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MEANSP: How Many Channels Are Needed to
Predict the Performance of a SMR-Based BCI?

Tania Jorajuría , Vadim V. Nikulin, Nikolai Kapralov , Marisol Gómez , and Carmen Vidaurre

Abstract— Predicting whether a particular individual
would reach an adequate control of a Brain-Computer
Interface (BCI) has many practical advantages. On the
one hand, participants with low predicted performance
could be trained with specifically designed sessions and
avoid frustrating experiments; on the other hand, planning
time and resources would be more efficient; and finally,
the variables related to an accurate prediction could be
manipulated to improve the prospective BCI performance.
To this end, several predictors have been proposed in the
literature, most of them based on the power estimation
of EEG signals at the specific frequency bands. Many of
these studies evaluate their predictors in relatively small
datasets and/or using a relatively high number of channels.
In this manuscript, we propose a novel predictor called
MEANSP to predict the performance of participants using
BCIs that are based on the modulation of sensorimotor
rhythms. This novel predictor has been positively evaluated
using only 2, 3, 4 or 5 channels. MEANSP has shown to
perform as well as or better than other state-of-the-art
predictors. The best sets of different number of channels
are also provided, which have been tested in two different
settings to prove their robustness. The proposed predic-
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tor has been successfully evaluated using two large-scale
datasets containing 150 and 80 participants, respectively.
We also discuss predictor thresholds for users to expect
good performance in feedback experiments and show the
advantages in comparison to a competing algorithm.

Index Terms— Brain–computer interface (BCI), sensori-
motor rhythms (SMRs), cross-frequency coupling, perfor-
mance predictor, BCI inefficiency.

I. INTRODUCTION

MOTOR Imagery (MI) is a mental process where an
individual simulates a motor action [1], [2]. This pro-

cess activates the primary sensorimotor area, similar to what
occurs during motor preparation of a real movement [3],
modulating the power of specific brain oscillations or sen-
sorimotor rhythms (SMRs). These SMRs can be captured by
electroencephalography (EEG) and decoded with a MI-based
Brain-Computer Interface (BCI) [4], [5], [6], to subsequently
execute some pre-programmed actions. Nevertheless, not every
participant is able to control a BCI, a phenomenon known as
BCI inefficiency [7], [8], [9], [10].

BCI inefficiency [11] is one of the reasons why it would
be desirable to know beforehand whether a specific indi-
vidual would be able to control a BCI. Such information
could support decisions related to the amount of research
resources employed in a study, the time planned to perform
experiments and the number of participants to be engaged.
However, predicting BCI performance could also be useful
to categorize participants beforehand. For example, research
questions might advise the engaging of particular participant
types, as for instance those exhibiting a low SMR peak [12].

The literature shows several ways to relate BCI performance
with subject-specific metrics. In [13], a review about perfor-
mance variation in MI-based BCIs was presented, focusing on
aspects such as personal information of participants [14], [15],
their psychological state [16], [17], [18], and physiological
[19], [20], [21], [22] or anatomical [23], [24] variables.

An example is the work of [21], where neurophysiological
differences between participants were studied using recordings
of non-task related states. There, the performance potential
factor (PPfactor) that combines power from four different
frequency bands in [4 − 70] Hz range was proposed. PPfactor
is a predictor calculated using the relative power level of chan-
nels C3 and C4 after re-referencing them with a 64-channel
common average reference. This factor achieved a correlation
of r = 0.48 with hand MI BCI performance obtained from
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52 subjects. After including 9 more participants from a sepa-
rate dataset, the authors showed that this correlation increased
to r = 0.59.

The authors in [20], on the other hand, proposed a
SMR-based neurophysiological predictor based on the signal-
to-noise ratio (SNR) of the µ and β bands, using C3 and C4
Laplacian channels (amounting a total of 10 channels) from
2 minutes of resting-state EEG data in relax condition with
eyes open. They obtained a correlation of r = 0.53 between
the predictor value and BCI feedback performance applied
to 80 subjects. This predictor was later tested in another
dataset comprising 151 subjects [25], using 2.5 minutes of
resting-state data, obtaining again a correlation of r = 0.53.
Besides, the authors fitted a linear regression model with the
dataset analyzed in [20] that estimates the BCI performance
of new subjects from their SMR-based predictor value. This
regression model was applied to the subjects studied in [25],
obtaining a correlation between real and estimated BCI feed-
back accuracy of r = 0.53.

Suk and colleagues analyzed in [26] a probabilistic frame-
work called Bayesian Spatio-Spectral Filter Optimization.
They extracted subject-specific spectral characteristics to clus-
ter subjects into groups related to their performance. This
grouping was used to build a linear regression model to
predict BCI performance. They used 2 minutes of resting-state
EEG data from 3 Laplacian channels (C3, Cz, C4, involving
13 mounted channels) from the same dataset as in [20],
obtaining a correlation coefficient of r = 0.58.

In another approach proposed by Zhang et al. [27], the spec-
tral entropy was presented as SMR-based BCI performance
predictor. The authors found that this predictor calculated
from 2 minutes of resting-state EEG data of channel C3 in
eyes-closed condition had a correlation of r = 0.65 with
the offline performance of hand MI BCI. It was evaluated
with 66 sessions, composed of 40 independent subjects from
whom 26 returned in a posterior session. Besides, they also
predicted inter-session performance for these 26 participants
who performed 2 sessions, achieving an average classification
accuracy up to 89%.

Other predictors have been defined using more complex
measures such as connectivity. For example, in [28] it is
described that the imaginary part of coherency, ImCoh [29],
over the sensorimotor cortices in the µ band was positively and
significantly correlated with online BCI performance. ImCoh
is a connectivity metric robust against zero-lag interactions
including those caused by the effect of volume conduction.
It was computed using 61 channels from pre-stimulus data of
offline MI recordings. The authors suggested the up-regulation
of (undirected) functional connectivity as a possible tool to
increase online BCI performance.

Also in relation to connectivity, Lee et al. [30] calcu-
lated the directed coupling strengths in resting-state between
brain regions, using a dynamic causal model implemented
from 56 EEG channels. They observed significant differ-
ences between low- and high-MI performance groups. They
showed that the connectivity strength between the supplemen-
tary motor area and the right dorsolateral prefrontal cortex
was positively correlated with MI-based BCI performance

(r = 0.54 in session 1; r = 0.42 in session 2). In their paper,
MI performance was also predicted with a linear regression
model based on this connectivity (r-squared = 0.31) with data
from 54 subjects.

Contrary to other authors who only use one resting-state
condition (eyes-open or eyes-closed), Kwon et al. [31] sug-
gested that employing power estimates from both brain states
may lead to a more robust predictor of MI-BCI performance.
In their analyses with 15 subjects, they obtained a correlation
of r = 0.71 between this modified predictor and MI-based BCI
online performance, using only two channels. However, these
two channels were selected among C3, C4 and Cz depending
on the pair of classes chosen for the online MI task. Thus,
unless the pair of tasks were fixed for every participant, task-
related data would be necessary to estimate the predictor in
new users.

In summary, a number of different predictors described in
BCI literature are based on studies that use a relatively high
number of channels or a relatively low number of participants,
and even task information. More channels translates into
longer preparation for fixing the electrodes, tiredness of the
subjects and also, more expensive equipment. On the other
hand, using task information to obtain a predictor value implies
the need of performing BCI experiments beforehand, which is
a strong requirement because predictors are usually studied to
anticipate the performance. Finally, correlation frameworks as
the ones presented in predictor studies need a high number
of participants to deliver robust and generalizable results.
Depending on the expected effect size, the number of partici-
pants needed to obtain a significant result can largely exceed
the rule of thumb of “10 times the number of independent
variables”, suggested by Roscoe in [32].

As previously discussed, resting-state power of different
electrodes in different frequency bands is a very common
choice to estimate predictors. The hypothesis behind this
choice is that people who exhibit high power peaks computed
over sensorimotor electrodes are more likely to modulate them
according to the task. However, power computed at sensor
level might originate from different regions, and thus, it might
not have exclusive sensorimotor origin. In our paper we exploit
that SMRs are non-sinusoidal due to the synchrony between
µ- and β-rhythms [33], [34]. Other dominant EEG rhythms
such as those of occipital origin also exhibit α-β synchroniza-
tion (note that the α frequency range coincides with the µ
band, but it is only referred to as µ when its origin is sen-
sorimotor). However, although α power might be captured by
sensors over the sensorimotor cortices, the power of the occip-
ital β oscillations is too low to reach these channels. Thus,
extracted cross-frequency synchronized sources are likely to
have sensorimotor origin [35]. Therefore, our hypothesis is
that by finding µ-β synchronized sources from sensorimotor
electrodes, we can also reduce the influence of other unrelated
rhythms in the computation of EEG signatures, and thus obtain
a robust predictor with a low number of channels.

Grounded on the aforementioned, we propose a novel pre-
dictor named MEANSP for SMR-based BCI performance. Our
predictor is based on the Nonlinear Interaction Decomposition
(NID) [36] method to find spatial filters that decompose
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multichannel EEG into non-linearly coupled pairs of sources.
Here, we used NID to obtain pairs of sources that are 1:2
phase-coupled between µ and β frequencies; that is, we aimed
to extract pairs of sources of sensorimotor origin, as their
µ- and β-rhythms are sought to be synchronized. After this,
the SMR predictor from [20] is performed and combined
with the Phase-Locking Value (PLV) [34], which measures
the strength of this synchronization.

In this work we show that the proposed predictor achieved
good results with very few channels. We also provide sets
of standard electrode locations for 2, 3, 4 and 5 channels,
obtained from two different initial montages to demonstrate
the robustness of the selection. We evaluated MEANSP using
2 minutes of resting-state EEG data. The correlation between
MEANSP and the SMR-based BCI performance in a MI
paradigm was used for its validation. A total of 230 par-
ticipants belonging to two large datasets, with 150 and
80 subjects, respectively, were employed to test its robust-
ness. Besides, we also suggest threshold values for MEANSP
that would allow researchers assessing the BCI performance
potential of a new subject.

We benchmarked our predictor against the SMR predictor
by Blankertz et al. [20], the PPfactor by Ahn et al. [21] and
the spectral entropy predictor presented by Zhang et al. [27].
These predictors were selected for benchmarking because they
used a relatively low number of channels and were based on
power-related features. The results obtained show that in all
the evaluated settings, MEANSP predictor achieved similar or
significantly better results than the benchmarked methods with
a low number of channels, showing that a setting composed
of only C3 and C4 is sufficient to obtain state-of-the-art
results. In conclusion, we present a novel predictor to estimate
SMR-based BCI performance of new subjects that can be
quickly and robustly computed because it requires very few
spatially unfiltered channels.

This paper is organized as follows: in section II we detail
the three state-of-the-art predictors used as benchmark. Here,
we also introduce our proposed predictor, MEANSP, together
with the details about the method we used to select channels
from an initial montage setting, and how NID was applied.
In section III, the experimental data are described, together
with the evaluation settings. Section IV details the scores we
used to validate and compare our predictor with baselines,
and in section V we explain the statistical analysis done.
In section VI, obtained results are shown, which are discussed
in section VII. Finally, a brief conclusion of the study is
presented in section VIII.

II. METHODS

Our proposed predictor for SMR-based BCI performance
is inspired by the SMR predictor by Blankertz et al. [20].
We chose this predictor as baseline because it is easy to
compute and its robustness was demonstrated with two inde-
pendent and large datasets. In addition, we also compared
MEANSP with two other different predictors, since they
can be computed using very few channels, are also based
on band power estimates and they showed to outperform
Blankertz et al. predictor in their respective datasets. In this

Fig. 1. Scalp plot of the electrode configurations used in: a) SMR
predictor from Blankertz et al. [20] to calculate C3 and C4 Laplacian
channels, b) each initial montage setting for our MEANSP predictor
(M = 15 channels: all plotted electrodes; M = 9 channels: bold-circled
electrodes).

section we explain the details to calculate all analyzed pre-
dictors. The BBCI Toolbox [37] of MATLAB® was used to
process EEG data and calculate predictor values. We also used
the EEGLAB [38] Toolbox of MATLAB® to generate scalp
plots.

A. Benchmarking
We compared our proposed predictor, MEANSP, with the

following state-of-the-art estimators.
1) SMR Predictor (SMR): Blankertz et al. defined for the

first time a SMR predictor in [20]. It is based on the SNR
estimation of the sensorimotor rhythm, using two small Lapla-
cian channels located over C3 and C4 (amounting a total of
10 electrodes, see Fig.1(a)). For more information, please refer
to section I-A of Supp. Material.

2) Performance Potential Factor (PPfactor): Ahn et al.
proposed a predictor named performance potential factor
(PPfactor) [21] that combines power from different bands.
Specifically, it computes the spectral power of channels C3
and C4, and then band power is calculated in θ (4-8 Hz), α
(8-13 Hz), β (13-30 Hz) and γ (30-70 Hz) frequency bands.
In this last frequency range we used the interval [30 − 50] Hz
because our data had been downsampled to 100 Hz, and thus
previously filtered to remove frequencies over 50 Hz. For more
information, see section I-B of Supp. Material.

3) Spectral Entropy Predictor (SH): Zhang et al. also pro-
posed a predictor for SMR-based BCI performance based on
the spectral entropy [27]. We followed the procedure explained
in [27] to implement this predictor. For more details, refer to
section I-C of Supp. Material.

B. Our Proposed Approach: MEANSP

In this section we explain the details of our proposed
predictor (see Fig. 2), named MEANSP, since it is calculated
by averaging the SMR predictor from Blankertz and PLV
values.

1) EEG Channels: The number of required electrodes is
directly related to the required EEG montage time. Hence, one
of the main goals of this study was to find the smallest possible
set that would still lead to at least as good performance as other
published predictors. To achieve that, we studied different
settings of number and locations of channels, C (see section
III-B). A Least Absolute Shrinkage and Selection Operator
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Fig. 2. Pipeline of MEANSP predictor. M and C depend on the
evaluated setting. Note that P and Q components illustrated here are
narrow band, but the actual input to calculate MEANSP predictor is
broadband.

(LASSO) regression [39] was employed to determine the posi-
tion of a given number of channels C that would maximize the
correlation between BCI performance and the predictor in each
analyzed setting. It is known that LASSO regression does not
cope well with correlated predictors [40], so its results might
depend on the initially available channels. Therefore, to avoid
overfitting and obtain robust and stable results, we analyzed
two different initial EEG montages M with different amount
and location of channels (see section III-B), to which we
applied LASSO regression.

LASSO performs a regression analysis including variable
selection to improve the correctness and interpretability of
the statistical model. The LASSO regression was computed
between the SMR predictor described in II-A.1 of each
monopolar (not spatially filtered) channel and the BCI perfor-
mance, thereby also reducing the risk of overfitting because
none of the channels were pre-processed as in MEANSP. The
code corresponding to LASSO regression was part of the
SpaSM Toolbox [41] of MATLAB®, which is a variant of
the LARS algorithm [42] with elements from [43].

In particular, the procedure was as follows: we first calcu-
lated the SMR predictor of each of the M channels in the initial
montage setting, for each of the N subjects in the selected
dataset (see section IV). Then, for each analyzed setting,
we performed a leave-one-subject-out (LOSO) procedure to
find a robust set of channels; in each iteration, the previously
calculated matrix of SMR predictors, with dimensions [(N −

1) × M] was column-wise normalized and the performance
vector [(N − 1) × 1] was centered. The used toolbox allows
directly selecting the number of features to be kept. Thus,
we specified the desired number of non-zero variables that
should be returned by LASSO as the number of channels, C ,
that should be retained in each evaluated setting. Then LASSO
regression was applied. Finally, a [N × C] matrix with the
channels selected in each iteration of the LOSO procedure
was obtained. The electrodes that were more often selected
were chosen to form the final channel set.

2) Spatial Filter: In this paper, we propose the use of the
Nonlinear Interaction Decomposition (NID) [36] method to
spatially filter a set C of selected channels. We used the
implementation of the NID Toolbox [36] in MATLAB® to
obtain the necessary spatial filters.

NID is a method for extracting non-linearly coupled neural
sources oscillating in two different frequency bands from
multichannel recordings of brain activity (i.e. non-linear

cross-frequency interaction). The main idea behind NID is that
the linear mixture of two narrow band oscillations, centered
at fn and fm , respectively, will follow a non-Gaussian distri-
bution if they are non-linearly coupled (alternatively, they will
follow an approximately normal distribution in case they are
independent). Therefore, by maximizing non-Gaussianity, NID
extracts cross-frequency coupled sources and returns spatial
filters corresponding to the frequency bands of interest.

In the case of sensorimotor rhythms, µ and β components
are phase-to-phase synchronized [33], [34]. This non-linear
interaction can be extracted with NID as pairs of coupled
sources (P , Q). To achieve this goal, first Spatio-Spectral
Decomposition (SSD) [44] is applied to the multichannel
data. SSD is a method that calculates the spatial filters
that maximize the SNR of extracted oscillatory sources at
the frequency band of interest. It reduces to a generalized
eigenvalue decomposition and thus it is very fast to com-
pute. For NID in particular, SSD is applied separately at
two narrow bands respectively centered at fn and fm to
extract neuronal oscillations in each band, resulting in WSSD_P
and WSSD_Q matrices of SSD spatial filters. Then, the two
matrices of SSD components at fn and fm are put together
to form an augmented matrix, on which a non-Gaussianity
maximization decomposition (NGMD) is applied. This method
finds a subspace, given by WNGMD_P and WNGMD_Q spatial-
filter matrices, that maximizes the non-Gaussianity of the
linear mixtures of the estimated SSD oscillatory sources. As a
result of this process, cross-frequency coupled oscillations are
separated. For more information about the use of the NID
method, we refer the reader to [36].

In this paper, NID was applied separately to each subject,
calculating their specific SSD and NGMD spatial filters, and
filtering the continuous broadband EEG data with them to
obtain pairs of coupled sources P and Q. We only kept
the first pair of sources to compute our novel predictor
MEANSP, which indicated the pair of sources with the greatest
synchronization index.

3) The MEANSP Predictor: In order to obtain MEANSP,
we computed the phase-phase coupling between µ and β

components in SMR. We used synchronization index between
the coupled pair of sources (P , Q) returned by NID. This
index consists in measuring the Phase-Locking Value (PLV)
[34] between the selected NID source pairs. PLV is defined
as |< e jψn,m (t) >|, where j is the imaginary unit number
and < · > represents the average over time samples. The
term ψn,m(t) = mφn(t) − nφm(t) stands for the difference
of the instantaneous phases φn and φm of two oscillations
with frequencies fn and fm = (m/n) fn , n,m ∈ N. These
oscillations are then said to be n : m phase-coupled if
| ψn,m(t) |< const . In this work we were interested in
1 : 2 phase-coupling between µ and β, so we selected
fn = 11 Hz and fm = 22 Hz values as the respective
frequency centers of these bands. Note that NID does not
directly maximize PLV in phase-phase coupled sources, but
the non-Gaussianity of their linear mixture; nonetheless, as a
consequence, the PLV is also indirectly maximized as shown
with simulations and analytically in [36].
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Apart from the aforementioned PLV obtained with NID, the
final predictor value also included the SNR estimation given
by [20] (see section II-A.1), which was shown to be robust in
two independent and large datasets [20], [25].

Thus, we used the SMR predictor computed on the first
pair of sources obtained with NID, together with the PLV
value of that pair. The final predictor value MEANSP was
then the average between SMR and PLV. Note here that by
definition, PLV values range between 0 and 1, but the SMR
predictor is not bounded. Therefore, SMR values need to be
normalized before averaging (we provide this information in
the results section, so that researchers can estimate MEANSP
in new participants). Hence, the final MEANSP estimate carries
information about the possible facility for power modulation
of the participant in the SMR predictor and also an indication
of the sensorimotor origin of the SMR (through the amount of
synchrony that exists between µ and β rhythms).

III. EXPERIMENTAL DATA

A. Data Description
We used two large datasets, which are described below.
1) Dataset 1: This dataset was presented in [25], where

the SMR predictor proposed in [20] was re-tested in a
large number of subjects. Specifically, 168 naive BCI sub-
jects participated in the study; among them, 17 participants
were excluded for different reasons, leading to a total of
151 analyzed subjects. We further had to discard one of these
subjects because their corresponding resting-state data was not
available, amounting a total of 150 subjects. As explained
in [25], brain activity was recorded from 64 electrodes with
1 kHz sampling frequency, referenced to the left mastoid
and grounded to the forehead. The data were later filtered
under 50 Hz and downsampled to 100 Hz. During the BCI
session, resting-state EEG data was recorded in eyes closed
condition for 15 seconds and eyes open for another 15 seconds,
repeating this cycle 10 times in total. Afterwards, a co-adaptive
MI-BCI [11] was employed to provide feedback while the
subjects performed imaginary movements of right hand, left
hand or feet during four runs. The provided online feedback
was continuous. We refer reader to [25] for more details about
their experimental setup.

2) Dataset 2: This dataset was described and used in the
study by Blankertz et al. [20] to present their SMR predictor,
where 80 healthy novel BCI users took part. EEG data were
recorded from 119 electrodes in an extended 10-20 system,
with reference at nasion, 1 kHz sampling rate and a band-pass
filter from 0.05 Hz to 200 Hz. The data were later filtered
under 50 Hz and downsampled to 100 Hz. During the session,
EEG artifacts were first recorded (eye movements, blinking,
. . . ). Then, ten periods of 15 seconds were also recorded, using
“relax with eyes open” and “relax with eyes closed” alternating
tasks. Afterwards, subjects performed some MI tasks (left
hand, right hand, and right foot or feet movement, this last
one according to the participant’s preference) that were used
to calibrate a MI-based BCI. Later a BCI feedback session
took place. It consisted of three runs of 100 trials each, where
the MI continuous classification result of left hand, right hand
or foot classes were presented to the participants. For more

details about the experimental setup regarding this dataset,
please refer to [20].

The data employed to estimate MEANSP comprised EEG
signals recorded in resting-state and eyes open condition from
each subject in both datasets. Since in these two large datasets
less than half of the participants improved their performance in
the last run with respect to the first one, the BCI performance
of all feedback runs was averaged to obtain the final BCI
accuracy for each participant. Note that had the majority of
participants exhibited performance improvement from begin-
ning to end of the session, one could also have considered
using the last run or last two runs to compute the final BCI
accuracy. Also in these two datasets, the feedback performance
of each participant was obtained with the pair of classes out of
three possible that achieved the best cross-validation accuracy
in a calibration (offline) recording performed previously to the
feedback runs. We used 120 seconds of resting-state eyes-open
data to obtain the predictors because for some participants
the recording was shorter than 150 s. MEANSP and also the
other three benchmarked state-of-the-art predictors were then
computed. In the case of the spectral entropy (SH) predictor
[27], the authors suggested its computation from resting-state
EEG data in the eyes closed condition. However, to calculate it
we used data in the eyes open condition since the correlations
obtained were higher.

B. Evaluation Settings
As explained in section II-B, we analyzed different settings

with different number of channels, C , whose location was
selected by LASSO regression from an initial EEG montage
containing a total of M electrodes.

1) Initial Montage: It is known that LASSO regression is
sensitive to correlated predictors [40]. In order to at least
partially reduce correlations between channels, we selected
initial montages that do not contain a large number of closely
adjacent electrodes. This correlation reduction has the potential
to enhance the effective information of the channel set so that
NID can deliver better decomposition results. In particular,
we studied two different initial montages (see Fig. 1(b)),
with a total number of electrodes, M , equal to 9 and 15,
respectively. Having two initial sets also allowed us testing
the stability of the channel selection performed by LASSO.

2) Number of Selected Channels: For each of the two initial
montages, C channels were selected by LASSO among the M
total number of electrodes. Our goal was to obtain number of
channels C lower than 10, which is the number of electrodes
used in [20]. Also, C should be as small as possible but
should be larger than 1 to be able to find NID sources. Thus,
we investigated results obtained with 2, 3, 4 and 5 channels.
Nevertheless, results with 10 channels selected by LASSO
using the 15-channel montage setting are also provided for
further analysis, as well as the result of the SMR predictor
with two raw channels.

IV. VALIDATION

In order to validate and compare our proposed predictor
with the benchmarked ones, we calculated the Pearson correla-
tion between predictors and BCI feedback accuracy, as in [20],
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[25]. In the case of MEANSP, this correlation was computed
with the predictor values obtained in each evaluated setting.

The larger dataset with 150 participants (Dataset 1) was
selected for performing channel selection with LASSO in
each evaluated setting. Also, the range limits for SMR nor-
malization were taken from this dataset (see section II-B).
Then, correlations were computed with Dataset 2, which
contains unseen data of 80 participants. We chose to also show
correlation results obtained with Dataset 1, for the sake of
comparison with those from Dataset 2.

Besides, in order to assess the ability of the predictors to
classify a new subject in terms of their online BCI performance
potential, we analyzed the precision-recall curves. Precision
in this context is the percentage of participants correctly
classified from those assigned by the classifier to the good per-
formers group. Recall is the correctly classified subjects from
those who actually are good performers. There is a trade-off
between them, since when the precision increases, the recall
decreases. In the case of MEANSP, this was done for the best
set with the minimal number of channels. We compared these
results to the best benchmarked predictor, using both datasets.
The BCI accuracy threshold set to distinguish between good
and poor BCI performance was 70%. This probability was
experimentally established to distinguish between random
and voluntary control of a two class BCI [45]. For specific
precision values (80%, 85% and 90%), we found the cor-
responding predictor thresholds and studied the recall values
obtained.

V. STATISTICAL ANALYSIS

The Meng’s z-test for dependent samples with overlapping
pairs of variables was used to compare correlation coefficients
by pairs [46]. The total number of compared pairs was m=3:
MEANSP vs. SMR, MEANSP vs. PPfactor and MEANSP vs.
SH. The correlation values of MEANSP were obtained for
each montage and number of channels. Significance tests were
one-tailed, being the alternative hypothesis that the highest
correlation was significantly higher than the other one.

Besides, for Dataset 2 we also compared correlations of
MEANSP and BCI performance between the different eval-
uated settings. In particular, for each number of channels,
we compared correlations achieved with the two analyzed
montage settings (m=2), and vice-versa; for each initial mon-
tage setting, we compared correlations obtained with each
number of channels setting (m=6), by pairs. In this case
significance tests were two-tailed, to check for differences in
correlation values.

Finally, in order to account for multiple comparisons (m ≥

3), obtained p-values were corrected with the Holm-Bonferroni
method. This correction procedure has more power than the
Bonferroni correction and is also less conservative [47].

VI. RESULTS

In this section, we show the results achieved with our
proposed MEANSP predictor in each of the studied settings
(i.e. number of channels and initial montage settings), as well
as with all three benchmarked predictors.

Fig. 3. Scalp plots showing the number of iterations (%) in which each
channel was selected during the LOSO procedure for LASSO regression
in each analyzed setting (i.e. number of channels and initial montage).

TABLE I
RANGE LIMITS TAKEN FROM DATASET 1 TO NORMALIZE SMR VALUES

BEFORE COMPUTING THE MEANSP PREDICTOR, FOR EACH

ANALYZED SETTING

A. Best Channels Selection
A LOSO procedure with LASSO regression was performed

to select the best channel combination for each number of
channels, in each initial montage setting. In Fig.3, the number
of iterations (in percentage) in which each electrode was
individually selected during cross-validation is depicted.

In Tables I and II found in the Supp. Material, we also
show the percentage of iterations in which each electrode
was chosen by LASSO regression during LOSO procedure
for each number of channels and both the 9-ch and the
15-ch montage settings, respectively. The electrodes that were
more often chosen by LASSO regression were then selected
to compose the best channel combination for each number of
channels. They are marked in bold in Tables I and II of the
Supp. Material.

It can be seen that for 2 and 3 channels, the selected elec-
trodes are the same for both initial montage settings. Regarding
the selected channels for groups of 4 and 5 electrodes, they
differ only in one electrode.

B. Normalization Limits and MEANSP
Computation Steps

As aforementioned, SMR values need to be normalized
before computing the MEANSP predictor. In Table I we pro-
vide the employed range limits for each analyzed setting, taken
from Dataset 1.

The information presented in Table I can be used by
researchers to compute MEANSP in new data. Here we enu-
merate the steps necessary to obtain the predictor.

1) Select one channel combination from Fig.3.
2) Run NID and obtain as outputs the spatial filters of P

and Q and also PLV.
3) Take the resting-state EEG broadband data and spatially

filter them with the NID filters.
4) Calculate the SMR predictor of the two resulting NID

sources and normalize it using the limits presented in
Table I.
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Fig. 4. Correlations of predictors and BCI performances in the two ana-
lyzed datasets: a) Dataset 1 (150 subjects), b) Dataset 2 (80 subjects).
Predictors are MEANSP in each number of channels and montage
setting, and SMR, PPfactor and SH.

5) Average the normalized SMR predictor and the PLV to
obtain the MEANSP value.

The NID code can be found in [48] and the SMR code is
described in [20].

C. Validation With Correlations Between Predictors and
BCI Performances

Here, we present the correlation results obtained with our
MEANSP predictor in each analyzed setting and also with the
three benchmarked predictors.

In Fig.4 we show the obtained Pearson correlations between
predictors and BCI feedback performances. For each channel
combination (see section VI-A) and initial montage (9 or
15 channels), we calculated MEANSP for each subject. Then,
we obtained a correlation value of the predictor with BCI
performance. This was done for each of the two studied
datasets, and correlation values were compared against the
ones obtained with the benchmarked predictors.

As shown in Fig.4, the specific correlations obtained with
MEANSP in the 9-ch montage setting were 0.53, 0.50, 0.53 and
0.53, calculated with Dataset 1, and 0.53, 0.59, 0.55 and 0.59,
in Dataset 2, for 2-, 3-, 4- and 5-channels, respectively.

On the other hand, correlation results obtained in the
15-ch montage setting for MEANSP were 0.53, 0.50, 0.52 and
0.54 with Dataset 1, and 0.53, 0.59, 0.54 and 0.58 with
Dataset 2, using 2-, 3-, 4- and 5-channels, respectively. Note
that the correlation values obtained with the 9- and 15-ch
montages in the 2- and 3-channel settings were identical when
calculated over the same dataset, since the selected channels
in these two cases were the same.

The previous outcomes were obtained using fixed frequency
centers of the µ and β bands. However, when the recorded
data of each participant is sufficiently clean, it is also possible
to define subject-specific frequency centers for both bands.
These results are presented in Table VI of Supp. Material. Our
analyses showed slight differences between both procedures,
which however were non-significant.

Regarding the results obtained with benchmarked predic-
tors, SMR achieved a correlation value of 0.54 and 0.52,
PPfactor 0.31 and 0.25, and SH a correlation coefficient of
0.21 and 0.23, for Dataset 1 and Dataset 2, respectively.

As aforementioned, we compared the correlation coeffi-
cients calculated with MEANSP in each analyzed setting to

those obtained with each benchmarked predictor. The results
are presented in Tables III and IV in the Supp. Material,
which were obtained with the Meng’s z-test by pairs and later
corrected with the Holm-Bonferroni method. Here we want to
remark that the correction did not affect the final results.

The correlation values achieved by SMR with Dataset 1
were quantitatively higher than with MEANSP. On the con-
trary, MEANSP obtained greater correlation coefficients than
SMR with Dataset 2. However, in none of these two cases one
predictor was significantly better than the other.

Regarding PPfactor and SH predictors, they both achieved
significantly worse results than MEANSP in every evaluated
setting, and for both datasets.

As aforementioned, we also compared correlations calcu-
lated in Dataset 2 with MEANSP between different settings.
On the one hand, for each number of channels, we compared
correlation values obtained with the two analyzed montage
settings. Since the channels selected and hence the calculated
correlations in the 2- and 3-channels settings were the same
for the two montages, these two cases were not compared.
Regarding the 4- and 5-channels settings, correlation coeffi-
cients were slightly higher for the initial montage of 9-ch than
for 15-ch. However, no significant differences were found in
any of these two cases (p = 0.7675 and p = 0.7285 for
4- and 5-channel settings, respectively).

On the other hand, for each montage setting we compared
correlations obtained with different number of channels, using
the Meng’s z-test by pairs. The results are shown in Table V of
the Supp. Material. They were corrected for multicomparisons
with the Holm-Bonferroni method. As seen, none of the
differences were found significant. Again, the correction did
not affect final results.

Besides, we also investigated the correlation obtained after
selecting 10 channels with LASSO, starting from the initial
15-ch montage, since 10 channels were also necessary in
the SMR predictor. The obtained correlation coefficients with
MEANSP were 0.53 for Dataset 1, and 0.55 for Dataset 2
(respectively, SMR achieved 0.54 and 0.52). In order to find
out whether results of MEANSP and SMR were significantly
different, we performed two two-tailed Meng’s z-test, one for
each dataset. The result was that there were not significant
differences between the correlations (p = 0.9506 in Dataset
1 and p = 0.6783 in Dataset 2).

Finally, and for the completion of the results, we also
calculated the correlation between SMR predictor and BCI
performance, with C3 and C4 raw channels (i.e. without
applying any spatial filtering). The resulting correlation values
were 0.41 with Dataset 1 and 0.22 with Dataset 2, which were
found to be significantly worse than MEANSP with 2 channels
(p = 0.0361 in Dataset 1 and p = 0.0011 in Dataset 2) after
performing a two-tailed Meng’s z-test for each dataset.

D. Analysis of Spatial Filters
Here we present results exploring the differences between

Laplacian and NID filters as well as the results of the NID
optimization.

1) Laplacian vs. NID Spatial Filters: We explored how NID
helps in the enhancement of the SNR in µ and β frequency
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Fig. 5. PSDs estimated from C3 and C4 Laplacian channels of
two exemplary subjects, and also from the coupled pair of sources
(broadband) returned by NID in the 2-channel setting.

bands, as well as the µ-β synchronization of the sources
found by the algorithm. In Fig.5 we show the estimated PSDs
of two illustrative subjects. On the one hand, for C3 and
C4 Laplacian channels. On the other hand, for the coupled
pair of sources (P , Q) extracted with NID in the 2-channel
setting. When computing the SMR predictor from C3 and
C4 Laplacian channels, the result is 7.19 and 11.77 for these
two subjects, whereas it becomes 9.47 and 14.88, respectively,
when calculating it from the sources returned by NID.

The SMR predictor values of Laplacian C3 and C4 chan-
nels were investigated for the 230 participants composing
Datasets 1 and 2. The mean and standard error of the SMR
using Laplacian channels was 7.4±0.2, and the same for NID
sources extracted from two electrodes was 7.8 ± 0.2. A non-
parametric Wilcoxon signed rank test revealed a significant
difference between them (p = 0.0068).

As expected, the PLV computed between P and Q sources
extracted with NID was also significantly higher (using the
same test as above) than that computed using C3 and C4
Laplacian channels, with a p-value ≪ 0.0001. Mean and
standard error were 0.046 ± 0.001 for Laplacian channels and
0.091 ± 0.006 for NID sources.

2) Number of NID Sources: We analyzed spatial filters
produced by NID in the 2-channel setting, aggregating all
participants from both datasets. The goal of this analysis was
to understand whether the algorithm extracted one source of
highly pronounced non-sinusoidality (see Fig.5(b)) or, rather,
two different µ-β synchronized sources (see Fig.5(a)). To this
end, we computed the dot product between the spatial filters
returned by NID corresponding to P and Q components.
When the absolute value of this product was greater than 0.9,
we considered both components to be the same. As a result,
the spatial filters of 77% of subjects were almost identical,
thus, for them NID returned a single source of non-sinusoidal
SMR rhythm. On the contrary, for the remaining subjects NID
extracted a pair of distinct non-linearly coupled sources.

Fig. 6. Scatter plots with predictor values and BCI online performances
(left y-axis), together with precision-recall curves (right y-axis) for sub-
jects in the two analyzed datasets. Poor performance was labeled under
70% of accuracy. Predictor threshold values and corresponding recalls
are labeled for each specified precision. Predictors: a) MEANSP in
2-channel setting, b) SMR.

E. Participant Selection Based on Predictor Values

As stated in section IV, we analyzed threshold values for
predictors to select participants who can obtain voluntary
control of a BCI with high probability. Since no significant
differences were found between settings, we only investigated
MEANSP with 2 channels. Regarding the benchmarked pre-
dictors, no significant differences were found between SMR
and MEANSP, so SMR was also selected for this analysis.

In Fig.6 scatter plots of predictor values vs. BCI online per-
formances, together with precision-recall curves for MEANSP
in the 2-channel setting and SMR are shown. Both studied
datasets were employed for this analysis. BCI accuracies under
70% were labeled as poor performance. This figure shows
the obtained predictor thresholds and recall values for specific
precisions. In the case of MEANSP, the obtained predictor
thresholds were 0.23, 0.26 and 0.35, and the recalls were
56.5%, 49.3% and 29%, for precision values of 80%, 85%
and 90% respectively. For the SMR predictor, the thresholds
were 7.51, 9.82 and 13.81, and the recalls 57.2%, 34.8% and
8%, for the same precisions respectively.

Here we see that for a precision of 80% both predictors
obtained similar recall values (a bit above 55%), whereas as
the precision increased, MEANSP outperformed SMR in terms
of recall. In particular, for a precision of 90%, the recall of
SMR fell below 10%, which means that from actual good
performers, less than 10% were identified as such. In contrast,
MEANSP still captured around 30% of those participants.

In Fig.6(b), it is also visible that the precision suddenly
drops for high SMR predictor thresholds. This means that
there can be participants having a very high SMR predictor
indicator whose obtained performance is actually below 70%.
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This is not the case of MEANSP, where the precision steadily
increases.

VII. DISCUSSION
In this section, different aspects of the results are discussed.

Although correlation values of MEANSP were quantitatively
higher for Dataset 2 than for Dataset 1, all statistical outcomes
comparing MEANSP and the benchmarked predictors are the
same in both datasets.

A. MEANSP Versus Benchmarked Predictors
MEANSP is a predictor based on power estimates and the

synchronization between µ and β rhythms, which is one of
the characteristics of oscillations with sensorimotor origin. The
other selected predictors are also based on different power
measures. The results presented in section VI-C show that
PPfactor and SH are significantly worse than MEANSP in
every evaluated setting (different number of channels and
initial montage), including MEANSP computed with only
2 channels.

A reason why PPfactor might have performed worse in
this paper than in the original one [21] might be related
to the actual number of channels employed. In the original
paper, the authors mention the need of only two channels
for calculating the predictor (C3 and C4). However, they
also mentioned a common average reference (CAR) filter that
required 64 channels. CAR also removes spatial artifacts from
data and might have helped to obtain better results. However,
our goal in this paper is to test predictors using a low number
of channels, thus we computed PPfactor in C3 and C4 raw
electrodes. Another reason might be related to the fact that
we could not use the γ band up to 70 Hz as in [21], because
our data was filtered below 50 Hz.

In relation to SH, the reported correlation in [27] is related
to BCI offline performance instead of online performance.
However, online performance is the accuracy that actually
informs about the ability of a participant to control a BCI
system. Hence, we selected this online assessement as the
target of all predictors. In order to account for the possible
differences in visual input between calibration and feedback
settings, we tested SH in both eyes-closed and eyes-open
conditions and selected the most favorable for SH (eyes-open).
Nevertheless, the differences between MEANSP and SH were
still significant.

Besides, both PPfactor and SH were only correlated with
performance obtained classifying right vs. left hand MI tasks
in their respective papers, whereas in the datasets selected
in this work, any 2-class combination out of the three MI
tasks performed by the participants in a calibration recording
(left hand, right hand, feet/right foot MI) were possible. Thus,
PPfactor and SH might not cope well with feet/right foot
MI. Indeed, in the specific case of SH, which is computed
in just one channel, adding foot-related tasks might affect its
performance.

Regarding SMR, correlations of MEANSP and SMR were
not found significantly different in any case. However, the
number of channels needed by SMR is more than twice the
number of electrodes used in MEANSP. In particular, MEANSP

evaluated in just two channels is not significantly different
from SMR either. On the contrary, SMR computed in two raw
channels (C3 and C4) is significantly worse than MEANSP.

One difference between SMR and MEANSP is related to
the spatial filter. The Laplacian derivations employed in SMR
are spatial filters with fixed weights [49] that aim to reduce
the volume conduction artifact of a channel by subtracting
the activity of neighboring electrodes. Hence, they need a
relatively high number of sensors to obtain one virtual channel.
On the other hand, NID is a data-driven method that can be
computed even with two channels. It finds spatial filters of
synchronized oscillations between different frequency bands.
Thus, it can be used to assess the phase-phase coupling
observed between oscillations in µ and β frequency bands of
sensorimotor origin [33], [34]. Furthermore, as shown in Fig.5
from section VI-D, it also increases the SNR of the electrodes
used in the montage, facilitating the estimation of the SNR of
sensorimotor rhythms which are known to include both µ and
β oscillations as well as interactions between them.

As seen in section VI-D, NID mostly extracts one µ-β
coupled single source. This might be seen as a limitation of
NID, because it cannot differentiate harmonics of the same
source from a cross-frequency interaction from two different
sources. However, in our work, it is not very relevant whether
the coupling comes from distinct sources or not, as even the
single source interaction is an evidence of highly pronounced
non-sinusoidal activity, again pointing to the sensorimotor
origin of the extracted sources.

Finally, our analyses were performed with fixed frequency
centers for µ and β bands, where the β oscillation was
placed at twice the frequency of the µ oscillation. However,
some participants might exhibit a β peak that cannot be
defined as a harmonic of the µ rhythm. Furthermore, some
individuals might not display a clear β peak in sensor space.
Regarding the first aspect, in our additional analyses with
subject-specific centers (see Table VI of Supp. Material),
the β peak frequency was individually selected and NID
modified accordingly. However, no significant differences were
found between fixed and subject-specific frequency centers.
Concerning the second point, even though a β peak might not
be visible in sensor space, the oscillating source might still
exist [44]. Thus, approximating this oscillation using twice
the µ frequency is a robust approach, as shown by our results.
Both outcomes are related to the bandwidth used to decompose
µ and β oscillations within NID, which were 10 to 12 and
20 to 24 Hz, both covering a large proportion of the usual µ
(8 to 12) and β (16 to 24) frequency ranges [50].

B. Channel Selection for MEANSP

The selection of channels for MEANSP was performed
with LASSO regression on the SMR predictor of single raw
channels. In order to test the robustness of the selection
method, two initial montages were employed from which to
select a predefined number of electrodes (from 2 to 5). The
specific electrodes selected in the settings of 2 and 3 channels
were the same for both initial montages. In regard to settings
of 4 and 5 channels, they only differed in one electrode
comparing the selection done from 9- and 15-channel initial
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montages. However, both differing electrodes were immedi-
ately adjacent to each other (see Fig.3), suggesting that results
are stable across the initial montages. In fact, no significant
differences were found between correlation results obtained
with each of the two initial montages for a specific number
of channels (see section VI-C). Hence, as correlations were in
general quantitatively higher with electrodes selected using the
9-channel montage, we recommend the channel combinations
shown in the top row of Fig. 3.

Furthermore, the channels selected in each iteration of the
LOSO procedure were almost always the same. For instance,
C3 and C4 were selected every time in all settings (see
Tables I and II in Supp. Material), which is in line with
previous evidence [4]. In summary, the low variability in the
channel selection outcomes suggests that the results are robust
across subjects.

C. MEANSP With Different Number of Channels
MEANSP was evaluated with different settings regarding

the number of channels used, specifically with 2, 3, 4 and
5 electrodes. No significant differences were found across
settings. This means that using 2 or 5 electrodes does not
imply a significantly different correlation result.

Besides, MEANSP was also tested with 10 channels,
selected by LASSO from the 15-ch montage. No significant
differences were found between this setting and the SMR
predictor (also computed on 10 electrodes). These results show
that NID on a low number of channels (2 to 5), as studied in
this work, is sufficient to capture the information provided
by the SMR predictor on C3 and C4 Laplacian derivations
(needing a total of 10 channels). This result suggests that
2 channels, in particular C3 and C4, are enough to compute
MEANSP, reducing setup time.

D. Threshold to Predict Good Performance
The scatter plots in Fig.6 show that for both MEANSP and

SMR predictors, poor performance classification is unreliable,
i.e. low predictor values are not representative of poor perfor-
mance. The reasons of low predictor values for good accuracy
are discussed in [20]. They suggest that some participants can
control BCI by means of the peri-imagery Event-Related Syn-
chronization phenomenon instead of the Desynchronization
effect, that is far more common. This would imply that a low
SNR of the sensorimotor rhythms could still allow obtaining
good performances. In our case, another reason might be
related to a low SNR of oscillations in either the µ or the β
frequency bands, underestimating the level of cross-frequency
synchrony in those participants (see Fig.5 of [36]).

Regarding the classification of subjects achieving more
than 70% of accuracy, in the same figure it is shown that
as the precision increases, MEANSP can retain better recall
percentages than the SMR predictor. This means that good
performers are better identified by MEANSP rather than by
the SMR indicator. Furthermore, very high SMR values might
also be obtained by subjects who performed worse than 70%
(see the precision drop in Fig.6(b) caused by an outlier). It is
apparent that adding cross-frequency related information to the

predictor helps identifying good performers by ensuring the
sensorimotor origin of the oscillations [35]. MEANSP might
discard artefactual signals (e.g. occipital oscillations), reducing
the occurrence of outliers for high predictor values.

Thus, although none of the two predictors can actually
predict whether a person will perform worse than 70% of
accuracy (low predictor values are not representative of low
accuracy), MEANSP is a better option than SMR to select
participants based on good predicted performance.

In general, the stratification of participants on the basis
of BCI predictors is important not only in the context of
BCI, but also when considering its clinical applications (e.g.
stroke [51], [52], [53]). In this case, motor rehabilitation
with BCI may require many sessions. Therefore, one can
primarily focus on patients who have a potential to use and
benefit from sensorimotor BCI. In particular, when a system
delivers complex neurofeedback by means of robotic arms or
exoskeletons, high predictor values would indicate that the
patient is likely to perform well. In the case of low predictor
values, the clinician may carry out additional tests or specific
training with simpler paradigms before deciding whether the
patient will benefit from a complex BCI rehabilitation sys-
tem. Furthermore, additional rehabilitation techniques such as
non-invasive brain stimulation can also be considered for these
patients.

VIII. CONCLUSION

MEANSP is a novel predictor to assess SMR-based BCI
performance. It finds mixtures of µ-β synchronized channels,
optimizing the sensorimotor origin of the estimated SNR. It is
easily calculated with just 2 minutes of data, requiring only
the provided SMR normalization limits, together with the NID
algorithm and the SMR predictor.

We evaluated MEANSP with two large-scale datasets in
different settings regarding the number of channels used. For
each of them, we provided the optimal location of EEG
electrodes. In all cases, MEANSP performed similar or signif-
icantly better than other benchmarked predictors. Moreover,
MEANSP proved to be robust even when only two channels
were available, showing that C3 and C4 are sufficient to obtain
reliable results. Lastly, we showed that MEANSP can robustly
detect good BCI performers. The provided precision-recall
curves of MEANSP allow the selection of thresholds that can
be used in future studies.
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