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Decoding Natural Grasping Behaviors:
Insights Into MRCP Source Features
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Abstract— The effective decoding of natural grasping
behaviors is crucial for the natural control of neural
prosthetics. This study aims to investigate the decod-
ing performance of movement-related cortical potential
(MRCP) source features between complex grasping actions
and explore the temporal and frequency differences in
inter-muscular and cortical-muscular coupling strength
during movement. Based on the human grasping taxon-
omy and their frequency, five natural grasping motions—
medium wrap, adducted thumb, adduction grip, tip pinch,
and writing tripod—were chosen. We collected 64-channel
electroencephalogram (EEG) and 5-channel surface elec-
tromyogram (sEMG) data from 17 healthy participants, and
projected six EEG frequency bands into source space
for further analysis. Results from multi-classification and
binary classification demonstrated that MRCP source fea-
tures could not only distinguish between power grasp
and precision grasp, but also detect subtle action differ-
ences such as thumb adduction and abduction during the
execution phase. Besides, we found that during natural

Manuscript received 3 July 2023; revised 21 September 2023 and
5 November 2023; accepted 8 December 2023. Date of publication
13 December 2023; date of current version 20 December 2023. This
work was supported in part by the National Key Research and Devel-
opment Program of China under Grant 2022YFC2405602; in part
by the Natural Science Foundation of Jiangsu Province under Grant
BK20221464; in part by the Key Research and Development Program
of Jiangsu Province under Grant BE2022363; in part by the Basic
Research Project of Leading Technology of Jiangsu Province under
Grant BK20192004; in part by the National Natural Science Foun-
dation of China under Grant 92148205, Grant 62173088, and Grant
62173089; in part by the Guangxi Key Laboratory of Automatic Detecting
Technology and Instruments under Grant YQ22207; and in part by
the Chinese Institute of Electronic (CIE)-Tencent Robotics X Rhino-Bird
Focused Research Program. (Corresponding author: Baoguo Xu.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Ethical Committee of Southeast University under Application No.
2020-SR-362.

Leying Deng, Baoguo Xu, Zelin Gao, and Aiguo Song are with
the State Key Laboratory of Digital Medical Engineering, the Jiangsu
Key Laboratory of Remote Measurement and Control, and the
School of Instrument Science and Engineering, Southeast University,
Nanjing 210096, China (e-mail: 15695299118@163.com; xubaoguo@
seu.edu.cn; 220223274@seu.edu.cn; a.g.song@seu.edu.cn).

Minmin Miao is with the School of Information Engineering, Huzhou
University, Huzhou 313000, China (e-mail: 02764@zjhu.edu.cn).

Cong Hu is with the Guangxi Key Laboratory of Automatic Detecting
Technology and Instruments, Guilin University of Electronic Technology,
Guilin 541004, China (e-mail: yiqi@guet.edu.cn).

Digital Object Identifier 10.1109/TNSRE.2023.3342426

reach-and-grasp movement, the coupling strength from
cortical to muscle is lower than that from muscle to cortical,
except in the hold phase of γ frequency band. Further-
more, a 12-Hz peak of inter-muscular coupling strength was
found in movement execution, which might be related to
movement planning and execution. We believe that this
research will enhance our comprehension of the control
and feedback mechanisms of human hand grasping and
contributes to a natural and intuitive control for brain-
computer interface.

Index Terms— Natural grasp decoding, movement-
related cortical potential, EEG source imaging, inter-
muscular coupling, cortical-muscular coupling.

I. INTRODUCTION

IN MODERN life, many people suffer from neuromuscular
disorders such as stroke and spinal cord injury (SCI).

These conditions often result in individuals being conscious
but unable to control their bodies, making communication and
interaction with the outside world challenging. Hand function
is one of the most common and crucial elements of daily life,
involving the coordination and integration of various sensory
and motor systems. For individuals who suffer from limb
paralysis or other hand impairments, the restoration of hand
functionality is vital for raising their life quality and promoting
social engagement.

A brain-computer interface (BCI) is a control and communi-
cation system that enables individuals to directly interact with
the outside world using their brains, bypassing the peripheral
nervous systems and muscles [1]. In traditional BCI systems,
users control robots or devices by imagining or performing
movements from several body parts [2], [3]. However, for BCI
users, such control strategy is unnatural and counterintuitive,
and requires extensive training to achieve satisfactory control
performance.

Recently, researchers have discovered that during the exe-
cution of cued or voluntary movements, the human engages
cognitive resources in the brain associated with movement,
resulting in a negative low-frequency potential acknowledged
as movement-related cortical potential (MRCP) [4]. Gener-
ally, MRCP shows up as a negative amplitude shift during
movement preparation stage, peaking at the movement onset
and then rebounding positively. It is significant to highlight
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that MRCP can be observed in both executed movements
and imagined movements and contains information regarding
movement types and parameters [5], [6]. As a result, many
researchers have started investigating the decoding of MRCP
in order to obtain natural and fine control in BCI systems. [7],
[8], [9], [10], [11], [12]. Schwarz et al. effectively decoded
three natural grasping actions (palmar grasp, pincer grasp,
and lateral grasp) as well as a no-movement condition using
MRCP and explored significant differences among the four
conditions [13]. Wang et al. found that the event-related desyn-
chronization (ERD) and MRCP features prior to movement
initiation contain significant discriminative information, which
can be effectively identified using a combination method
of discriminative canonical pattern matching and common
spatial patterns (CSP) [14]. Moreover, incorporating MRCP
and ERS/D oscillations, Wang et al. introduced an innovative
deep learning model, with six-class classification accuracy for
unimanual and bimanual movements reaching 80.3% [15].

However, due to the limited spatial resolution of EEG,
the decoding performance for unimanual movements is still
not ideal. To address this issue, one feasible solution is to
project EEG from the scalp to the cortical surface [16].
Srrisrisawang and Müller-Putz compared the decoding per-
formance of hand trajectories between using template head
models and participant-specific head models, and found no
significant statistical differences [17]. Handiru et al. employed
dipole source features to classify arm movements and achieved
an average accuracy of 71% for four categories, which was
more than 10% higher than the classification accuracy obtained
using the most advanced sensor features [18]. Hou et al.
combined source features with convolutional neural networks
and achieved a 14.4% improvement over state-of-the-art motor
imagery (MI) classification approaches [19]. Kobler et al.
found that MRCP carried the initiation and direction informa-
tion of arm movements, which are represented in two different
cortical networks [20]. Li et al. demonstrated that EEG signals
obtained from the source domain could improve the MRCP
detection rather than those in the sensor domain [21].

Furthermore, we must emphasize that although improving
decoding accuracy is crucial, studying the control and response
mechanisms of the neuro-muscular system during movement
should never be disregarded. Previous research has revealed
that the motor neural system conveys movement control
information via neural oscillations, resulting in synchronous
oscillatory activities of motor units [22]. This oscillation is
bidirectional, meaning it not only conveys commands from
the cortical areas to the muscles (downward transmission)
but also involves feedback from the muscles to the cortical
areas (upward transmission) [23]. Omlor et al. discovered
that the significant coherence of static force was limited to
the β frequency band, whereas under dynamic force, the
cortical-spinal oscillatory patterns of the somatomotor sys-
tem shifted to higher frequencies, primarily in the γ band,
to quickly integrate the visual and proprioceptive information
required for generating relevant motor commands [24]. Zhu
et al. discovered significant statistical coupling distinctions
among various grasping actions within the β frequency band
during the execution phase and notable differences within

the γ frequency band during the preparation phase [25].
Zhou et al. discovered that movement observation (MO) and
movement execution (ME) exhibited contralateral dominance
in spatial coherence between the cortex and muscles, whereas
MI displayed ipsilateral dominance [26].

In our previous studies, we have conducted research on the
decoding of movement types and parameters for natural reach-
and-grasps. We successfully classified the MRCP of natural
grasp types under different movement parameters as well as
movement parameters under each grasp type [27], [28], and
explored the differences in cortical activation patterns and
brain network structures among six natural grasping tasks [29].
According to human grasp taxonomy, each type of grasping
actions can be accurately categorized based on the power
and precision employed during execution [29], [30]. However,
in the majority of studies, including our earlier research, the
aspect of grasp taxonomy has not been effectively considered.
Additionally, the investigation of EEG source imaging and the
coupling relationship between the cortical signals and muscles
may help with the precise and natural control of rehabilitation
robots, especially in the field of neural prosthetics. To the best
of our knowledge, however, there is limited academic research
focused on MRCP source features and the coupling dynamics
specific to natural grasp types.

Hence, in this study, we chose five natural grasping
actions based on human grasp taxonomy [31] and action
frequency [32] to conduct decoding research, which included
medium wrap (MW), adducted thumb (AT), adduction grip
(AG), tip pinch (TP), and writing tripod (WT). Our aim was
to investigate the possibility of decoding complex action types
using source features of MRCP and to explore the temporal
changes and frequency band differences of inter-muscular
coupling and cortical-muscular coupling strength during the
natural grasping process. We believe our work will lead to
a more thorough understanding of the brain’s control mecha-
nisms for grasping actions.

II. METHODS

A. Participants
The experiment received approvals from the Ethics

Committee of Southeast University (2020-SR-362). A total
of 17 healthy participants (aged 22 to 25 years, eight males)
were recruited. All participants were right-handed, with no
history of neurological or muscle disorders, and had a normal
or corrected-to-normal vision. For the convenience of the
following discussion, these 17 participants were individually
labeled as S1-S17. Before the experiment, each participant was
informed about the purpose and procedures of the study and
signed the informed consent.

B. Experimental Paradigm
The experiment was conducted in a quiet and electro-

magnetically shielded room to minimize the influence of
environmental factors. The experimental table was positioned
directly in front of the participants, with a pressure but-
ton located in close proximity to the participants and two
grip force sensors placed slightly further away. Before the
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Fig. 1. Data Acquisition Scheme. (a) EEG Electrodes Set Up. (b) sEMG
Electrodes Set up.

experiment, participants sat comfortably in an armchair at
an appropriate distance from the experimental table, ensuring
that they could naturally reach and grasp the force sensors.
In order to record the starting and ending of their move-
ments, participants were required to place their right hands
on the pressure button (see Fig. 2a). During the experiment,
participants were instructed to complete 5 natural reach-
and-grasp tasks according to the auditory cue (see Fig. 2b).
Our experimental paradigm was shown as Fig. 2c. Each trial
consisted of three stages: preparation, execution, and rest, with
a duration of 12 seconds per trial.

1) Preparation stage: At second 0, an auditory cue indicated
a specific task, such as “medium wrap” or “adducted thumb”,
and participants should maintain a resting gesture without any
movement.

2) Execution stage: At second 2, an auditory beep was
generated. During this stage, participants naturally extended
their right hand towards the grip force sensor, performed the
task action and maintained it for a period of time before
retracting their hand back to the pressure button.

3) Rest stage: An auditory cue of “please rest” was given.
During this stage, participants can blink, swallow, relax, and
wait for the next trial.

During the experiment, participants were required to avoid
blinking, swallowing, and other body movements except dur-
ing the rest stage.

In total, the experiment consisted of 10 runs, with each
run comprising 30 trials. Therefore, 300 trials were obtained
for each participant. During each run, the sequence of the five
natural grasp tasks was randomized, but their frequencies were
equal. To prevent muscle fatigue, participants were provided
with a rest period of 5 to 10 minutes after each run. Before
the experiment, participants participated in a practice run to
acquaint themselves with the experimental procedure.

C. Data Acquisition
We used a 64-channel ActiCAP electrode cap (ActiCAP

Systems, Brain Products GmbH, Germany) for EEG record-
ing. The electrode placement adhered to the international
10-20 system (see Fig. 1a). The FCz channel served as the
reference channel, while the FPz channel was used as the
ground channel. To attenuate the high-frequency components,

a bandpass Butterworth filter with a range of 0.01 to 100Hz
was applied. Additionally, a 50Hz notch filter was utilized
to reduce power line interference. During the experiment, the
sampling rate was set at 1000Hz and electrode impedances
were kept below 15k�.

In addition, we employed Trigno TM wireless EMG
devices (DelsysInc, Natick, MA, USA) to capture sEMGs
from five muscles (see Fig. 2b), including biceps brachii
(BB), triceps brachii (TB), brachioradialis (BR), flexor carpi
radialis (FCR), and palmaris longus (PL). Additionally, a
4-channel USB3102A data acquisition card was adopted to
record the output of the pressure button, synchronous trigger
and grip force sensors. The sampling frequency of both
sEMG and data acquisition card was 2000Hz.

D. Movement Moment Detection
To investigate the EEG changes during different movement

stages, we utilized the rising and falling edges of the pressure
button to detect the movement onset and end of each trial.
Additionally, the initiation and termination of participants’
grasping actions were determined based on the corresponding
rising and falling edges of the grip force sensor signal. During
this step, trials that satisfied any one of the four criteria listed
below were excluded: 1) the participant reached out before the
beep prompt; 2) the participant did not return to the button
within 5 seconds after the beep prompt; 3) the participant’s
reaction time exceeded 2 seconds; 4) the participant performed
an incorrect action.

E. Signal Preprocessing
Signals in this study were preprocessed using BrainVision

Analyzer 2.2 and MATLAB R2021b (Mathworks, Inc., USA).
Firstly, EEG was re-referencing to the average of TP9 and

TP10 channels, which were located at mastoids. Next, the
re-referenced EEG was filtered from 0.01 to 45Hz using a
zero-phase fourth-order Butterworth bandpass filter. We set
Fp1 channel as ocular reference channel, and applied inde-
pendent component analysis (ICA) [33] to remove ocular
components. Finally, using the beep cue moment as the
reference (0s), a time range of [−2, 4.9]s was extracted as
the time region of interest (tROI) and baseline correction was
performed by [−2, 0]s.

For sEMG, the first step was to align the sEMG signals
with the force data using the rising edge of the synchronous
trigger. Since the duration of one run was 6 minutes and
the sampling rates of both force data and sEMG data were
2000Hz, the length of the force data and sEMG data for
a run was 720000 samples. By using the rising edge of
the synchronous trigger signal, the starting point of the data
alignment can be determined, achieving data synchronization.

After alignment, sEMG was downsampled to 1000Hz to
align with the EEG. Then, the sEMG was mean-centered to
remove the DC component. We filtered the mean-centered
data from 0.5 to 200 Hz with a zero-phase fourth-order
Butterworth bandpass filter. After that, a 50Hz notch filter was
utilized to eliminate high-frequency components and power
line interference.
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Fig. 2. Natural Reach-and-Grasp Experiment. (a) The Experimental Table. (b) Grasping Tasks. (c) Audio-Cued Experimental Paradigm.

Finally, the preprocessed EEG and sEMG were bandpass
filtered by fourth-order zero-phase Butterworth filter to obtain
corresponding MRCP (0.1-3Hz), δ (0.5-4Hz), θ (4-8Hz),
α (8-13Hz), β (13-30Hz) and γ (30-45Hz) components.

F. EEG Source Estimation
Due to the volume conduction effect, EEG has a

relatively low spatial resolution. To overcome this limitation,
we employed EEG source imaging techniques to project the
scalp EEG (x) onto the cortical surface (s, current densities
of sources):

x = Ls + n (1)

where L represents the lead field matrix determined by
the head model and the positions of EEG electrodes and
n represents the noise matrix. In this study, we used the 0.5-s
rest stage data to estimate n and applied weighted minimum
norm estimation (wMNE) to compute L [34]:

min
s

Ls − x2
2 + λ W s2

2 (2)

where λ denotes the regularization parameter, and
W represents the weighted matrix.

Finally, we obtained the estimated source ŝ:

ŝ = LT
(

LLT
+ λ W

)−1
x (3)

Currently, among several EEG source imaging methods,
the most commonly used one is sLORETA. sLORETA is a
generalization of wMNE based on the standardized assumption
of current density, with higher positioning accuracy than
wMNE. Therefore, in our research, we use sLORETA as the
method for solving the inverse problem of source imaging.

The EEG source estimation was realized with Brainstorm
toolbox [35]. Colin 27 average brain template was chosen
due to its high signal-to-noise ratio and well-defined structure.
To minimize errors caused by the head model, we warped the
template according to standard electrode position of the EEG
cap. After that, we utilized OpenMEEG [36] for solving the
forward problem and sLORETA [37] for addressing the inverse
problem.

Due to the large number of dipoles calculated by the ESI
method, we divided 68 cortical regions of interest (cROI)

based on the Desikan-Killiany cortical atlas [38] and averaged
the dipoles in the same region to obtain an average source
signal, which was referred to as “source EEG” in the following
analysis.

G. Feature Extraction and Classification
The feature extraction and classification in this study serves

two purposes. Firstly, to determine whether the source signals
of MRCP (sMRCP) can differentiate between different types
of grasps. Secondly, to assess whether it is possible to identify
the subtle distinction within the same grasp type.

To reduce computational load, the sMRCP were downsam-
pled to 100Hz. We used a time window of 100ms for feature
extraction. Within this window, the amplitudes of all sMRCP
were sampled every 20ms, which allowed for the extraction
of 6 × 68 features.

Given the high dimensionality of the features, we utilized
the minimum Redundancy Maximum Relevance (mRMR)
criterion [39] to select the most representative 25 features for
classifier training and testing. Besides, considering the small
sample size characteristic of the EEG data, the shrinkage linear
discriminant analysis (sLDA) classifier [40] was employed in
this study for grasp type decoding, and 5-fold cross-validations
were repeated 10 times to calculate the classification accuracy.
The time window slid along tROI with a step size of 10ms,
resulting in a total of 681 classification models over the whole
tROI.

H. Coupling Analysis
Inter-muscular coupling reflects the interaction between

muscles, while cortical-muscular coupling reflects the
functional connectivity between brain intention and muscle
response. In this study, we focused on source EEG and
preprocessed sEMG, evaluating the inter-muscular coupling
strength and cortical-muscular coupling strength using coher-
ence analysis and Granger causality analysis, respectively.
Especially, during cortical-muscular analysis, we put more
attention on source EEG of precentral and postcentral regions,
since they respectively contained the primary motor cortex
and the primary somatosensory cortex [41], [42].
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For a pair of signals x(t) and y (t), their coherence can be
described using the cross-power spectral density:

Cxy( f ) =
Sxy( f )√

Sxx ( f )Syy( f )
(4)

In the equation (4), Sxy( f ) represents the cross-power
spectral density between the two signals, Sxx ( f ) and Syy( f )

indicate the self-power spectral densities of the two signals,
respectively.

However, traditional coherence analysis is unable to cap-
ture the causal relationship between the cerebral cortex and
muscles, which is not conducive to our investigation into
the cortical-muscular response mechanisms. To address this
limitation, we employed Granger causality analysis:

G y→x = ln
Sxx ( f )

Hxx ( f )6H∗
xx ( f )

(5)

Equation (5) represents the Granger causality relationship
from y(t) to x(t), where Sxx ( f ) represents the self-power
spectral density of x(t), Hxx ( f ) denotes the transfer matrix,
and 6 represents the covariance matrix.

The above calculation was realized using Brainstorm tool-
box. Besides, to verify the significance of the coupling index,
we calculated the credible threshold of the coupling index
based on the reference [43]:

CL = 1 − (1 − α)
1

N−1 (6)

where N represents the number of trials, and α represents the
confidence level, which was set to 0.95 in our study. Only
coherence values and Granger causality values greater than
CL were considered significant. To quantitatively describe the
differences in inter-muscular coupling and cortical-muscular
coupling under different frequency bands, we further defined
the significant area. Taking coherence values as an example:

S =

∑
f

{
1 f ×

(
Cxy( f ) − C L

)
if Cxy( f ) > C L

0 otherwise (7)

where 1 f represents the frequency resolution. A larger
value of S indicates a stronger coupling strength within this
frequency band.

III. RESULTS

A. Behavioral Analysis

Fig. 3 shows the movement behavioral analysis for all par-
ticipants. From Fig. 3a, it could be observed that the total time
of the movement varies among different participants, while the
reaction time remains similar. The average reaction time for
each grasping task across all participants was calculated, and
a one-way analysis of variance (ANOVA) was also conducted
(see Fig. 3b). Bonferroni post-hoc tests demonstrated that
there were no significant differences in reaction time among
different grasping actions (p > 0.05).

Fig. 3. Movement behavioral analysis of all participants. 0s indicates
the beep prompt moment. The circle point indicates the outliers.
(a) Movement stage for each participant in a trial. (b) Reaction time of
all participants across different grasping tasks.

Fig. 4. Five-class classification results. (a) Grand average classification
accuracy source domain over tROI. Significance threshold is 24.74%
(α = 0.05). (b) Grand average classification accuracy of sensor domain
over tROI. Significance threshold is 24.74% (α = 0.05). (c) Grand
average row-normalized confusion matrix at −1.24s. (d) Grand average
row-normalized confusion matrix at 2.63s.

B. Multiclass Classification Results

Fig. 4 presents the grand average five-class classification
results of grasp types. Since the small sample size of the EEG
may lead to a random classification level of more than 20%
for five-class classification, we calibrated the chance level of
the classification results based on [44], and [45]. The grand
average significance level for the five-class classification is
24.74% (α = 0.05). Fig. 4a and Fig. 4b illustrate the grand
average accuracy of source and sensor domain over the whole
tROI. The peak accuracy of the source domain is 32.6%, and
the peak accuracy of the sensor domain is 30.1%. It can be
seen that the accuracy of the source domain is slightly higher
than that of the sensor domain.

Specifically, for the source domain, the classification accu-
racy gradually increases at the beginning of tROI, and reaches
a peak of 32.6% during the hold stage. After that, the accuracy
curve gradually declines to the vicinity of the significance
level. In addition, as shown in Fig. 4a, there are two peaks
in the accuracy curve, located before and after the beep
prompt (0s), respectively. According to previous literature [9]
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TABLE I
PARTICIPANT-SPECIFIC PEAK PERFORMANCE AND

THEIR CORRESPONDING TIME POINT

(MULTICLASS CLASSIFICATION)

and our speculation, the reason for the first peak may be the
participant’s intention to move.

Table I displays the two peak performances for all par-
ticipants. Most participants realized their peak decoding
performance in the hold phase or late stage of the reach phase.
Besides, since inconsistent time taken by each participant to
achieve peak performance, the grand average peak perfor-
mance (32.6%) is 6% lower than average peak performance
(38.6%).

Fig. 4c and Fig. 4d display the grand average row-
normalized confusion matrices corresponding to two peak
time points. It can be observed that sMRCP can effectively
distinguish between power grasp and precision grasp, but it is
difficult to differentiate between actions belonging to the same
grasping type.

Furthermore, we conducted binary classification studies
between power grasp (MW and AT) and precision grasp
(TP and WT), as well as between MW and AT within the
power grasp category. The grand average binary classification
accuracy curve for power grasp and precision grasp is shown
in Fig. 5. The grand average binary classification accuracy for
power grasp versus precision grasp is above the significance
level (56.03%, α = 0.05) throughout the whole tROI, with a
peak accuracy of 70.0%. Participant-specific peak performance
of binary classification is displayed in Table II. The average
binary classification accuracy difference of the two studies
reaches 12.2%.

C. Coherence Analysis
To investigate the relationship between intermuscular cou-

pling strength and frequency, we divided the tROI into
7 windows and calculated the coherence of sEMG signals
for each muscle pair within 1-second interval, as shown in
Fig. 6. In the figure, only four muscle pairs, which is PL-FCR,
FCR-BR, TB-BB, and PL-BR, exhibited strong coherence
above the significance threshold. Moreover, there is a clear

Fig. 5. Binary classification results over tROI. Grand average classifi-
cation accuracy between power grasps and precision grasps.

TABLE II
PARTICIPANT-SPECIFIC PEAK PERFORMANCE AND

THEIR CORRESPONDING TIME POINT

(BINARY CLASSIFICATION)

trend indicating that higher frequencies correspond to greater
coherence. Additionally, time interval between [1, 4]s exhib-
ited the highest intermuscular coherence, which aligns with
the movement execution stage.

In Fig. 7, the grand average coherence areas of different
frequency bands are displayed. It can be observed that inter-
muscular coupling is most visible in the high-frequency bands,
and each frequency band’s coupling strength is ranked as
follows: γ > β > α ≈ δ > θ . Among them, the highest
coupling strength of δ frequency band is observed during the
preparation stage, while the highest coupling strengths of other
frequency bands occur during the execution stage. Besides,
the strongest coupling of γ and β frequency band is observed
between the PL and FCR as well as between the FCR and
BR during the holding phase, and the strongest coupling in
the α frequency band is observed between the TB and BB
during the reaching phase.
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Fig. 6. The grand average intermuscular coherence over frequency in different time intervals.

Fig. 7. The grand average coherence areas of different frequency bands. The black vertical dotted line indicates the actual movement onset. The
light blue filled area indicates the phase of holding.

Fig. 8 presents the grand average coherence areas of dif-
ferent muscle pairs. From the figure, it can be observed that
the trends of coupling strength for various muscle pairs are

generally consistent in the β and γ frequency bands, which
typically exhibit two peaks. For the upper arm muscle pairs
of TB-BB, these two peaks correspond to the late stages of



4972 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 8. The grand average coherence areas of different muscle pairs. The black vertical dotted line indicates the actual movement onset. The light
blue filled area indicates the phase of holding.

the reaching phase and the grasping phase, respectively, and
the latter peak shows slightly higher strength than the former
peak. For the lower arm, the two coupling peaks of PL-BR
and FCR-BR also occur during the reaching phase and the
holding phase. However, compared to PL-BR, the coupling
strength of FCR-BR does not show a significant decrease
during the grasping phase but maintaining a stable coupling
level. Additionally, the coupling strength of PL-FCR begins to
increase from the grasping phase and reaches its highest peak
at the end of the grasping phase, exhibiting only one peak.

Besides, compared to the non-execution stage, the coupling
strength of sEMG signals is higher during the movement
execution stage. Additionally, during the preparation stage,
the early coupling strength is greater than the late coupling
strength. Moreover, the coupling strength during the holding
phase is higher than that during the reaching phase.

Fig. 9 and Fig. 10 present the grand average cortical-
muscular coupling strength between the both-side source EEG
of the postcentral and precentral regions and three muscle
channels (BR, FCR, PL) in different directions. Overall, the
coupling strength in the upward direction (from sEMG to
EEG) is higher than that in the downward direction (from EEG
to sEMG). However, the coupling strength in the γ frequency
band shows an opposite phenomenon, especially during the
preparation and holding phases. It is worth noting that for the
downward direction, strong coupling is observed primarily in
the γ frequency band, while the coupling strength in other
frequency bands remains relatively consistent.

When comparing specific coupling pairs in the upward
direction, it is observed that the cortical-muscular coupling
strength in the same frequency band shows consistency across

different phases. In the δ frequency band, the coupling strength
between sEMG and the right source EEG is higher than that
between sEMG and the left source EEG. In the θ frequency
band, the coupling strength between sEMG and Precentral L
is the highest, followed by that with Postcentral R. In the α

frequency band, the coupling pattern is opposite to that in the
δ frequency band, except during the reaching phase. In the
α frequency band, the coupling strength between sEMG and
the left source EEG is higher than that between sEMG and
the right source EEG. In the β frequency band, the coupling
pattern is opposite to the θ frequency band, with higher
coupling strength observed between sEMG and Postcentral
R compared to the coupling strength between sEMG and
Precentral L. Furthermore, in the δ and θ frequency bands,
it is noted that the transfer of information between FCR and
the cortical regions is slightly higher compared to the other
two muscle channels and the brain.

IV. DISCUSSION

In this study, we selected five common natural grasping
actions based on grasp taxonomy and investigated the
decoding feasibility of MRCP source features. Both binary
classification and multiclass classification approaches achieved
better-than-chance classification accuracies, with average
peak performances of 78.7% (Power vs. Precision), 66.5%
(MW vs. AT), and 38.6% (5-class classification), respectively.
Moreover, we quantitatively analyzed the temporal variations
and frequency band differences of inter-muscular and
cortical-muscular coupling strengths during natural grasping
process.
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Fig. 9. Grand average significant area of granger causality in the upward direction (from sEMG to EEG).

Fig. 10. Grand average significant area of granger causality in the downward direction (from EEG to sEMG).

A. Single Trial Classification
We successfully decoded five natural grasping actions using

MRCP source features. However, from the confusion matrices
in Fig. 4, it can be observed that source features belonging to
different grasp types are not easily confused with each other.
Specifically, source features of power grasps such as MW and
AT are prone to confusion, while source features of precision
grasps such as AG, TP, and WT are likely to be confused with
each other. On the contrary, there is less confusion between
power grasps and precision grasps. Fig. 5 provides a more
intuitive representation of this phenomenon.

On the one hand, this can be attributed to the inherent
differences between the actions. From the perspective of
grasp taxonomy, grasping actions can generally be classified
into two categories [30]: precision grasps and power grasps
(some studies categorize them into 3 class, which include
intermediate class [31]). Actions within the same category
exhibit minimal differences. For instance, the only distinction
between MW and AT lies in the abduction of the thumb,
making it challenging for sMRCP to discriminate between
them effectively. In our experiment, the objects used for
power grasps and precision grasps had different diameters.
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Previous research suggested that MRCP primarily decoded
the properties of the grasped object during the movement
observation phase and it can accurately decode the grasp
type during whole movement execution phase [7]. This may
explain why the classification accuracy for power grasps and
precision grasps is higher than the significance level during the
preparation stage, whereas MW and AT only reach significant
classification levels during the execution stage.

On the other hand, this phenomenon can be explained by
the neural control of different grasping actions. Researchers
found that precision grasps and power grasps were separate
in terms of their neural innervation [46]. Precision hand
movements were primarily controlled by the median nerve,
which was often referred to as the “precision nerve”. Besides,
grip force was mainly governed by the ulnar nerve, known as
the “power nerve” [47]. Previous studies about hand-related
EEG decoding did not take the impact of grasp taxonomy
into account. The results of our research reflect the precise
movement control provided by the brain’s neural pathways
when executing different natural grasp types, which offer
neurological support for the grasp taxonomy.

Furthermore, in Table I, the peak accuracies for the
five-class classification of most participants occur during the
hold phase or late stage of the reach phases. This finding was
consistent with our previous research [29] and was in line
with the results Schwarz et al. obtained in their study [13].
According to the reference [48], [49], the information about
hand shape gradually increased as the hand approached the
object, reaching its maximum during the holding phase. As a
result, the shape distinction in these two phases was the most
pronounced, as demonstrated by our results, leading to higher
classification accuracy.

B. Inter-Muscular Coupling

The results of our study indicated that the coherence
between sEMG signals increases with higher frequencies.
However, we also noticed strong coherence between different
muscle combinations within the frequency range of 0.5∼2 Hz
(see Fig. 6). This phenomenon was observed only during the
movement preparation phase ([−2, 0]s) and decreased over
time. It is important to highlight that we were unable to locate
any prior research indicating that substantial muscle coupling
existed during the movement preparation phase. Therefore,
it might be challenging to tell whether this strong coherence
represents muscle preparation for upcoming actions or is
merely the result of artifacts caused by muscle tremor during
the rest stage.

Furthermore, we noted a significant peak coherence at 12Hz
throughout the execution stage ([1, 4]s). Interestingly, during
the transition from the reach phase ([1, 2]s) to the hold phase
([2, 3]s), this peak shifts from the upper arm muscles (TB-BB)
to the lower arm muscles (PL-FCR). Combined with the
findings of Sburlea et al. [50], which showed that during the
holding phase of grasping, contralateral parietal EEG in the µ

frequency band indicated muscle activity, we speculated that
this peak reflected the transfer of movement information
between muscles during planning and execution phase.

Additionally, Li’s research demonstrated that there was
strong coupling among synergistic muscles, particularly in the
γ and β frequency bands [51], which was consistent with
our results: in Fig. 7 and Fig. 8, strong coherence in the
γ and β frequency bands are observed, specifically between
PL-FCR and FCR-BR during the hold phase. Additionally,
in the α frequency band, there is a strong coherence between
TB and BB. Typically, TB and BB indicated arm movements,
while PL, FCR, and BR indicated hand movements. Therefore,
we speculated that during natural grasping, finer movement
execution information was transmitted in the β and γ fre-
quency band, while movement planning Information was
conveyed in in higher frequency bands. Besides, the growing
coupling strength over time in Fig. 8 indicated that coupling
information accumulated over time.

C. Cortical-Muscular Coupling

The coupling strength between EEG and sEMG varies
across different frequency bands because different frequency
bands are associated with specific neural mechanisms and
functional interactions between the brain and muscles. The
results of this study show that, except for the hold phase in
the γ band, the coupling strength from sEMG to EEG is higher
than the coupling strength from EEG to sEMG, reflecting the
differences in direction-synchronized oscillations between sen-
sory feedback and motor control mechanisms, which is in line
with the findings of Zhu’s research [25]. Additionally, prior
study revealed that γ band oscillations were intimately tied
to cognitive functioning and related to shifts in attention [52].
During the transition from movement preparation to execution,
the participants’ attention was enhanced, accompanied by
increased activities in the γ frequency band. Higher levels
of downward coupling strength in the γ frequency band
during the hold phase were the outcome of this increased
activity because it supported the sensory cognition’s selective
attentional processes.

Besides, it is noteworthy that for the downward direction,
the cortical-muscular coupling strength within the same move-
ment phase and frequency band is nearly identical. However,
there are noticeable variations in the upward direction. This
finding implies that while the precise feedback information
connected to the execution of movements differs across various
muscle groups, the amount of control information transmitted
from the brain to the muscles remains constant.

Furthermore, in this study, we found that the reach phase
exhibited the lowest coupling strength compared to other
phases, regardless of frequency band and direction. The
peculiar features of the reach phase may be responsible for
this discovery. During reach phase, participants engage in
dynamic movements, the limb movements introduced inter-
ference, leading to a decrease in the analysis of coupling
strength. In contrast, the hold phase demonstrated the highest
cortical-muscular coupling strength among all phases. This can
be attributed to two factors. On the one hand, participants
keep a static position throughout the holding phase, which
prevents interference in signal acquisition. On the other hand,
the hold phase demands accurate movement execution and
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control, demanding prompt communication between the brain
and muscles to ensure the actions are carried out as intended.

D. Limitations and Future Work
In this study, we successfully decoded five natural grasping

actions based on MRCP source features, and investigated the
inter-muscular coupling and cortical-muscular coupling rela-
tionship, opening up new opportunities for natural and refined
neural prosthetics and rehabilitation robot control. Based on
our findings, further investigations should be considered as
follows:

Firstly, our experiment focused only on different types of
grasping actions. However, decoding grasping speed and force
is equally crucial in real-world situations. Therefore, future
studies could consider incorporating movement parameter con-
trol in the experimental design.

Secondly, our study employed offline decoding strategy.
Future study could focus on online decoding and device
control for brain-muscle fusion, enabling real-time applica-
tions, even if the efficiency of online analysis was considered
throughout the feature extraction and classification process by
using smaller time windows (100ms) for decoding.

Additionally, our study primarily concentrated on extracting
the source amplitude features of MRCP. Future research could
concentrate on extracting features from both time domain and
frequency domain to improve decoding precision. Deep learn-
ing techniques may also be incorporated into the analysis to
enhance the decoding performance. These methods might help
us gain a more thorough understanding of the brain correlates
and make it possible to decode motor-related information from
EEG signals more precisely.

Lastly, it should be highlighted that the physiological sig-
nals collected in this study were from healthy participants.
However, patients with SCI or disabilities may show unusual
physiological patterns in their EEG and sEMG. Therefore,
even if it is difficult, it is vitally necessary to confirm the
reliability and precision of our findings on SCI participants.

V. CONCLUSION

In this study, we employed MRCP source features to decode
complicated grasping actions and investigated the temporal
changes and frequency band differences in inter-muscular
coupling and cortical-muscular coupling strength during the
movement process. Both multi-classification and binary clas-
sification results showed that MRCP source features could
effectively distinguish between power grasp and precision
grasp. Furthermore, we observed peaks in inter-muscular cou-
pling strength whose frequency similar to the µ rhythm in
the EEG. Our research helps BCIs be controlled naturally and
intuitively and has significant ramifications for our comprehen-
sion of the control and feedback systems underlying human
hand grasping performance.
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