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Abstract— Depression is a prevalent and severe mental
disorder that significantly affects both mind and body,
leading to persistent feelings of sadness, despair, and
impaired functionality. Diagnosis of depression primarily
relies on clinical assessment and observation of symp-
toms. However, due to the lack of objective indicators, the
experience and skills of doctor may lead to misdiagnosis.
Current researches indicate that eye movement patterns
and pupil dilation can serve as potential biomarkers for
emotional and cognitive dysregulation in individuals with
depression. However, most studies are based on manually
extracted eye movement features, overlooking a significant
portion of information available in ocular imaging. This
paper proposes Three-Stream Convolutional Neural Net-
work (TSCNN) for detecting depression, leveraging both
spatio-temporal information of raw ocular imaging and
paradigmatic semantic features. We suggest using optical
flow with different sampling intervals to capture temporal
features. In the third stream, we employ an encoder to
learn semantic information from paradigm images and use
it as prior knowledge. Finally, we utilize a fully connected
network for classification, achieving an accuracy of 79.3%
on our self-collected dataset. The proposed method may
demonstrate significant clinical utility in the future.

Index Terms— Depression detection, eye movement,
ocular imaging, three-stream convolutional neural network.

I. INTRODUCTION

DEPRESSION is a widespread mental disorder that
profoundly affects both mental and physical health.
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The World Health Organization (WHO) considers it a primary
cause of disability [1]. Depression patients may experience
a range of symptoms, including a sense of despair, loss of
interest in previously enjoyed activities, sleep disturbances,
changes in weight or appetite, fatigue, difficulty concentrating,
and indecisiveness. These symptoms can significantly impact
an individual’s daily functioning, potentially leading to func-
tional impairments in work, study, or social relationships. The
most widely used diagnostic criteria for depression are found
in Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) [2], it provides a standardized set of symptoms and
criteria, clinical professionals determine whether an individual
meets the characteristics of depression through psychological
assessments [3] and clinical interviews [4]. These traditional
diagnostic methods rely heavily on subjective perception of
patient and expertise of physician, emphasizing the urgent
need for objective diagnostic tools. Disease surveillance stud-
ies based on physiological and behavioral data have been
extensively conducted [5], providing many clues for objective
auxiliary diagnosis of depression [6], [7], such as EEG [8],
[9], [10], facial expressions [11], [12], [13], and audio [14],
[15] etc.

It has been shown that gaze duration, sweep range, blinks,
and pupil size in response to emotional stimuli are all key
features of emotion recognition [16], [17], [18], pupil dilation
is linked to activation of autonomic nervous system, particu-
larly sympathetic branch, contains rich and genuine emotional
information. Ocular movements and pupil changes objectively
reflect subjects’ attention to different stimuli [19], eye-tracking
technology [17], [20], [21] visualizes the distribution of atten-
tion and are effective tools for analyzing attentional biases
in depression patients [18], [22], [23], [24]. Abnormal ocular
changes have been observed in depression patients, such
as prolonged fixation duration, decreased frequency of eye
slews, and reduced smoothness eye movements [25]. These
changes suggest that attention processes, cognitive functions,
and emotional regulation abilities are generally impaired in
individuals with depression, and they may exhibit atypical
pupil dilation responses to emotional stimuli [26].

Most of existing studies detect depression by defined ocular
change features such as gaze points, pupil diameter, number of
eye jumps, gaze duration [27], [28]. Alghowinem et al. [29]
labeled each eye image with 74 points and extracted three
features for each image. Al-Gawwam and Benaissa [30]
extracted features of blink frequency and duration for
subjects in each video frame. Shen et al. [31] proposed a
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new experimental paradigm of eye movement-based cognitive
psychology, extracting eye movement features during free
viewing phase and attention frame tracking phase. Acquisition
of eye movement events is labor-intensive, and follow-up tasks
are limited to identified eye movement behaviors. Results may
not be satisfactory due to small correlation between some eye
movement events and detection tasks.

Depth methods can focus on undefined physiological behav-
ioral features. With deepening of problem complexity and
development of artificial intelligence techniques, neural net-
works have become stable and widely used. Many researchers
are now using deep learning methods to process physiological
signal data for emotion detection. Ma et al. [32] utilized
a combination of convolutional neural networks and Long
Short-Term Memory to capture depression-related characteris-
tics in audio, resulting in a more precise audio representation.
Yang et al. [33] proposed a multi-modal fusion frame-
work consisting of deep convolutional networks and deep
neural networks to process audio, video, and text streams.
Tao et al. [34] utilized the transformer encoder to extract
semantic information from video log data to identify
anomalous emotional states. Pan et al. [35] proposed
Spatio-Temporal Attention Depression Recognition Network
(STA-DRN), which improves quality of extracted features
by capturing global and local spatio-temporal information.
de Melo et al. [36] designed DMSN architecture in order
to adapt the model to different facial behaviors, capable of
exploring a variety of multi-scale spatio-temporal features.
To solve the problem of ignoring some undefined eye move-
ment features, our previous work [37] proposed a novel
depression detection method. This method involves directly
clustering eye movement data to bypass the identification of
eye movement events and acquire regions of interest (ROI).

Although recent researches focus on using deep learning
methods to detect depression in various modal datasets, such
as facial images, audio, text, and other modalities, there are
not many research methods for ocular imaging. The main
methods in the field of video recognition are Two-Stream
Convolutional Neural Networks [38], Still Image Feature
Aggregation, 3D Convolutional Networks [39] and Trans-
former [40], convolutional neural networks are very good at
processing static appearance information (object shape size
color, scene information, etc.) rather than motion information,
so they can’t handle video very well. Since this case, Two-
Stream Convolutional Neural Networks use another network
(optical flow network) to extract features of good motion infor-
mation with good results. Although Two-Stream Convolutional
Neural Networks notices spatial and temporal information, its
main use is for action recognition. Unlike ocular imaging,
the background of video for action recognition changes more
rapidly and characters move more, ocular imaging has single
background and simpler picture, requiring more attention to
temporal features.

For properties of ocular imaging, we propose an end-to-end
depression classification model i.e., Three-Stream Convolu-
tional Neural Network (TSCNN). Given individual differences,
each participant reacts to stimuli at different speeds. Sampling
optical flow at different time intervals allows for a more
comprehensive understanding of changes in participants’ eyes.

Secondly, considering the correlation between stimulus images
and ocular changes, we attempt to integrate the spatio-temporal
features of ocular imaging with the semantic features of
paradigm images to enhance the model’s classification capa-
bilities. The main contributions of this paper are as follows:

• We present Three-Stream Convolutional Neural Network
(TSCNN) method for depression detection. The method
is capable of analysing raw ocular imaging and is an end-
to-end model for extracting eye movement features.

• We split time block into two input streams (fast frame rate
and slow frame rate) to sample subjects’ ocular changes
at different time intervals, allowing for a more detailed
extraction of temporal features from ocular imaging.

• Latent codes of paradigm images are incorporated into the
model as prior information and merged with the features
from ocular imaging to aid in the learning process of the
model.

The remainder of this paper is organized as follows.
Section II provides an overview of different approaches used
in eye-movement research and video recognition. Section III
presents information on paradigm experiments and subjects
involved. Section IV details structure of TSCNN. Section V
shows experimental results. Section VI analyzes and discusses
experimental results. Section VII summarizes work presented
in this paper, identifies its shortcomings, and suggests potential
avenues for future research.

II. RELATED WORK

A. Eye Movements in Mental Disorders
The presence of mental disorders typically leads to a range

of psychological issues, accompanied by negative emotions
such as anxiety, fear, and depression. This condition leads
to neurological dullness and eye disorientation, differences
between depression patients and healthy control group can
be identified through eye movement events. Eye movement
events are interpretable and often have judgment criteria.
Li et al. [41] confirmed abnormal eye movement metrics in
depression patients compared to healthy controls via three
eye movement task trials (gaze stabilization task, skip gaze
task, and free viewing task). Representative features were
selected for downstream tasks after acquiring eye-movement
event features, such as, Li et al. [42] extracted 6 features to
feed into classifier for depression detection, including Negative
Preference (NP) frequency, average Fixation duration, Pupil
size mean, and others. Then they conducted comparison exper-
iments with five classifiers, including k-Nearest Neighbors
(kNN), Logistic Regression, Support Vector Machine, Naive
Bayes, and Random Forests (RF). On this basis, Pan et al. [43]
mined eye movement data for individual attention bias features
from different perspectives, including orientation, release, and
transfer, confirming that individual attention bias features are
indirectly revealed by reaction times. Despite eye movement
events have interpretable advantages, the extraction methods
are highly task-dependent. Different tasks may require differ-
ent features, inevitably leading to repetitive work that is both
labor-intensive and time-consuming. In addition, defined eye
movement events are very limited, limiting to these features
would ignore other useful undefined eye movement features.
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Even many deep learning methods still rely on
extracted eye movement events for depression detection.
Zhao and Wang [44] used random forest to select 24 EM
data features as input, EnSA model was designed to detect
depression, where it consists of three modules: multi-
head attention, SA, and Add. Kacur et al. [45] proposed
several novel approaches (including neural network-based
approaches) for automatic detection of schizophrenic patients,
tested several features that enable analysis of visual tracker
signals as a whole. The types of features spanned global
(heat maps, gaze maps), feature sequences (mean, variance,
and spectrum), static (x and y signals as 2D images), and
dynamic (x and y signals as 2D images). Mao et al. [46]
extracted pupil features, including position and size, obtained
feature vectors of eye movements from normalized pupil
information. Based on Long Short-Term Memory (LSTM)
network, classifiers corresponding to each feature are built, all
weak classifiers are combined to obtain a strong classifier for
disease identification. None of these deep learning methods
obtain features directly from raw image and still face the
problem of extracting features manually.

B. Video Processing Methods
Features require enough experience to design, which is

increasingly difficult with increasing amount of data. Thus
end-to-end networks emerged, models learn features on their
own without human intervention. There are three primary
approaches in field of video processing. The first approach
involves extracting features from each frame of the video.
However, since the content of different frames is interrelated,
directly inputting the extracted frames into the network makes
it challenging to learn the associative information between
them. Carreira and Zisserman [39] demonstrated experimen-
tally that this strategy is not particularly effective. The second
approach, 3D convolutional network, splits video into separate
segments to train model. Xie et al. [47] improved a 3D-CNN
for temporal feature extraction, using facial video recordings
combined with Self-Rating Depression Scale (SDS) scores to
detect depression. Although 3D convolutional neural networks
have good performance to learn both spatial and temporal
information, they do not converge easily and are prone to
overfitting, the number of parameters is very large and com-
putational complexity is higher than that of 2D convolutional
networks, due to small size of the dataset, the training results
are not satisfactory. The third network is Two-Stream Convolu-
tional Neural Network, which is divided into two parts: spatial
stream part takes a single image as input, temporal stream part
takes the optical stream of multiple images as input, the two
parts are subjected to late fusion after softmax.

Two-Stream Convolutional Neural Networks are mostly
used for action recognition, as stated in Introduction section,
ocular imaging is different from action recognition video,
it does not have too many background changes, so the focus
should be on processing of temporal stream. To address this
issue, we split the temporal module of Two-Stream Convo-
lutional Neural Networks into two pathways consisting of
different frame frequencies (fast and slow) to capture subject’s
ocular changes over different time intervals. Melo et al. [48]
enhanced original Two-Stream Convolutional Neural Network

Fig. 1. The wearing standard illustration (a) and experimental real
scene (b) of Pupil Core.

for depression detection. They developed a new preprocessing
method for temporal part involving the extraction of complex
semantic features using ResNet50 [49] as backbone. The depth
of ResNet50 is capable of learning more complex features
than simpler convolutional neural networks used in classic
Two-Stream Convolutional Network.

C. Latent Code
Latent code [50] is a low-dimensional representation of data,

often used to represent important features or properties of data.
In image processing, latent code is an abstract representation
of image properties. Paradigm stimulus pictures triggered
ocular changes, we add semantic information of paradigm
pictures, combine it with spatio-temporal features of ocular
imaging, model learns the correlation between ocular imaging
features and paradigm pictures to provide more information to
assist classification.

Based on the factors mentioned above, we chose Two-
Stream Convolutional Neural Network as the foundational
model. Considering the relationship TSCNN.

III. MATERIALS AND EXPERIMENT

A. Experimental Equipment
In this experiment, we use Pupil Core [51], [52], a wearable

eye-tracking equipment made by Pupil Labs that is more
versatile and convenient than desktop eye-tracking devices,
since it does not require individuals to secure their heads in
brackets. Pupil Core is equipped with three cameras that can
capture video, i.e. two eye cameras record the subject’s ocular
imaging, and a scene camera captures environment in front
of the glasses. The frame rate of ocular imaging captured by
Pupil Core is approximately 200 fps, with a frame width of
320 and a frame height of 200.

Subfigure (a) of Fig. 1 illustrates Pupil Core and the proper
way to wear it. The pupil camera should be located below the
eyes so as not to cover them. The entire instrument must be
symmetrical to subject’s face.

B. Participants
This study was approved by Ethics Committee of

Guangyuan Mental Health Center. We worked with two hos-
pitals: the Second People’s Hospital of Gansu Province and
the Third People’s Hospital of Guangyuan, Sichuan province.
We recruited 81 subjects (Aged 18-55), including 41 patients
with depression (13 males and 28 females) and 40 healthy
controls (9 males and 31 females). Among the participants
we recruited, there was a higher proportion of females. Some
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TABLE I
DEMOGRAPHIC INFORMATION OF THE SUBJECTS

TABLE II
T-TEST FOR DEMOGRAPHIC INFORMATION OF SUBJECTS.

(P>0.05:NO SIGNIFICANT DIFFERENCE)

studies [53], [54] suggest that females often possess higher
emotional sensitivity, are more prone to depression, and conse-
quently exhibit more distinct behavioral patterns. All subjects
read and signed written informed consent before experiment,
all subjects had at least primary education level, all subjects
had not been on psychotropic medication in the last two weeks.
Patients with depression participated in experiment accepted
Mini-International Neuropsychiatric Interview (M.I.N.I.), and
the diagnosis was confirmed according to DSM-IV. The details
of subjects are shown in Table I.

Depression may be influenced by factors such as age,
education level and residence [55]. We conducted an inde-
pendent sample t-test on four aspects of age, education level,
residence, and marital status for subjects from Gansu and
Sichuan provinces. From the results in Table II, it can be
observed that the regional differences are not significant.

C. Paradigm Experiment
Paradigm experiments were conducted in a quiet and neat

environment, required experimental equipment included a
computer monitor and an eye-tracking device. Subjects were
placed at a distance of 60-70 cm from computer screen and
adjusted to the final sitting position under guidance, who
guided subjects to look forward and normalized pupil camera.
The experimental scenario diagram is shown in subfigure (b)
of Fig. 1.

Eye-tracking experiment used classical free-viewing
paradigm [56], stimulus images were derived from
International Mood Picture System (IAPS) [57], which
is considered to be the most reliable and valid system for
experimental research on emotions. Experiment was divided
into two blocks with a total of 40 stimulus pictures, including
20 neutral pictures, 10 positive pictures, and 10 negative
pictures, as a way to induce eye-movement responses of
subjects. The arrangement of paradigm pictures in one block
is shown in Fig. 2, each picture is shown for 5 seconds.

IV. METHODS

A. Three-Stream Convolutional Neural Network
Compared with other networks such as 3D convolution

neural network [58] and static image feature aggregation,

Fig. 2. One block of free exploration paradigm.

Two-Stream Convolutional Neural Networks add an optical
stream path to learn temporal information of video, it inte-
grates spatial and temporal information in visual processing
tasks, which address the limitations of traditional convolutional
neural networks in capturing both appearance and motion
information effectively [38].

Motivated by the efficiency of Two-Stream Convolutional
Neural Networks, we try to add the third stream, which
contains prior information of paradigm stimulus, propose
TSCNN, the model architecture is shown in Fig. 3. TSCNN
consisted of three main modules: spatial module, temporal
module, and paradigm module. Spatial module extracts spa-
tial features from input frames of ocular imaging. Temporal
module extracts temporal features of ocular imaging from
inputs optical flow images. Ocular imaging is a time-varying
sequence, each subject will have different eye movement
responses to different paradigm stimulus pictures, so we focus
on the processing of extracting temporal features of ocular
imaging. To achieve this, we adopt the design concept of
SlowFast network, where optical streams with different frame
rates are input and the model learns pupil change features
between different frame rates (i.e. different time periods).

B. Preprocessing
In this experiment, to improve universality and sample

diversity of the model, we extract ocular imaging frame by
frame. For each adjacent pair of extracted frames, estimate
a dense optical flow using calcOpticalFlowFarneback module
in OpenCV [59]. The first 8000 frames and optical streams
of ocular imaging for each subject were chosen, separated
into five equal groups of 1600 frames or optical streams
each, and then disordered into smaller five samples. Paradigm
video processing is congruent with ocular imaging processing.
In order to increase the efficiency of training, we pre-generate
frames and optical flow images before training and then import
them during training.

With this processing, the inputs to the model (RGB frames,
optical flow, and paradigm) are temporally aligned. In this
paper, preprocessing does not require complex manual opera-
tions such as designing features and extracting eye-movement
events, only requires data enhancement of raw ocular imaging
to be fed into the model.

C. Spatial Module
Ocular imaging has only one eye throughout, the back-

ground information is relatively homogeneous, learning spatial
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Fig. 3. Depression detection structure of Three-Stream Convolutional Neural Network. First, video frames are extracted, optical flows are computed,
and they are preprocessed. second, spatio-temporal features in data stream are extracted, paradigm images are encoded to obtain latent codes.
Then these feature maps are fused, finally depression detection is performed.

information using a single frame is sufficient. The depth
of ResNet efficiently extracts abstract features, its unique
residual module enhances responsiveness to output changes.
This solves the problem of deep networks experiencing per-
formance degradation with increasing depth. Based on these
advantages, we use ResNet50 as backbone of spatial module.

The input of ResNet50 is RGB image which has 3 channels,
and the kernel_si ze of the first layer of the network is 7,
stride is 2, and padding is 3.

Assume that feature map output by spatial convolutional
network is f n

s ∈ RH×W×C , the dimension of H × W × C is
7 × 7 × 2048.

D. Temporal Module With Different Time Intervals

Eye-movement reaction time to emotional stimuli will be
different for each subject. SlowFast network [60] links slow
and fast pathways laterally, drawing on this idea, we propose
temporal module containing optical flow at different time
intervals, design a slow frame rate optical flow pathway and
a fast frame rate optical flow pathway, to learn features of
subjects’ ocular changes at different time intervals. Assuming
that fast frame rate optical flow pathway is sampled after t
time, slow frame rate optical flow pathway is sampled after
αt time, where α > 1, that means fast frame rate optical flow
is α times denser than slow frame rate optical flow, in this
experiment, the representative value of α is 8. We still chose
ResNet50 as backbone.

Unlike Spatial Module, the number of channels in the first
layer input is not 3, instead, stack 10 optical flow images based
on frame rate as an input. Assume that feature map output by
temporal convolutional network is f n

slowt
∈ RHslow×Wslow×Cslow

and f n
f astt ∈ RH f ast ×W f ast ×C f ast , the dimension of both

Hslow × Wslow × Cslow and H f ast × W f ast × C f ast are 7 ×

7 × 2048, then concat them, allows the model to learn optical
flow information at different frame rates, which is defined

as follows:

ytemporal = Concat[ f n
slowt

, f n
f astt ] (1)

the dimension of output feature map is 7 × 7 × 4096.

E. Paradigm Module
For depression detection, paradigm stimulus are the triggers

that evoke subjects’ emotions. Since RGB frame, optical
flow of ocular imaging and paradigm picture are temporally
aligned, adding semantic features of paradigm picture as
a priori knowledge has two considerations, one is to learn
the relationship between paradigm picture and features of
ocular imaging, the other is to learn different features of
ocular changes for the same paradigm picture. Assuming x
is the low-dimensional vector [61] obtained by encoding the
input vector x . Loss between x and x is compared, and then
convolutional network is trained to reduce the loss gradually,
thus achieving unsupervised learning. In this experiment, the
training set is images extracted from emotionally stimulated
videos used in paradigm experiment. As shown in Fig. 4,
paradigm images are fed into network with three convolutional
layers and two fully connected layers for encoding, removing
redundant information, extracting semantic feature, preserving
the important information to produce latent code, then decod-
ing it by network with two fully connected layers and three
convolutional layers to produce reconstructed image, which
is compared with paradigm image, and optimized for latent
code using Mean Square Error loss (MSEloss). In this network
structure, we used ReLu activation function.

The formula of Mean Square Error loss is as follows:

M SE =
1
m

m∑
i=1

(yi − f (xi ))
2 (2)

where yi denotes truth value and f (xi ) denotes predictive
value, m is the number of samples.
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Fig. 4. Paradigm module latent code framework diagram.

To accelerate model convergence, we set up a BatchNorm
layer, which normalizes the data output from each layer to the
same distribution with the following equation:

yparadigm′ =
x − E[x]

√
V ar [x] + ε

∗ γ + β (3)

where E[x] and V ar [x] are mean and variance of the batch
data, ε is variable added to prevent zero in the denominator,
γ and β linear transformations of inputs.

In this study, the encoder compresses input paradigm images
into latent space for representation. After training, paradigm
images of associated video stream clip is only characterised
using encoder output latent code.

F. Feature Fusion
Feature fusion methods combine multiple features and uti-

lize their synergistic effects to produce more reliable and
accurate recognition results. According to Huang et al. [62],
feature fusion approaches fall into two broad categories: strong
and weak fusion. There are four subcategories of strong
fusion, including early (pre) fusion, deep (feature) fusion,
late (post) fusion, and asymmetric fusion. The placement of
fusion has a considerable impact on classification accuracy,
according to the evaluation made by Guo et al. [63], spanning
from traditional models to recently developed methodologies.
On the basis of this, we selected the placement for feature
fusion.

For each set n, the inputs of three modules are denoted
as p, q , l, three feature maps Xn

s , Xn
t , Xn

p are obtained, and
they respectively correspond to the outputs of spatial module,
temporal module and paradigm module.

Xn
s = Res Net (p),

Xn
t = Res Net (q),

Xn
p = C N N (l).

(4)

We fuse Xn
s , Xn

t , Xn
p into an output yn . It should be noted

that, Xn
s , Xn

t , Xn
p ∈ RH×W×C , yn

∈ RH ′
×W ′

×C ′

. H , W , C
indicate height, width, and number of channels respectively.

Simonyan and Zisserman [38] adopted late fusion method
for Two-Stream Convolutional Neural Network, weighted
average of the outputs of two networks, which is perhaps
a bit too simple. We picked deep fusion strategy for our
studies because we think that late fusion will reduce the
interactivity of each branch network’s characteristics. Instead
of fusing the output of fully connected layer, we fuse feature
maps of spatial, temporal, and paradigm modules before fully

connected layer. The equation for deep fusion method is as
follows.

Deep fusion refers to the conversion of different modal
data into low-dimensional feature representations before fusing
them in the intermediate layer of the model.

Xn′

s = Flatten(Xn
s ),

Xn′

t = Flatten(Xn
t ),

Xn′

p = Flatten(Xn
p).

(5)

yn
= Concat[Xn′

s , Xn′

t , Xn′

p ] (6)

where Xn′

s , Xn′

t , Xn′

p are Xn
s , Xn

t , Xn
p flattened as a one-

dimensional vector.

V. EXPERIMENTAL RESULTS

In this section, we present the partitioning of dataset and
experimental details, validate our proposed method in several
ways.

A. Dataset and Experiment Setup
1) Dataset: The dataset contains 81 ocular imaging of sub-

jects with approximately 5 minutes of each video. The dataset
was divided into 64 training sets (33 depressed, 31 healthy),
8 validation sets (3 depressed, 5 healthy) and 9 test sets
(5 depressed, 4 healthy). The video frames, optical flow maps
and paradigm stimulus images were resized to 224 × 224 then
subjected to data enhancement.

2) Experimental Details: For Temporal ConvNet, 10 optical
flow maps sampled according to the frame rate are simultane-
ously stacked as input, while Spatial ConvNet is fed only the
first frame of the current sample video stream. We extract all
images of paradigm video, train them by convolutional self-
encoder and compress the input images into hidden space for
representation, then use latent code to characterize paradigm
information, fuse them with the corresponding ocular imaging
video stream segments after training is completed.

Our experiments are conducted in PyTorch framework [64].
We trained our model with initial learning rate 1e−3, using
Adam optimizer [65] with momentum 0.9. To improve the
generalization ability of the model and prevent overfitting,
we use dropout strategy, in temporal module, we set dropout
to 0.1. The Forward Pass calculation for TSCNN is 417.442G
and the number of parameters is 89.877M.

In the training process, we choose cross-entropy loss func-
tion as the loss function, which is defined as follows:

L =
1
N

L i =
1
N

∑
i=1

−[yi · log(pi ) + (1 − yi ) · log(1 − pi )]

(7)

where yi denotes labels of ocular imaging, positive class
is 1 (health), negative class is 0 (depression), pi denotes the
probability that ocular imagingi is predicted to be a positive
class.

We trained and tested the final network on an A100 GPU,
TSCNN took about 3 hours to train on a data-augmented
dataset, and had a faster convergence rate compared to the
same type of input optical streaming model. Algorithm 1
shows our train process.
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TABLE III
EXPERIMENTAL RESULTS FOR DIFFERENT NETWORKS. THE PERFORMANCE OF DIFFERENT SUBSTRUCTURES IS DESCRIBED BY MEAN ± STD.

T-TEST WAS USED FOR SIGNIFICANCE ANALYSIS, IN WHICH TSCNN IN THE FINAL GROUP WHICH CONTAINING ALL KIND OF INPUT WAS

THE CONTROL GROUP, ** : EXTREMELY SIGNIFICANT DIFFERENCE (P< 0.01), * : SIGNIFICANT DIFFERENCE (P< 0.05)

Algorithm 1 Training Scheme of Our Proposed Method
Input: Ocular imaging dataset D = {(D1}, where D1 =

(Xs, X t );
Paradigm dataset D = {(D2}, where D2 =

(
X p

)
.

Output: Prediction ŷ.
1: for i = 1 to Epoches do
2: for k = 1 to K do
3: Extraction of temporal and spatial features of ocular

imaging:
Xout

s = ResNet(X ′
s);

Xout
t = ResNet(X ′

t );
Generate latent code:
Xout

p = CNN(X ′
p).

4: end for
5: Compute the final label ŷ:

ŷ = FC
(

Concat(Xout
s , Xout

t , Xout
p )

)
.

6: Compute loss L .
7: Backward L and update parameters.
8: end for

B. Comparison of Baseline Methods
In order to demonstrate the effectiveness of our proposed

method, we choose some classical methods in the field of
video recognition as baseline, and classify them according
to modality of the input data required by these methods.
As shown in Table III, C3D, R3D, R2Plus1D and SlowFast
only require input video frames, Two-Stream Convolutional
Neural Network requires input video frame and optical flow,
while TSCNN requires input video frame, optical flow and
latent code of paradigm. Each method was run 5 times, with
the results of TSCNN serving as the control group. The
t-tests were conducted using ttest_ind function to compare
the results with those of other networks. From the results in
Table III, TSCNN has the highest classification accuracy of
79.3%, precision of 84.0%, F1 Score of 75.2% and Specificity
of 88.0%, which is higher than the baseline and has good
performance. To visualize the experimental results, we use
a bar chart to represent the distribution of rating metrics as
shown in Fig. 5.

C. Ablation
Effectiveness of TSCNN is demonstrated by ablation exper-

iments. We discuss the optimal combination of fast and

Fig. 5. Comparison of Three-Stream Convolutional Neural Network with
various baseline methods on multiple evaluation metrics.

Fig. 6. The frame rate of optical flow is adjusted in TSCNN (Batch
Size = 4), using grid search to find the most suitable frame rate.

slow frame rates and the advantages of adding paradigm
information.

To find the fast and slow frame rates with the best classifi-
cation result, we used grid search and adjusted frame rates
of optical flow (Batch Size = 4), Fig. 6 shows the result.
Eventually, we found that higher accuracy can be obtained
when the frame rates of two optical flow were multiples of 8.
Specifically, we obtained the highest accuracy when the frame
rates were 8 and 32, respectively.

By extracting the x,y coordinates of gaze region and visual-
izing them in paradigm picture. We found that attention bias to
negative stimuli was more pronounced in depression patients,
i.e., in subfigure a1 of Fig. 7, the gaze points of patients with
depression were mostly concentrated around the injured eye of
the cat, while the healthy controls had a relatively larger gaze
range and more dispersed gaze points. For positive stimuli,
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Fig. 7. The heatmaps of gaze points for subjects under three types of
stimulus images (negative, positive, and neutral). (a) depicts the gaze
points of participants under negative stimuli. (b) shows the gaze points
under positive stimuli. (c) illustrates the gaze points under neutral stimuli.
Figures a1, b1, c1 represent the gaze point distribution of depression
patients, while figures a2, b2, c2 show the gaze point distribution of the
healthy control group.

TABLE IV
THE EFFECTIVENESS OF THE PROPOSED AUTO-ENCODER IS TESTED

ON THE CLASSICAL TWO-STREAM CONVOLUTIONAL NEURAL

NETWORK AND TSCNN APPROACHES. THE TWO METHODS

ARE EXPERIMENTED ON SCENARIOS WITH AND WITHOUT

INPUT PARADIGM INFORMATION, RESPECTIVELY

the range of gaze was similarly larger in healthy controls. For
neutral stimuli, the difference between depression patients and
healthy controls was not significant. The semantic information
of paradigm is necessary for depression recognition.

To test and verify the effectiveness of latent code,
we performed ablation experiments on classical Two-Stream
Convolutional Neural Network and our method. We found
that the accuracy of both models was significantly improved
by adding latent code corresponding to paradigm pictures.
Table IV records the test results on classical Two-Stream Con-
volutional Neural Network and our method, the model with
addition of latent semantic code is more effective. Accuracy
of Two-Stream Convolutional Neural Network improved from
72.2% to 72.6%, and from 77.9% to 79.3% for TSCNN.

VI. DISCUSSION

A. Comparative Analysis
Data-driven modeling approach can automatically learn fea-

tures and laws of complex systems from a large amount of data
without setting complex assumptions and prior knowledge arti-
ficially. Two-stream Convolutional Neural Network uses RGB
images and optical flow as input to network with good results,
optical flow is often considered as “black boxes”. So, what
makes optical flow effective? Sevilla-Lara et al. [66] exper-
imentally established representational appearance invariance
in optical flow. Setting fast and slow frame rates help model
learn the process of pupil change and learn eye-movement
properties from multiple time dimensions. TSCNN completely
considers the characteristics of ocular imaging. Paradigm
information is used as prior information input for model to
learn some key features. By this way, the performance of

Fig. 8. Dense optical flow maps of different attribute paradigm pictures
viewed by two subjects. Subfigures (a), (b), (c) are subjected to positive,
neutral, and negative stimuli, respectively. Subfigures a1, b1, c1 are
ocular movement optical flow maps of depressed patients. Subfigures
a2, b2, c2 are ocular movement optical flow maps of healthy controls.

the model is maximized. The metrics of the model are listed
in Table III, and we can see that the metrics of TSCNN
outperform Two-Stream Convolutional Neural Network, which
can illustrate the effectiveness of our method.

B. Analysis of the Choice of Fast and Slow Optical Flow
In experiment to find the optimal combination of fast and

slow frame rates for optical flow, the experimental result
was fast and slow frame rates of 8 and 32, respectively,
we speculate the reasons for this as follows. The idea of
fast and slow frame rate is using fast frame rate to collect
ocular change information when staying within an image, and
slow frame rate to collect ocular change information when
switching between images. If the difference between fast and
slow frame rate is not too big, it will degenerate towards
Two-Stream Convolutional Neural Network. If the difference
is too big, slow frame rate with a wide range of extraction
times, will lose the correlation between extracted frames, and
may also have a semantic gap between two frames. When
fast and slow frame rates are 8 and 32 respectively, above
conditions are just met, so the best results can be achieved.

C. Analysis of Differences in Ocular Changes Between
Patients With Depression and Healthy Controls

We extracted dense optical flow of subjects’ ocular images
when they viewed paradigm pictures with different attributes.
As shown in Fig. 8, circles in pupils of patients with depres-
sion are clearer, whereas healthy controls have traces of circles
around pupils left by movement, suggesting that more flexible
pupil movements in healthy controls, individuals with depres-
sion have dull eyes. To obtain numerical features relevant to
this conclusion, we analyzed pupil trajectories using sparse
optical flow.

It was mentioned in section Experimental Results, ocular
movement under negative stimuli differed between patients
with depression and healthy controls. We set the size of ocular
images to 320 × 200, select ocular images of all subjects
with a duration of 5 seconds while viewing paradigm picture
(injured cat) shown in subfigure (a) of Fig. 7. Using Lucas-
Kanade (LK) optical flow method, corner point was set on
pupil, its horizontal and vertical coordinates were recorded,
the distances of its movement were calculated to derive the
mean, standard deviation, and median of pupil displacements
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Fig. 9. Lucas-Kanade (LK) optical flow maps of ocular movement in
subjects exposed to negative stimuli. Subfigures a1, b1, c1 are optical
flow maps of ocular movement trajectories in patients with depression
(yellow). Subfigures a2, b2, c2 are optical flow maps of ocular movement
trajectories in healthy controls (green).

Fig. 10. Box-plot of mean, standard deviation (std), and median
pupil movement distance for all patients with depression (blue) as well
as healthy controls (orange). T-test was performed for these three
characteristics labeled in box-plot, ** : extremely significant difference
(P<0.01), * : significant difference (P< 0.05).

for each subject, obtaining an optical flow map of subject’s
eye movement trajectory, sparse optical flow maps are shown
in Fig. 9. A smaller range of pupil movement trajectories can
be seen in patients with depression and more flexible pupil
movements in healthy controls.

T-test concluded that mean and standard deviation are
significantly different, their P-values are 0.00725 and 0.00730,
respectively, specific results are shown in Fig. 10.

VII. CONCLUSION

In this paper, we propose TSCNN that combines spatial,
temporal and paradigmatic information to extract features
directly from raw ocular imaging to detect depression. In tem-
poral module, we design two data streams with fast and slow
frame rate to extract the ocular change features of subjects
under different viewing states. The experimental results show
that our method outperforms other methods in each evaluation
index, this may provide ideas for future research on detecting
depression based on ocular imaging. By analyzing the results
of ablation experiments, introducing prior information (latent
code of paradigm images) helps to improve the classification
accuracy, which may inspire other experiments, when exper-
imental results do not meet expectations, a prior information
can be introduced to assist the model in learning.

From the analysis in this paper, patients with depression are
more sensitive to negative stimuli and have more pronounced
behavioral performance or eye movement responses, compared
with healthy controls, patients with depression have less pro-

nounced pupil changes and relatively dull eyes when facing
stimuli. In future studies, the specific content, emotional valid-
ity, and arousal of the paradigm pictures can be considered
in conjunction with ocular imaging features in order to fully
utilize paradigm stimulus pictures. In addition, multimodal
fusion can provide complementary information to extracted
features as a way to facilitate depression detection. In the
future, we will try to multimodal fusion of eye movements
with facial expressions, audio, etc.
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