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Alterations of Motor Unit Characteristics
Associated With Muscle Fatigue
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Abstract— This study aims to characterize motor unit
(MU) features associated with muscle fatigue, using high-
density surface electromyography (HD-sEMG). The same
MUs recruited before / after, and during muscle fatigue
were identified for analysis. The surface location of the
innervation zones (IZs) of the MUs was identified from the
HD-sEMG bipolar motor unit action potential (MUAP) map.
The depth of the MU was also identified from the decay
pattern of the MUAP along the muscle fiber transverse
direction. Both the surface IZ location and the MU depth
information were utilized to ensure the same MU was exam-
ined during the contraction before / after muscle fatigue.
The MUAP similarity, defined as the correlation coefficient
between MUAP morphology, was adopted to reveal the
alterations in MU characteristics under the condition of
fatigue. The biomarkers of the same MUs were compared
before / after fatigue (task 1) at 5%, 10%, and 15% maximal
voluntary contraction (MVC) and in the process of contin-
uous fatigue (task 2) at 20% MVC. Our results indicate that
the MUAP morphology similarity of the same MUs was 0.91
± 0.06 (task 1) and 0.93 ± 0.04 (task 2). The results showed
that MUAP morphology maintained good stability before /
after, and during muscle fatigue. The findings of this study
may advance our understanding of the mechanism of MU
neuromuscular fatigue.

Index Terms— HD-sEMG, muscle fatigue, motor unit,
motor unit action potential, innervation pulse train.
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I. INTRODUCTION

MUSCLE fatigue is complex due to the various
physiological phenomena which contribute to it. Access

to physiological data within the muscle or the nervous system
could reveal time-dependent changes indicative of a muscle
fatigue process [1], [2]. Muscle fatigue can be classified into
two categories: central fatigue and peripheral fatigue. Central
fatigue refers to a decline in nerve drive, which manifests
as impaired activation of motor neurons; on the other hand,
peripheral fatigue refers to impairment in cross-bridge function
and the end of the neuromuscular junction, in the form of a
decrease in muscle fiber conduction velocity (MFCV) and a
decrease in contractile speeds. Multiple factors may contribute
to muscle fatigue, including decreased motor neuron output
(If the output of some motor neurons is decreased, the output
of other motor neurons may be increased, which will lead to
other motor neurons fatigue), increased motor neuron synaptic
inhibition, and motor neuron intrinsic fitness; these factors
make these neurons less responsive to synaptic excitation
during sustained activity [3], [4].

In the past few decades, surface electromyography (sEMG)
has been widely used to study the biochemical and phys-
iological alterations of muscle fatigue due to its noninva-
sive nature and convenience of use. Some researchers have
studied the sEMG signal amplitude and frequency alterations
during muscle fatigue [5], [6], [7]. Some findings [8], [9],
[10] suggested that the mean frequency (MF) of sEMG
is particularly sensitive to local metabolic changes. As we
can see, sEMG is a promising technique to study muscle
fatigue.

With the process of muscle fatigue, alterations may occur
at the MU level, including MU firing frequency, muscle fiber
conduction velocity (MFCV) and MU location [11], [12].
By taking advantage of advancements in sEMG decomposition
techniques [13], [14], the abundant spatial-temporal informa-
tion provided by high-density sEMG (HD-sEMG) enables us
to study muscle activation down to the MU level. Luca [1]
reported that when muscle fatigue occurs, the muscle increases
motor unit (MU) recruitment and MU firing frequency to
overcome the loss of muscle force, which usually results in
an increase in EMG amplitude. Previous findings demonstrated
that MU synchronization increased during muscle fatigue [15],
[16], and the same outcome was observed for the normalized
mutual information [17].
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Although HD-sEMG has obvious advantages in the study
of muscle fatigue and enables the noninvasive study of muscle
fatigue down to the MU level, some questions remain unan-
swered. For example, how the characteristics of a specific
MUAP change during the process of muscle fatigue and
whether it changes synchronously with the macro parameters
of the HD-sEMG signal. This study aims to answer these ques-
tions to better understand the neuromuscular control strategy
and the neurophysiological mechanism of muscle fatigue.

II. METHODS

A. The Experimental Setup
Five subjects (3 female, 2 male, age 28-36 years, weight

50-65 kg) without neuromuscular disorders were recruited.
All subjects gave signed consent approved by the Institutional
Review Board of University of Houston, Houston, TX, USA.

Surface EMG signals were recorded from the biceps brachii
during isometric voluntary contractions. Force and sEMG sig-
nals were recorded simultaneously. The subjects were seated
comfortably on a height-adjustable chair and held the handle
of the force sensor using their right hands. The elbow was
flexed at approximately 135◦ and bent naturally and remained
in this position throughout the experiment, including rest. The
forearm was arranged to lie naturally and was not supinated,
or pronated. The forearm was almost parallel to the ground.
The experiment included four stages in order: (1) subjects
were asked to hold the handle using their right hand for three
maximum contractions separated by 2 min rest, and the maxi-
mum of these three contractions was considered the maximum
voluntary contraction (MVC); (2) subjects were instructed to
hold the handle at three levels of 5%, 10% and 15% MVCs.
The duration of each contraction was 15 seconds and between
them, a full recovery time of 2 min was given; (3) subjects
continued to keep isometric contractions at 20% MVC until
the force dropped by 50%, even with verbal encouragement;
(4) The previous experimental tasks were followed by 5%,
10% and 15% MVC isometric contractions after muscle
fatigue, and no break was given between each contraction to
record the sEMG signal. During each contraction, the target
contraction level, i.e., the force target was displayed on a
computer monitor as a red line, and the subjects’ force trace
was shown on the monitor as a white line. Subjects were asked
to match their force trace (white line) to the target red line
as precisely as they could. Force signals were recorded at a
sampling frequency of 2000 Hz.

B. HD-sEMG Recordings
After skin preparation, a high-density surface EMG elec-

trode array (8 by 8 sensors) with an electrode diameter of
4.5 mm and an interelectrode distance of 8.5 mm in two
directions was placed on the muscle belly of the biceps brachii.
Surface EMG was recorded using a REFA system at a sam-
pling frequency of 2048 Hz (Enschede, TMSI, Netherlands).
The reference electrode was placed on the lateral epicondyle
of the humerus, and the ground electrode was attached to the
wrist of the contralateral arm with a fully soaked Velcro wrist
band (TMSi, Enschede, the Netherlands).

C. HD-sEMG Signal Processing
The stable sEMG signals of 10 seconds are first filtered

by a bandpass filter (5-500 Hz) and a notched filter to
eliminate the 60 Hz frequency. Then, the K-means convolution
kernel compensation (KmCKC) algorithm was employed to
decompose the composite sEMG signal into constituent pulse
trains [13], [18]. In brief, the K-means clustering method is
used to classify the peaks detected from the global activity
index into three groups. The group with the largest number
of firing instants was used to construct the initial innervation
pulse train (IPT) by using a linear minimum mean square error
method (LMMSE) [19]. Then, a modified multistep iterative
convolution kernel compensation (CKC) method was adopted
to update the estimated IPT. The number of iterations is
usually set to 30-40. Finally, spike-triggered averaging (STA)
algorithms were adopted to calculate the motor unit action
potential (MUAP) map. That is, the MUAP is obtained by
averaging the waveforms of a certain length of time before
and after each spike of IPT. The bipolar MUAP mapping
was obtained by subtracting the consecutive monopolar MUAP
from its proximal neighbor in the muscle fiber direction.

According to the expression of LMMSE in literature [19],
a statistically linear estimate with HD-sEMG signals can be
written:

ŝ j = C X̄θC−1
X̄ X̄

X̄ (1)

where ŝ j is an estimation of IPT. X = [x1(n), x2(n),
· · · , xM (n)]T is the initial sEMG signals. X̄ represents the
extension of X . C X̄θ is the cross-correlation of X̄ and IPT.
C X̄ X̄ = E[X̄ X̄ T

] is an expectation. Usually, it is necessary
to extend the initial sEMG signals X with L − 1 delayed
repetitions to improve the knows-to-unknowns ratio [19]. The
expression X̄ for can be written as:

X̄ = [x1(n), x1(n) − 1, · · · , x1(n − L + 1),

· · · , xM (n), · · · , xM (n − L + 1)]T (2)

If all the firing times of IPT are known in advance, the
estimated equation for CXθ can be written as [18]:

CXθ =
1

card(φn)

∑
X̄(φ j ) (3)

where φ j represents a set of firing times for j − th MU, and
card(φn) represents the cardinality of φ j . For the j − th MU,
K-means clustering algorithm is employed to classify the firing
times, and the one with the most firing times is reserved. All
the firing times in this class are calculated by Equation 3,
resulting in CXθ .

Examples of a one-channel sEMG signal and an IPT are
shown in Figures 1(B) and 1(C), respectively.

D. Identical MU Identification
MUs with the same three-dimensional spatial location were

considered the same. The three-dimensional spatial location of
the MU can be determined in two steps: (1) characterization
of the surface MU innervation zone location from the bipolar
MUAP map and (2) determination of the MU depth from the
monopolar MUAP map.
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Fig. 1. Algorithm block diagram and an example of identifying the same MU. (A) The algorithm flow of this paper. (B) An example of a one-channel
sEMG signal. (C) IPT, which is decomposed by the KmCKC method. (D) The bipolar waveform of the MUAP, with the arrow indicating the direction
of the muscle fibers and the “∗” indicating the surface position of the MU. A waveform on a row of electrodes in the direction perpendicular to muscle
fibers and is used to calculate the arc length. (E) MUAPs from a row of electrodes perpendicular to the direction of the muscle fibers.

Since the MUAP initiates from the neuromuscular junction
(indicated as IZ) and propagates in two opposite directions
toward the fiber endings, the surface location of MU IZ can be
visually identified from the bipolar MUAP mapping by observ-
ing either the reversal of signal polarity or minimum amplitude
[20], [21]. In addition, according to previous studies [22], [23],
the depth of MU recruited at a low contraction level can be
estimated according to the full width half maximum (FWHM),
defined as the muscle-fiber-transverse-direction distance over
the skin surface where the absolute value of the MUAP
negative peak is higher than 50% of the maximal absolute
value. Therefore, by combining the surface MU IZ location
with the identified depth information, the same MU recruited
at different contraction levels can be identified. Figure 1 (A)
shows the flow chart for the identification of the same MU.

E. Data Analysis
The biomarkers of the same MU were compared before /

after fatigue (task 1) at 5%, 10%, and 15% maximal voluntary
contraction (MVC) and in the process of continuous fatigue
(task 2) at 20% MVC.

After the same MU before/after fatigue is determined, the
similarity of MUAP between the two MUs is studied. The
MUAP similarity calculation steps are:

(1) The STA algorithm is used to calculate the average
waveform of a certain length of time before and after each
spike of IPT as a MUAP waveform;

(2) Determine the surface MU IZ location (shown in
Figure 1D);

(3) MU depth was estimated by FWHM [22], [23].
As shown in Figure 1E, take the waveform on the electrodes in
the column (perpendicular to the direction of the muscle fibers)
where the position of the MU IZ is located, and estimate the
MU depth;

(4) Confirm the same MUs extracted before/after fatigue at
the same IZ location and depth;

(5) The MUAP similarity is calculated by matching the
maximum of two MUAP waveforms. That is, first, the wave-
forms are aligned based on the maximum, and then the MUAP
similarity is calculated.

Note that the “∗” shown in Figure 1D is the location of the
IZ, and select the unipolar waveform on the channel closest to
the IZ as the MUAP to calculate the similarity. In Figure 1D,
“∗”is in the middle of two channels, either of which can be a
MUAP waveform (in the red box in Figure 1E).

The similarity of two MUAPs was evaluated by the cor-
relation coefficient (CC) between the IZ channel (closest to
the identified surface IZ location) identified from monopolar
MUAP maps of two MUs, defined as follows:

CC

=
C OV (MU AP1, MU AP2)

√
C OV (MU AP1, MU AP1)·C OV (MU AP2, MU AP2)

(4)

where C OV represents the covariance matrix. MUAP1 and
MUAP2 represent two MUAPs with the same length of 20 ms.
If MUAP1 and MUAP2 are the same, the CC would achieve
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Fig. 2. Comparison of amplitude (top) and frequency (bottom) of the
same MU before / after fatigue. F: fatigue, NF: no fatigue. 5, 10 and
15 indicate 5% MVC, 10 % MVC and 15 % MVC, respectively.

Fig. 3. Examples of the same action potential across before/after
fatigue. A1, B1, C1 means before fatigue. A2, B2, C2 means after
fatigue. The similarity of MUAP before and after fatigue for the same
MU was 0.94(A1 and A2), 0.97(B1 and B2), and 0.96(C1 and C2),
respectively.

its maximum value of 1; if MUAP1 and MUAP2 are opposite,
the CC would achieve its minimum value of −1.

III. RESULTS

A. MU Characteristics Before / After Muscle Fatigue
Figure 2 shows the amplitude and frequency of the 19

MUs from 5 subjects before / after fatigue. Figure 3 shows
examples of the same action potential across before/after
fatigue. Figure 4 shows the CCs of 19 MUs before / after
fatigue. As we can see from this figure, the MUAP similarity
is high, even between those before / after fatigue.

B. MU Characteristics During Continuous Muscle
Fatigue

Figure 5 shows the time-dependent curves of the mean
frequency (MF) and mean power frequency (MPF) in the 20%

Fig. 4. MUAP similarity of 19 MUs identified at different MVC levels
before / after fatigue. “M” represents the MU.

MVC fatigue test. The slopes of MF and MPF were negative,
and MF and MPF decreased with the extension of time.

Figure 6 lists the amplitude and frequency of 21 MUs from
5 subjects at 10-sec windows during continuous fatigue. Even
under the same force, the amplitude and frequency of the same
MU changed irregularly during continuous fatigue. In other
words, the frequency and amplitude of the same MU can
increase or decrease with the development of fatigue. This
result demonstrates the same pattern as Figure 2.

Figure 7 presents the CC of 21 MUs during continuous
fatigue. As we can see from this figure, the MUAP during
continuous fatigue remains almost constant, presenting the
same pattern as that shown in Figure 4.

Figure 8 demonstrates the MUAP similarity CCs for the 19
MUs before / after fatigue (task 1) and 21 MUs during
continuous fatigue (task 2). The average CC is 0.91±0.06 and
0.93±0.04 for the two tasks, respectively.

Figure 9 shows part of the MU firing time. Figure 10
is an example of a change in the recruiting region. The
MUAP amplitudes of each MU on the electrode are extracted,
and then all the MUAP amplitudes on the same electrode
are superimposed. Finally, convert to a range of 0-1, where
0 corresponds to the minimum and 1 to the maximum.

IV. DISCUSSION

In this paper, by using the KmCKC algorithm, the sEMG
signal was first decomposed into constituent pulse trains from
which monopolar and bipolar MUAPs can be constructed. The
same MU was recruited at different contraction levels before /
after fatigue and at different time windows during continuous
fatigue. This MU was extracted by jointly considering the
surface MU IZ location identified from the bipolar MUAP
map and its depth information identified from the monopolar
MUAP map. The MUAP similarity was studied and compared
to reveal the characteristics of the same MU in the state of
muscle fatigue.

An important contribution of this paper is to verify that
the morphology of the MU maintains good stability before,
during and after fatigue. This phenomenon clearly shows that
the same MU under different levels of muscle contractions
presents high similarity. This conclusion is consistent with
previous findings that a MUAP can be used to track the same
MU within and across test sessions [24], [25], [26], [27].
A possible explanation for this phenomenon is that MUAP is
mainly related to individual factors such as muscle structure,
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Fig. 5. MF and MPF of the fatigue test in 5 subjects. The red line corresponds to the slope of the MPF. The blue line corresponds to the slope of
the MF.

length and shape, and these factors remain stable in isometric
contractions, even in fatigue. Therefore, MUAP may be a
reliable diagnostic tool to use to assess the status of the
neuromuscular system [28].

In Figure 2, there were three types of changes in the firing
frequency of the same MU before / after muscle fatigue:

(1) Most MUs decrease in firing frequency and increase in
amplitude. The decrease in firing frequency is due to fatigue.
The increase in amplitude is probably due to the post-fatigue
recovery period of MU.

(2) The firing frequency and amplitude of a few MUs
decrease. The decrease in firing frequency is due to fatigue.
The decrease in amplitude is probably due to the fact that MU
has not yet entered the recovery period after fatigue.

(3) The firing frequency and amplitude of a few MUs
increase. This reason is probably due to MU non-fatigue. That
is, muscle fatigue and MU fatigue process are not consistent.

In Figure 5, MF and MPF decreased during muscle fatigue.
At the same time, it can be seen in Figure 6 that the frequency
changes of the same MU (21 MUs in total) can be divided into
two categories as follows:

(1) The firing frequencies of MU (15 MUs in total) decrease
with muscle fatigue progression, which is divided into three
cases here: ① The firing frequency decreases continuously,
such as MU4, MU11, MU12, MU15, MU20, and MU21.
It shows that these MUs are synchronous with the process
of muscle fatigue; ② The firing frequency increases, then
decreases, such as MU1, MU2, MU3, MU6, MU7, and MU13.
The recruitments of these MUs are shown in Figure 9, which

shows that they are recruited later. This was the reason for
temporally selective MU recruitments, that is, some MUs are
recruited early in the contractions, and some MUs are recruited
later; ③ the firing frequency is stable at first, then increases,
and finally decreases, such as MU5, MU16, and MU18. This
indicates that these MUs are not fatigued in the early stage but
begin to be fatigued in the late stage. That is, the process of
muscle fatigue and individual MU fatigue are not completely
synchronized.

(2) The firing frequency of MU (6 MUs in total) does not
decrease as muscle fatigue progressed, such as MU8, MU9,
MU10, MU14, MU17, and MU19. Many scholars have studied
the effect of muscle fatigue on MUs; for example, [29] and
[30] mentioned that after fatigue, an MU is either enhanced
by increasing the central frequency to drive or the other MUs
are activated. However, these conclusions are based on the
whole muscle and do not study the changes in the same MU in
different states. Because this paper only focuses on the change
in amplitude and frequency of the same MU, the fatigue state
of a single MU during muscle fatigue is probably different
from the whole muscle fatigue state. In other words, whole
muscle fatigue, but for an individual MU, is not necessarily
synchronous with the whole muscle fatigue state. There are
two possible reasons for non-synchronization: ① MU recruit-
ment regional rotation [31], In this case, rotations that occur
within the pool of MUs that receive co-input will be triggered
by intrinsic changes in MU excitability [32], without violating
the size principle (see [33], P 1730). As shown in Figure 10,
the change of MU recruitment region can be seen. It indicates
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Fig. 6. Comparison of amplitude (top) and frequency (bottom) of the
same MU during fatigue (20%MVC). T1-T5 correspond to specific time
windows of the fatigue trial, and each time window is 10s long. T1 and
T5 are the first 10 seconds and the last 10 seconds of the signal, and
T1, T2, T3, T4, T5 have equal time intervals.

Fig. 7. MUAP similarity of 21 MUs identified during continuous fatigue.
“M” represents the MU.

Fig. 8. Average CC before / after fatigue and continuous fatigue. CC1
and CC2 denote MUAP similarity under two circumstances.

that the number of MU recruitment and the specific MUs are
changing, which is likely to affect the firing frequency of MU.

Fig. 9. Part of the MU firing time, the time period is T1 in Figure 6.

Fig. 10. The change of MU recruitment region (subject1). A, B, C, D,
E correspond to T1-T5 in Figure 6, respectively. Each figure represents
an electrode array, approximately 8.5 cm by 8.5 cm.

② because an MU is either enhanced by increasing the firing
frequency to drive or the other MUs are activated. An increase
in the firing frequency is an increase in the neural drive in
response to muscle fatigue. Therefore, the firing frequency of
individual MU increase can be observed during muscle fatigue.
Therefore, the firing frequency of MU does not decrease with
the progress of muscle fatigue and does not synchronize with
the whole muscle fatigue.

In this paper, the surface IZ location and FWHM of MUs
are used to determine the three-dimensional spatial location
of MUs, and MUs are then separated according to their three-
dimensional spatial locations. In practice, the amplitude and
waveform similarity of MUAPs are also taken into account
to distinguish MUs that overlap in three-dimensional space.
The distribution and structure of muscle fibers is complex,
a large variation exists in the distribution of fibers within the
territories of biceps brachii MUs [34], [35], [36], and different
MUs may also have different structures. Those MU variations
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will lead to variations of their MUAP waveforms, therefore
MUAP waveforms which convey MU-specific features, were
employed in this study to distinguish MUs, jointly with 3D
location information of MUs. It is rare if not impossible that
two MUs overlap exactly in the three-dimensional space, and
also share exactly same size and structure, then our method
may fail in distinguishing them.

The current study presents the first effort to investigate the
characteristic alterations of the same MU before / after fatigue,
as well as during continuous fatigue, based on HD-sEMG
recordings. Despite the promising results offered by this
approach, it does have some limitations. The first is that the
efficacy of this approach highly depends on the decomposition
results. As we can see from Figures 2 and 6, some MUs
cannot be decomposed from some contraction trials. In the
current study, the contraction force was focused on low
contraction levels of 10%-20% MVCs. At higher contraction
levels, the difficulty of detecting the same MU in different
contraction trials may increase due to signal superimposition
and cancellation.

FWHM is essentially a continuous variation of amplitude
value of MUAP at the electrode. Although MU depth and MU
size are related to MUAP, MU size has much less effect on
FWHM compared to MU depth, which has a high correlation
with FWHM [22], [23], [37], [38]. As such, FWHM has
been used in MU depth estimation in previous studies [39],
[40]. A question was raised in [41], how similar should the
surface representation be for paired action potentials to be
classified as belonging to the same motor unit? This study
hypothesized that two MUs with the same spatial location and
high similarity of MUAP waveform are more likely to be the
same MU. To test this hypothesis, the same MU before and
after fatigue was compared in this study, and the CC value
of the same MU before and after fatigue was about 0.91%.
There are two reasons leading to the high CC value of the
same MU before and after fatigue: 1) In these experiments,
the muscle morphology can be considered stable under the
conditions of constant force and isometric contractions, so the
shape of motion unit action potential is also stable [24], [25],
[41]; 2) when obtaining MUAP in this paper, STA technology
is used, which weakens the distortion of the waveform. It is
concluded that the waveform similarity of the same MU is
generally higher than that of different MU. However, two MUs
with high waveform similarity are not necessarily the same
MU. If the waveform similarity is high, the possibility of the
same MU is high.

One limitation of this study is, there are other factors which
may affect UMAP but have not been fully taken into account,
such as conduction velocity, MU size, recruitment principle,
distribution of muscle fibers etc. A future study is needed to
address this limitation.

V. CONCLUSION

In the present study, the muscle fatigue mechanism was
investigated at the MU level based on HD-sEMG recordings.
By taking advantage of the sEMG decomposition technique,
the same MU was identified in different contraction trials,
and the similarity in MUAP morphology was calculated. The

current results demonstrate that MUAP morphology main-
tained good stability which greatly enhances our understanding
pertaining to the mechanism of muscle fatigue. Behaviors
of MU frequency and amplitude vary largely among MUs,
reflecting possible compensation mechanisms among MUs in
the process of muscle fatigue.
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