate walking on flat ground, upstairs, downstairs, uphill, downhill, and transitions from flat ground to upstairs, upstairs to flat ground,
flat ground to downstairs, downstairs to flat ground, flat ground to uphill, uphill to flat ground, flat ground to downhill, and downhill to flat ground,
respectively.

Fig. 6. Comparison of classification accuracy among continuous
walking, stair transitions, and hill transitions when using the EMG signals
of (a) the ankle extensor group (Model #4 in Table II), (b) the knee
extensor, ankle extensor, and MTP flexor groups (Model #30 in Table II),
and (c) all muscle groups (Model #1 in Table II). All muscles used in this
study include the vastus lateralis and medialis, rectus femoris, biceps
femoris, semitendinosus, tibialis anterior, soleus, lateral and medial
gastrocnemius, flexor hallucis longus, and extensor digitorum longus.
The knee extensor group indicates rectus femoris, vastus medialis, and
vastus lateralis. The ankle extensor group indicates the medial/lateral
gastrocnemius and soleus. MTP indicates the metatarsophalangeal
joint. The MTP flexor group indicates the flexor hallucis longus.

measurement unit sensors; however, classification accuracy
of approximately 80 % was achieved when using muscle
activation data from only 11 lower extremity muscles [30].
In these studies, transitions between walking environments
were classified using a machine learning algorithm based on
fused data obtained using multiple sensors. However, in our
study, we used the entire muscle activation profile obtained

during the stance phase as the input of our model without
a feature extraction process. Machine learning performance
depends on the engineer’s experience and the feature extraction
method [31], [32]. A previous study showed that the entire
muscle profile used as input into a DL model classified the five
walking environments (flat ground, upstairs, downstairs, uphill,
and downhill) due to reflecting the amplitude and timing of
the peak amplitude well [15]. These findings suggest that it is
possible to identify the transition of walking from one terrain
to another as well as continuously walking on the current
terrain with high accuracy using only EMG signals.

This study found that the muscle activations measured
from the ankle extensor muscle groups provide the highest
identification accuracy of 78.1 % when grouping the muscles
into flexors or extensors of each joint and using them as
input into the identification model (Model #4 in Table II).
Our finding is consistent with the observations reported by
Kim et al. showing a good classification accuracy of 88.9
% for five walking tasks using the activation of the ankle
extensor [15]. This result implies that the muscle activations
of the MG, LG, and Sol may be used as key muscles
to classify the walking environments, including transitions
between terrains. This information could help reduce the
number of inputs required to classify walking environments.
In addition, high classification accuracy was shown when
using a combination of the muscle activations from the knee
extensor, ankle extensor, and MTP flexor as input. Since the
decision-making process of the proposed model is a black
box, it’s difficult to analyze how these muscle groups lead
to high classification accuracy of the identification algorithm.
However, it is plausible that the corresponding muscle groups
acting dominantly in the propulsive phase could improve the
accuracy, which is calculated by the probabilistic algorithm
[33], [34], [35]. This model applying signals of only seven
electrodes (Model #30 in Table II) showed an accuracy of



364 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

90.9 % in classifying the walking environments. Therefore,
the number of electrodes (input) could be reduced by using
these muscle groups, thereby applying them as key muscles
for classifying walking environments, including transitioning
from one terrain to another.

Our findings showed that the classification accuracy of hill
transition was relatively lower than that of other walking
environments when using the activations from all muscles
monitored. Furthermore, the classification accuracy of hill
transition was also lower when using either the activation
of the ankle extensor only or the combination of the knee
extensor, ankle extensor, and MTP flexor (Model #4 and
#30 in Table II, Fig. 6). Previous studies have reported that
classifying uphill and downhill surface transitions during walk-
ing is challenging compared with classifying other walking
environments [36], [29]. This may be due to the similarity of
biomechanical parameters during hill walking and transitions
between flat ground and hill surface. Although mean LG
activation during both downhill walking and transitioning from
flat ground to downhill was significantly lower than that during
flat ground walking, their patterns and magnitudes were similar
in the stance phase [37]. Similarly, no significant differences
were found in the pattern and mean RF activation during flat
ground, uphill walking, and uphill transitioning [37]. Taking
these previous findings into account, we may conclude that
hill transition seemed to be more challenging than other
walking environments when classifying walking tasks because
of its similarity of muscle activation pattern and/or magnitude.
An evidence-based future study is required to increase the
classification probability of hill transition based on the overall
analysis of each lower extremity muscle.

This study has some limitations. One of the limitations
is that we conducted the experiments with only young and
healthy subjects who did not put on any walking assistive
device. The subjects wearing walking assistive devices may
walk in a different way. A previous study has reported that
wearing a walking assistive device changes the muscle activa-
tion of the lower extremities [38]. However, it is considered
that the proposed algorithm could adapt to altered EMG pat-
terns because the muscle activation pattern during the stance
phase is used as input into the classification model, which is
trained through a DL approach. Another limitation is the sam-
ple size. Previous studies have investigated the effect of sample
size on model accuracy and reported that a small training
sample size could exaggerate model accuracy due to overfitting
[39], [40], [41]. However, in this study, the effect of overfitting
on the accuracy of the model was minimized by adopting
dropout as a regularization technique, which is a method for
preventing overfitting [26]. Nevertheless, as the sample size
increases, DL performance would increase. In future studies,
it is necessary to classify walking environments with more data
from subjects. In addition, because only male subjects were
included in this study, the current results cannot be generalized
to females. To further enhance the identification performance
and generalization of the model, more investigation through
a larger sample size, including females or subjects wearing
walking assistive devices, is warranted. Finally, EMG data
from the same subjects was split into training and test sets in

this study. This approach may have weakness in the generality
of the model, thus further study is required to guarantee the
generality of the classification model by testing data from
another subject or using the cross-validation technique.

V. CONCLUSION

This study proposed a DL approach for identifying walking
environments, including not only terrain in which walking
continuously in an existing terrain but also transitions from
one terrain to another. This study provides evidence that the
entire muscle activation profile of selected lower extremities
obtained from a single sensor can be used as input into an
ANN model to classify walking environments. Thus, a DL
approach based on EMG signals may be considered in the
control of walking assistive devices to accomplish seamless
motion based on changing walking environments.
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