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SFDA: Domain Adaptation With Source Subject
Fusion Based on Multi-Source and
Single-Target Fall Risk Assessment

Shibin Wu , Lin Shu , Member, IEEE, Zhen Song , and Xiangmin Xu , Senior Member, IEEE

Abstract— In cross-subject fall risk classification based
on plantar pressure, a challenge is that data from different
subjects have significant individual information. Thus, the
models with insufficient generalization ability can’t per-
form well on new subjects, which limits their application
in daily life. To solve this problem, domain adaptation
methods are applied to reduce the gap between source
and target domain. However, these methods focus on the
distribution of the source and the target domain, but ignore
the potential correlation among multiple source subjects,
which deteriorates domain adaptation performance. In this
paper, we proposed a novel method named domain adap-
tation with subject fusion (SFDA) for fall risk assessment,
greatly improving the cross-subject assessment ability.
Specifically, SFDA synchronously carries out source target
adaptation and multiple source subject fusion by domain
adversarial module to reduce source-target gap and dis-
tribution distance within source subjects of same class.
Consequently, target samples can learn more task-specific
features from source subjects to improve the generalization
ability. Experiment results show that SFDA achieved mean
accuracy of 79.17 % and 73.66 % based on two backbones
in a cross-subject classification manner, outperforming the
state-of-the-art methods on continuous plantar pressure
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dataset. This study proves the effectiveness of SFDA and
provides a novel tool for implementing cross-subject and
few-gait fall risk assessment.

Index Terms— Cross-subject, domain adaptation, sub-
ject fusion, plantar pressure, fall risk assessment.

I. INTRODUCTION

IT IS commonly known that falls are a major public health
issue, seriously affecting the life quality of the elderly due

to their high frequency of onset, expensive cost of treatment,
and longtime recovery [1], [2], [3]. Unlike fall detection
[4], [5], fall risk assessment is an approach that focuses on
early prevention and risk diagnosis through the development
of sensor-based facilities [6]. In the field of sensor-based
health monitoring, inertial sensors are widely used and have
shown good accuracy in fall risk assessment [11], [12], [13],
[14], [15], [16], [17]. However, when it comes to ease of
use for the elderly, inertial sensor-based facilities typically
require deployment on multiple parts of the body to achieve
reliable performance [11], [12], [18], [19]. In contrast, smart
shoes with integrated pressure sensor offer both comfort and
practicality [7], [8], [66]. Consequently, assessing fall risk
through few-gait plantar pressure monitoring is suitable for
elderly in their daily lives [9], [10].

In classification of plantar pressure data, each subject can
be considered as an independent domain because of their
individual information, leading to domain discrepancies. When
dealing with un-seen subjects, a well-trained model based
on supervised learning struggles to perform well due to the
domain discrepancies. Therefore, the objective of fall risk
assessment is to address distribution mismatches and develop
a model that can be generalized to well classify novel sub-
jects, providing practical real-world applications and clinical
diagnoses.

To better tackle cross-domain issues, unsupervised domain
adaptation methods (UDA) are being explored to mitigate the
domain shift between single-source and target distributions
[20], [21], [23]. UDA methods can be categorized as two
groups. The first one consists of discrepancy-based methods
that aim to align source-target shifts by optimizing distribution
distance using various measurement criteria, such as Max-
imum Mean Discrepancy (MMD), CORAL, KL, Maximum
Density Divergence (MDD), within a common feature space
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[24], [25], [26], [27], [28], [29], [30], [63]. The second
one includes adversarial-based methods that apply adversarial
modules to induce domain confusion and alleviate distributions
difference [31], [32], [33], [34], [35].

More recently, another new setting called multi-source has
emerged, and accordingly, multiple subjects must exist within
the source domain in continuous plantar pressure classification
and this could be defined as multi-source and single-target
domain setting (MSST). Nevertheless, above single-source
domain adaptation (SDA) approaches only focus on adapting
source-target domain, regardless of marginal [25], conditional
[62] or joint distribution adaptation [26], and ignore the
potential correlation among sources [36], [37], [38], [39], [40].
Specifically, since domain shift also exists among different
sources, SDA methods which mix multiple training subjects’
samples as a combined source domain cannot guarantee that
target samples will be effectively adapted to source subjects’
distribution [36].

Similar to SDA, a straightforward approach for multi-source
domain adaptation (MDA) to deal with multi-source data
is also to merge all sources into one domain [39], which
leads to an insufficient variance elimination in MSST [36].
In order to fully exploit multiple subjects’ data distribution,
some MDA began exploring feature representation approaches
and combination of pre-learned classifiers [39], [40], [41],
[42], [43]. The former approaches try to align the latent space
of different domains based on optimizing the discrepancy loss,
such as Rényi-divergence [48], L2 distance [49] or align the
features through adversarial objectives, such as GAN loss [57],
Wasserstein distance [58], [69]. The later approaches attempt
to train per source separately and pairwise align the target
with each source [37], [41], [48], [69]. Another solution is to
assign a weight for each pre-learned classifier according to the
relationship between source and target domain [39], [58].

However, many of these existing MDA approaches have
notable limitations that the number of parameters and com-
putational complexity in the model would sharply increase as
more source subjects are involved when employing individual
source classifiers or unshared feature extractors [37]. In our
MSST setting, this strategy would require over 30 source
classifiers, which is impractical. Even in a shared feature
space, the scattering of multi-source representations degrades
the effect of task-specific training (MSST fall risk assessment
in this paper) for MDA [68]. Thus, a better solution is to
alleviate source subjects’ distribution shifts, aiming at fully
exploiting task-specific features from more source subjects.

Consequently, it is necessary to reduce the domain gap
among source domains from same class (referred as source
subject fusion, SF) to avoid neglecting task-specific informa-
tion of each source subject. SF, which is based on domain
adversarial module, helps extracting task-specific features
from as many source subjects as possible. To limit the com-
plexity of model, a shared feature extractor is used to map data
into a common space, and two discriminators are employed
to reduce the domain discrepancy between disparate source
subjects and alleviate the distance between source and target
domain. Then, the generalization ability and robustness of
the model can be enhanced by prompting SF and source-

target domain adaptation (DA). Noting that in MSST, as the
information from single-target subjects is unknown, we can
regard them as a whole domain and we can interchangeably
use the term “domain” and “subject” in this paper. Our main
contributions are summarized as follows:
• We propose an end-to-end MDA framework by promoting
SF and DA synchronously, where multiple source subjects are
fused by adopting domain adversarial module to reduce their
distribution distance.
• We illustrate the relation between SF and DA, that is,
reducing the discrepancy within source subject encourages
reducing the upper bound of the discrepancy between source
domain and target domain, and the optimal weight of the SF
and DA in training is verified by experiment.
• Empirically the proposed SFDA method can significantly
outperform the state-of-the-art methods in continuous plantar
pressure dataset.

This paper is organized as follows. In the Section I,
the overview of fall risk assessment is summarized. In the
Section II, the related work of fall risk classification, unsuper-
vised domain adaptation and multi-source domain adaptation
are investigated. In Section III, we illustrate the methodology,
including problem statement, concrete modules of SFDA,
training procedure and theoretical analysis of subject fusion.
In Section IV, all experimental details and results are demon-
strated and discussed. Finally, the summary based on this work
are concluded in Section V.

II. RELATED WORK

A. Fall Risk Assessment
Due to the portability and wearable comfort, existing inertial

datasets are not suitable for daily assessment, while plantar
pressure could be used for long-term monitoring. Existing
methods can be summarized as conventional machine learning
and deep learning [6]. Through constructing manual bipedal
or weak foot features, simple classifiers can output results
at the cost of scalability [44], [45]. Dispense with feature
engineering, deep learning methods could also output results
in real-time by fewer raw gaits. Liang et al. [9] imple-
mented ConvLSTM trained on raw plantar data. Nevertheless,
non-cross-subject validation results in inflated accuracy (infor-
mation leakage) [14]. Tunca et al. [11] compared LSTM and
traditional classifiers based on spatio-temporal gait parame-
ters in hold-out validation. Meyer et al. [12] evaluated the
performance through LOSO validation. However, they over-
look eliminating the domain shift between source and target
data. With DG-DANN as the benchmark [46], Wu et al.
[10] proposed a hierarchical framework to improve sensitivity
and generalization ability. But generalization methods require
comprehensive samples which cannot be guaranteed in real-
world application.

B. UDA
For generalizing well when target samples are un-seen,

many shallow layers approaches reduce domain gap according
to various discrepancy criteria, such as MK-MMD, JDD [25],
[26] while some statistic approaches achieve alignment in
high dimensional space [24], [29]. Long et al. [63] proposed
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a deep network for marginal distribution adaptation based
on multi-layer and multi-kernel MMD. JAN was constructed
in [26] for eliminating the joint distribution gap between
source and target domain. Wang et al. [65] evaluated the
weight of domain adaptation between marginal and conditional
distribution. Deep adversarial approaches are another useful
method for domain adaptation, which alleviate distribution
difference by confusing the domain discriminator. Ganin et al.
[32] proposed DANN with gradient reverser layer to realize
adversarial function. Kumar et al. [34] proposed Co-DA to
align global and local distribution at the same time. Fan
et al. [70] adapted the source models on the target domain
by modulating the domain-specific statistics in features of BN
layers in sleep staging tasks.

C. MDA
Unlike SDA, it is necessary to make full use of every subject

within training set [36], which is also important in fall risk
assessment. Zhang et al. [47] aligned each source subject
and the target data in individual feature spaces for sEMG
classification. Wang et al. [68] proposed clustering embedded
adversarial training with dependent source representations for
multi-source sentiment analysis and digit classification. Zhu
et al. [50] alleviated the conditional distribution in subdomain
across different domains based on a local maximum mean
discrepancy (LMMD) without adversarial training. Dai et al.
[39] constructed extractors for each domain to separate shared
and privacy features and assign different weight to different
domain. Karimpour et al. [43] employed l2,1 norm to re-
weight the multiple source data for reducing the impact of
unrelated source samples in image classification. Deng et al.
[41] trained separated classifiers to align each source and target
data in ECG classification together with sample-imbalance
aware mixing strategy. Similarly, Liu et al. [71] trained DANN
based on each source domain and the specified target domain.
Wei et al. [72] aligned the data distribution for each pair of
subjects and output by decision fusion.

III. METHODOLOGY

In this section, we will present the details on problem
statement, concrete modules of SFDA, training procedure
and theoretical analysis of subject fusion based on fall risk
assessment.

A. Problem Statement
In the field of continuous plantar pressure classification,

each participants’ data space can be seen as an independent
domain, which is defined as a joint distribution Pd(x, y) on
X × Y , where X ,Y are relatively input space and output
space. In MSST setting, as the cost of obtaining source-
domain subject labels is very low, d ∈ D {1, . . . , S} denote
the individual subjects within source domain. Accordingly,
Pd̃(x) is defined as distribution from target domain, where d̃ ∈

D̃{1, . . . , T } and D ∩ D̃ = ∅. Here, the marginal probability
distribution Pd(x) can be obtained, as well as the conditional
distribution Pd(y|x), where d ∈ D . In MSST, we assume
that Pi (x) ̸= P j (x) and Pi (y|x) ≈ P j (y|x), ∀i ̸= j where

i, j ∈ D and there is no need to concern about the ill-posed
problem for each subject was labelled as one class, which can
hold the setting that the conditional distributions stay stably.

Specifically, {(Xd , yd) ∼ Pd(x, y)}S
d=1 are defined as train-

ing data and each Xd contains N samples xd
m where m ∈

{1, . . . , N }. Note that yd
m ∈ {0, 1}, ∀m ∈ {1, . . . , N } where

{0} represents “low risk” and {1} represents “high risk” and
ud

m ∈ {1, . . . , S} indicates subject label, which could also be
understood as subject ID in source domain. Un-seen data from
T target domains {(Xd̃)}T

d̃=1
are defined as testing data. Data

space with domain label U = {(Xd , 0)}S
d=1 ∪ {(Xd̃ , 1)}T

d̃=1
is

constructed, where d ∈ D , d̃ ∈ D̃ and the samples from S
and T are labeled od

m = 0 and od̃
n = 1, respectively, where

n indicates the number of testing samples. Based on S, our
goal is to train a model f : X → Y that can assess fall
risk correctly when facing un-seen subject samples Xd̃ whose
distributions are unknown. Compared with traditional fall risk
assessment protocols, MSST avoids any information leakage
from target domain, which is more in line with practical
application.

B. Source Subject Fusion
In MSST DA, especially in plantar pressure classification,

neither a relevant feature from each source subject should be
ignored or priorly downgraded. And it is worth noticing that,
besides dataset shift [51], the shift between subjects might
include more recessive reasons, such as their waking habit,
weight, mental health, disease history, the devices or time that
collected data [10], [14], which reflect in the discrepancy in
source subjects. Thus, target samples are difficult to transfer
to all the source domains in the same class due to above
inevitable characteristics. However, SDA might mix source
subjects together and MDA require too many individual fea-
ture extractors. Consequently, we need target samples to be
transferred to more source subjects in the same class to extract
task-specific features, improving the generalization ability of
model and interpretability in clinical diagnosis.

To illustrate the relationship between internal SF and exter-
nal overall DA in statistic way, let H be Reproducing Kernel
Hilbert Spaces (RKHS), and φ : X → H, where φ is a
representation function that maps the instance set to feature
space. For simplicity, we assume that there are only two
subjects in the source domain and MMD is used to measure
the distance or discrepancy between two distributions which
are mapped into H [53]. The empirical estimate of the distance
between X ∼ P(x) and Y ∼ P(y), as defined by MMD, is

Dist(X, Y) =

∥∥∥∥ 1
m1

∑m1

i=1
φ(xi) −

1
m2

∑m2

j=1
φ(yj)

∥∥∥∥
H

(1)

where X = {x1, . . . , xm1} and Y = {y1, . . . , ym2} are random
variable sets. Thus, considering the independent domain dis-
tribution in H, two kinds of distance can be well-estimated
by MMD: 1) distance between source and target domain, 2)
distance between each subject inside source domain.

Assuming that X1
∼ P1(x), X2

∼ P2(x) in source domain
D , where P1(x) ̸= P2(x). And Xd̃ is defined as samples from
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target domain, where d̃ ∈ D̃ and Xd̃
= {x̃1, . . . , x̃md̃}. The dis-

tance between source and target domain can be approximately
estimated as the sum of the distances between two subjects
and D̃:

Dist(D, D̃) ≜ Dist(X1, Xd̃) + Dist(X2, Xd̃) (2)

As shown in (1) and (2), Dist(D, D̃) and the distance between
the above two subjects can be respectively empirically calcu-
lated by the squared MMD and written as:

Dist(D, D̃)

= tr

(
CT

[
X1 Xd̃

] [ 1
m12 11T −1

m1md̃
11T

−1
m1md̃

11T 1
md̃

2 11T

][
X1

Xd̃

]
C

)

+ tr

(
CT

[
X2 Xd̃

] [ 1
m22 11T −1

m2md̃
11T

−1
m2md̃

11T 1
md̃

2 11T

][
X2

Xd̃

]
C

)
(3)

Dist(X1, X2)

=

∥∥∥∥ 1
m1

∑m1

i=1
φ(xi ) −

1
m2

∑m2

j=1
φ(x j )

∥∥∥∥2

H
(4)

where C is transformation matrix. It is known that there must
be a subject in source domain is closer to D̃ in the H space.
Assume that X1 is closer to D̃ than X2 in a H and we have:

Dist(D, D̃) ⩽ 2 × Dist(X2, Xd̃) (5)

Actually, the gap between different subjects will be increased
when data are collected after long time interval or with
different devices under the assumption that X1, X2, Xd̃ were
subjects who have individual information without significant
differences, such as their ages, genders, heights, weights,
health conditions. Therefore, the distribution discrepancy
between source samples collected in the early stage and target
samples to be transferred is likely to be greater than that
between source subjects. Thus, we have:

Dist(X2, Xd̃) ⩾ Dist(X1, X2) (6)

The detailed reason for assuming equation (6) is listed in
Appendix. According to (3), (4), (5), (6) and assuming that
the representation distribution of X1 stay stably in H, we can
learn that, on a finite probability space, reducing the proposed
discrepancy between subjects in source domain could push
Dist(X2, Xd̃) be closer to Dist(X1, Xd̃). Naturally, the upper
bound of discrepancy between source and target domain could
be reduced since Dist(X2, Xd̃) becomes smaller under subject
fusion.

In detail, besides classification task, another purpose of
domain adaptation with subject fusion is to find a transform
that can reduce the distance between D and D̃, as well
as confuse the distribution of subjects in D, which can be
optimized as:

min
C

Dist(D, D̃) + λ∥C∥F

min
C

Dist(X1, X2) + γ ∥C∥F (7)

where λ, γ are the tradeoff parameters for transformation
penalty. In other words, when minimize the distance between
source domain and target domain, we require that the discrep-
ancy between source subjects will not be too large, aiming at
adapting more efficiently.

C. Model Summary
According to the concept of subject fusion, we could easily

transfer the two-subject setting, as shown in equation (7),
to multi-subject setting. In this part, we will concretely intro-
duce the modules in SFDA framework, as shown in Fig. 1.
Here, binary classifier L , D and multi-class classifier F all
utilize cross entropy losses for optimizing the gradients, which
is denoted as LL , LD, LF , respectively. Given a shared
feature extractor E (·;θe) with parameters θe, a task classifier
L (·;θl) with parameters θl , a domain discriminator D (·;θd)

with parameters θd , a subject fusion discriminator F
(
·;θ f

)
with parameters θ f , the goal of SFDA could be achieved by
the following modules.

1) The Shared Feature Extractor E: Like RKHS, the shared
feature extractor E aims at producing a common space that
could allow features transformation C and extract deep shared
features from both source and target domain. The tradeoff
parameters λ, γ are achieved by the L2 regularization in all
experiments.

2) The Label Classifier L: L is a usual classifier and its input
E(xd

m) all come from source domain. The formulated objective
of L is:

arg min
θe,θl

1
N · S

S∑
d=1

N∑
m=1

Ex∼Xd

[
LL(L(E(xd

m)), yd
m)
]

(8)

where yd
m refer to the class label of source sample xd

m , ∀m ∈

{1, . . . , N } and d refer to the subject label within source
domain, ∀d ∈ D = {1, . . . , S}. As equation (8) demonstrated,
this optimization pushes L to access fall risk correctly among
labelled source data.

3) The Subject Fusion Discriminator F: Here, the second
optimization objective of equation (7) could be achieved by
F . It is complex and time-consuming to calculate the MMD
between each pair of samples between two different sub-
jects within source domain. Hence, motivated by multi-source
training methods [39], [46], we adopt adversarial module to
achieve the goal that alleviating the domain gap between
source subjects. It is obvious that MMD tends to be 0 when
the distributions become similar or confused, thus the MMD
optimization could be replaced by distribution fusion. The
formulated objective of F is:

arg min
θe,θ f

1
N · S

S∑
d=1

N∑
m=1

Ex∼Xd

[
LF (G(F(E(xd

m))), ud
m)
]

(9)

where ud
m is the subject ID label for source sample xd

m ,
∀m ∈ {1, . . . , N }. G(·) indicates Gradient Reverse Layer
(GRL) that could reverse the gradient in backpropagation.
In the training procedure when G(·) is frozen, the goal
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Fig. 1. The framework of the proposed SFDA model. The shared feature extractor E captures features E(xd
m) and E(xd̃

n) from labeled source
data xd

m with {class label: yd; subject label: ud; domain label: od} and unlabeled target data xd̃
n with {domain label: od̃}. First, E(xd

m) with yd is fed
into label classifier to extract task-specific features. Next, E(xd

m) with ud is fed into subject fusion discriminator F to alleviate the internal subject
shift within source domain through Gradient Reverse Layer (GRL) in backpropagation. Then, E(xd

m) and E(xd̃
n) along with their domain label are

synchronously fed into domain discriminator D to reduce the distribution shift between source and target data. In order to figure out the interaction
between SF and DA, different weight biases are adopted in LF and LD. According to the optimal weight, the parameters in F and D could be
updated, which results in the well-generalized model.

Algorithm 1 Training on SFDA
Require: labeled source data {xd , yd}; unlabeled target data
xd̃ ; source subjects label ud ; domain label {od

m , od̃
n}; Hyper-

parameter α ∈ [0, 1], b, t ∈ N
1: Initialize parameters of E , L , F , D
2: repeat
3: for i = 1 to t do
4: L, LL , LD, LF = 0
5: Sample a mini-batch x ≜ (xd

m, ud
m, yd

m, od
m)b

m=1
6: Sample a mini-batch x̃ ≜ (xd̃

n , od̃
n)b

n=1
7: Feed x, x̃ into E and get E(x), E(x̃)

8: Feed E(x) into L and get L(E(x))

9: Feed E(x) into F and get F(E(x))

10: Feed E(x), E(x̃) into D and get
D(E(x)), D(E(x̃))

11: LL+ = LL(L(E(x)), yd)

12: LF+ = LF (F(E(x)), ud)

13: LD+ = LD(D(E(x)), od)+LD(D(E(x̃)), od̃)

14: L = LL+LF+α · LD
15: Updating E , L , F , D to minimize L
16: until convergence

of F is to distinguish exactly where the source samples
come from. After gradient reverse through GRL, as equation
(9) presents, F makes the parameters in E hard to extract
source domain-specific features, which achieves the goal
that alleviates the subject distribution shift within source
domain.

4) The Domain Discriminator D : Here, the first optimization
objective of equation (7) could be achieved by D. Similar
to F , D is a usual adversarial module (binary classifier) that

pays attention on source and target domain and its formulated
objective is:

arg min
θe,θd

1
N · S

S∑
d=1

N∑
m=1

Ex∼Xd

[
LD(G(D(E(xd

m))), od
m)
]

+
1

Ñ · T

T∑
d̃=1

Ñ∑
n=1

Ex∼Xd̃

[
LD(G(D(E(xd̃

n))), od̃
n)
]

(10)

where od
m , od̃

n refer to the source and target domain label and
d̃ ∈ D̃ = {1, . . . , T }. As shown in equation (10), in the
training procedure when G(·) is frozen, the binary classifier D
plans to precisely identify which domains do the samples come
from. When updating parameters of model in backpropagation,
this optimization is to align distribution from source and target
domain through GRL. When the training of D is converged,
distribution gap between source and target data could be
reduced. In other words, MMD between source and target
domain could also be alleviated without complex computing.
Noting that GRL will not be used in training forward stage.

5) The Training Procedure: In general, the proposed end-
to-end framework requires backpropagation to update the
parameters in four modules, as demonstrated in Algorithm 1.
Here, the realization of proposed optimization problem is
summarized. Source data and target data will be input to E
(could be seen as C in equation (7)) at the same time, while
the features of source data will enter L , F , D and features
of target data will only enter D. Concretely, as demonstrated
in equation (7), optimizing LD help minimizing Dist(D, D̃)

and LF help minimizing Dist(X1, X2). Thus, we could satisfy
the demand in optimization (7) by synchronously carrying out
DA and SF. The total loss function of SFDA is formulated in
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weighted summation formula:

L = LL + LD + α · LF (11)

where α is non-training configuration that represent the loss
weight of SF and can regulate the relation between SF
and DA.

D. Theoretical Analysis
Aiming at better analyzing the generalization ability of our

proposed SFDA framework, we report a universal theoretical
generalization bound analysis in field of DA based on the
theories from [54], [55], and [56].

Theorem 1: Let H be a hypothesis space and S, T is
referred as source domain, target domain, respectively. If we
denote h ∈ H is a function that need to be tested in un-seen
target domain, then for any h ∈ H, we have:

RT (h) ⩽ RS(h) + dH(S, T ) + C (12)

where dH(S, T ) indicates the domain discrepancy between
source domain S and target domain T and C can be seen
as the shared error of ideal function h∗

∈ H for S, T .
In addition, RS(h), RT (h) refer to the expected error on S, T ,
respectively. In fall risk assessment through SFDA in MSST
setting, we can analyze the generalization error according to
(12). Focusing on dH(S, T ) while C could be disregarded
as [25] and [32] did, we could assume that source domain
involves S subjects and it is natural to extend (5) into multi-
subject situation:

dH(S, T ) ≜
∑S

i=1
dH(Pi , Pd̃) ⩽ S · dH(P f , Pd̃) (13)

where Pi indicates the i-th global distribution in S, Pd̃
indicates the global distribution of T , P f and P f ∗ denotes the
distribution of source subject which is the most different and
most similar with Pd̃ , respectively. Before training started, the
largest distribution gap within multiple source subjects could
be defined as:

dH(P f , P f ∗) > 0 (14)

According to equation (7) and (11), SFDA can achieve the
goal of minimizing Dist(X1, X2) (the distance within source
subjects) and Dist(D, D̃) (the distance between source and
target domain) at the same time. When paying attention on
optimizing Dist(X1, X2) itself, parameters in SFDA modules
can map the input data into a feature space that can narrow the
distribution gap between disparate source subjects. The source
subject distance can be denoted as:∑S

i=1

∑S

j=1
dH(Pi , P j ), ∀i ̸= j (15)

Herein, the result of equation (15) will be reduced when
subject fusion training converges. Ideally, each subject in
source domain will mix with each other and every personal dis-
tribution Pi can be regarded as P f ∗ in source domain. Mean-
while, when optimizing Dist(D, D̃) (source-target domain
adaptation), the distance between source subjects and target
subjects will be decreased. Thus dH(P f ∗, Pd̃) is reduced.

TABLE I
DOMAIN DIVISION IN CONTINUOUS PLANTAR PRESSURE DATASET

At this time, dH(S, T ) = S · dH(P f ∗, Pd̃) and RT (h) will
be bounded. In conclusion, the synchronization of SF and DA
can guarantee the generalization performance of the model.

IV. EXPERIMENT AND DISCUSSION

In this section, we introduce the dataset and experimental
details for fall risk assessment such that an expert should be
able to reproduce the main results. When discussing the assess-
ing ability of SFDA, we empirically evaluate and compare
the performance of proposed methods, including accuracy,
sensitivity, boxplot results, proxy −A− distance and t-SNE
visualization.

A. Experimental Setup

1) Dataset: As the same in our previous work [10], [45],
we train and evaluate the proposed model in the continuous
plantar pressure dataset, which can be used for fall risk
assessment in long-term monitoring comfortably [67]. This
plantar pressure dataset contains 48 subjects and 7462 samples
in total, including 23 high risk subjects and 25 low risk
subjects. As shown in Table I, the dataset is divided into four
different MSST setting in order to traverse the whole dataset
and produce comprehensive experimental results, as 4-fold
cross validation did [79], [80]. Noting there is no infor-
mation leakage between divisions when adopting leave-one-
division-out.

2) Baselines: We compare proposed SFDA with the closely
related state-of-the-art baselines. When compared with unsu-
pervised single-source domain methods, all the subjects within
source domain will be regarded as a whole single domain
while neglect their internal discrepancy. All baselines in the
comparison involve: DAN [63], which reduces global dis-
crepancy through MMD; Deep CORAL [27], which reduces
global distance through second-order statistics; DANN [32],
which alleviates global distance through adversarial module;
CDAN [62]: which alleviates discrepancy through conditional
adversary; DSAN [50], which reduces global and local dis-
crepancy in multi-subdomain adaptation; MhNet [10], which
construct a hierarchical network for fall risk assessment.
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TABLE II
ACCURACY (%) OF DIFFERENT METHODS ON FOUR MSST SETTING BASED ON RESNET-50

TABLE III
ACCURACY (%) OF DIFFERENT METHODS ON FOUR MSST SETTING BASED ON VGGNET-16

3) Implementation Details: Above methods are reproduced
in Pytorch and GeForce GTX 1080 Ti / GeForce RTX 2080 Ti.
In pre-processing stage, raw data are split with overlapping of
2 gaits in time sequence. Then, 16-channel plantar pressure
data are arranged vertically in sequence to form 3-gait samples,
which are 2D tensors of 16×69 (channel × time points) as [10]
did. In four MSST settings, each division Pi , i ∈ {1, 2, 3, 4}

refers to a multi-subject domain, which includes m subjects
(#). When evaluating the performance of methods, each Pi will
be taken in turn as a target dataset while the rest divisions
will be taken as source training dataset. When testing Pi ,
i ∈ { 1, 2} , the SGD optimizers select 10−3, 10−2, 10−2

as learning rate of pre-train model finetuning, classifier and
adversarial module while 10−4, 10−3, 10−3 are used for Pi ,
i ∈ { 3, 4} . α could be selected from [0, 1].

For our framework, ResNet-50 [59] and VggNet-16
[60] are adopted as the backbone network. A 2-layer fully-
connected layer is used as classifier while adversarial module
is set as 2 layers with 2048 nodes if needed. The batch size is
set to 12 in ResNet-50 and 32 in VggNet-16, and the maximum
training epoch is set to 100. The weight decay is fine-tuned
from {5×10−4, 1×10−3, 2×10−3} and momentum is set to
0.95. We choose the best performance under different config-
urations for each method. Specifically, Coral, MMD, LMMD
loss weight are set as 0.5, 0.35, 0.2 for better convergence.
Since MhNet is superior owing to hierarchical structure and
voting mechanism without pre-trained model, it is fairer to dis-
cuss the average voting classification accuracy (Segment=7).
Also, as MhNet did not use any domain adaptation method,
it is not suitable to analyze the Proxy−A− distance or t-SNE
visualization.

B. Experimental Results and Analysis
The cross-subject classification results are shown in Table II

and Table III. Additional experiment results from Inception-

V3 [78], ResNet-34 [59] and VggNet-19 [60] are presented
in Appendix. Each baseline is implemented in five replica-
tions, and SFDA outperforms all the compared baselines in
terms of the average accuracy and MhNet votes and averages
segment under five thresholds (10%, 20%, 30%, 40% and
50%).

When using ResNet-50 as pre-trained backbone, SFDA
ranks first in 3 out of 4 MSST settings in Table II, achieving
average accuracy of 79.17%. Particularly, SFDA outperforms
the second-best baseline by nearly 3.3% in terms of accuracy
when P4 is considered the target domain. In addition, SFDA
demonstrates stable performance in all four MSST settings,
while the performances of other baselines vary significantly
across scenarios, highlighting the robustness of SFDA. Con-
cretely, DeepCoral performs well when P1 is target domain
but exhibits inferior accuracy in other settings, and even
shows negative transfer when P3 is the target domain. MhNet
achieves good performance when P1 and P2 are target domains
but performs the worst when P3 is target domain. Especially in
P2, MhNet outperform other methods by around 30%, which
indicates the superiority of hierarchical structure and voting
mechanism in certain fall risk assessment setting. In gen-
eral, DSAN, which pays attention on multiple subdomains
adaptation, performs relatively good in MSST settings. Both
joint distribution adaptation and adversarial approaches are
superior to methods that solely focus on marginal distribution
alignment. When using VggNet-16 as pre-trained backbone,
SFDA still performs stable and good in 4 MSST settings,
as shown in Table III. MhNet performs well except for P3
and P4, which may result from the insufficient domain-variant
feature extraction. Although SFDA achieves the best average
accuracy, the overall performance is inferior to that of ResNet-
50. This may be attributed to the shallower network’s inability
to extract enough task-specific features. Hence, compared
to the baselines, SFDA significantly improves generalization
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Fig. 2. (a) Average sensitivity of different methods in 4 MSST settings based on ResNet-50; (b) Average sensitivity of different methods in 4 MSST
settings based on VggNet-16; (c) Ablation study on SF in 4 MSST settings.

Fig. 3. Proxy− − distance of different methods in MSST setting: (a) P2, P3, P4→ P1; (b) P1, P3, P4→ P2; (c) P1, P2, P4→ P3; (d) P1, P2, P3→

P4 from two architectures.

ability in cross-subject fall risk assessment. The combined
framework of SF and DA could ensure stability across various
MSST settings.

1) Sensitivity: Sensitivity is a key index in physiological
classification and medical diagnosis, as it indicates the ini-
tial screening capacity for disease detection. In the case of
ResNet-based results, as shown in Fig. 2 (a), although all the
baselines exhibit poor sensitivities when P2 is target domain,
the box plot indicates the superiority of SFDA for its high
median and upper quartile. Moreover, SFDA and MhNet have
relatively few sensitivities outliers (represent by dots outside
the box), revealing their stability. As shown in Fig. 2 (b),
sensitivity based on VggNet-16 perform similar to those based
on ResNet-50 for all baselines. However, SFDA outperform
other methods (except for MhNet) in terms of median, upper
quartile, and the number of outliers, indicating its practicality
in medical diagnosis compared to other baselines. Thus, voting
a segment from multi-layer architectures may be a more
sensitive way to identity high risk samples when compared to
shallow pre-trained model, such as VggNet-16. To concretely
record the sensitivity from each baseline, Table format of
relevant results are provided in Appendix.

2) Ablation Study on SF: We evaluate the efficiency and
optimal weight of SF by testing in four MSST settings,
as shown in Fig. 2 (c). The different-colored polylines rep-
resent the accuracy of the proposed method under different
MSST settings with varying weights. As equation (11) demon-
strated, α was set from 0, 0.2, 0.4, 0.6, 0.8, 1 to explore the
optimal weight. We set the loss weight of SF as 0 to represent
the framework without SF. As the weight of SF increases,
the overall accuracy of SFDA is getting higher based on
both ResNet-50 and VggNet-16, indicating the improvement

according to subject fusion. The effectiveness of subject fusion
is evident as all the model with SF perform better than that
without SF. As for the optimal weight between SF and DA,
SFDA generally performs better when weight of SF is larger
than 0.6.

3) Distribution Discrepancy: As proxy−A− distance can be
applied to measure the distribution distance between domains
as distA = 2 (1 − 2ε), where ε is generalization error [55],
[61], we evaluate the distance between source and target
domain in all MSST settings when implementing all the
domain adaptation related methods. In Fig. 3 (a), compared to
baselines, SFDA performs smaller distA for both ResNet-50
and VggNet-16, showing efficiency of reducing domains gap
by SFDA. Furthermore, the overall distA based on VggNet-
16 is smaller than that of ResNet-50 due to the feature
transferability of shallow network [63]. When P2 is target
domain, PAD of CDAN trained on VggNet-16 is the smallest
according to Fig. 2 (b). However, it is worth noticing that
the accuracy of CDAN in Table III shows that the low PAD
value may result from the poor performance in identifying
risk samples rather than excellent discrepancy-reducing ability.
While in other MSST settings, SFDA consistently achieves the
smallest PAD according to Fig. 3 (c) and (d), demonstrating
its effective alleviation of domain discrepancy between source
domain and target domains through subject fusion and domain
adaptation.

4) Source Subject Fusion Visualization: We visualize the
feature representations from the last layer in shared feature
extractor through t-SNE [64]. Among them, two ResNet-
based case studies with P1 and P2 as target domains
(Fig. 4. (a) and (b)) and two VggNet-based case studies with
P3 and P4 as target domains (Fig. 4. (c) and (d)) are presented.
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Fig. 4. t-SNE visualization of raw data and SFDA in MSST setting: (a) P2, P3, P4 → P1 in ResNet-based backbone; (b) P1, P3, P4 → P2 in
ResNet-based backbone; (c) P1, P2, P4 → P3 in VggNet-based backbone; (d) P1, P2, P3 → P4 in VggNet-based backbone. The first row indicates
the clustering from source domain and the second row indicates the clustering from target domain. Different colors denote different classes: high
risk and low risk. Best view in color.

In general, SFDA successfully distinguishes high and low
risk samples in all MSST settings, regardless of ResNet-
50 or VggNet-16. Additionally, SFDA efficiently aligns
the distribution regions between source and target domain,
showcasing its superior generalization ability when facing
novel samples. Specifically, in VggNet-based clustering shown
in Fig.4 (c) and (d), the raw data distributions of low risk and
high risk samples overlap severely without SFDA, resulting
in poor task-specific feature extraction, which is matched
with the low accuracy illustrated in Table III. Furthermore,
as displayed in Fig. 4 (a) and (b), SFDA facilitates the fusion
of source subject distribution, thereby alleviating the shift
within source subject and enabling target samples to fully
exploit source task-specific features.

To quantitatively evaluate the classification performance in
feature clustering, the Average Euclidean Distance (AED) is
computed from feature matrix. Within source or target domain,
Euclidean Distance from each pair of high risk and low risk
samples is calculated (stored as a distance matrix where each
element represents the distance between a pair of high risk
and low risk samples). Subsequently, dividing the sum of the
distance matrices by the total number of samples yields the
AED, where a higher AED indicates easier distinction between
high risk and low risk samples in the source or target domain.
Based on AED presented in Fig. 4, employing SFDA results in
obvious higher AED, showing its efficient task-specific feature
extraction and classification ability. Thus, a high AED can be
a proof of high accuracy as shown in Table II and Table III.



4916 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE IV
ACCURACY (%) OF DIFFERENT METHODS ON FOUR MSST SETTING BASED ON INCEPTION-V3

TABLE V
ACCURACY (%) OF DIFFERENT METHODS ON FOUR MSST SETTING BASED ON RESNET-34

C. Results Summary and Limitations
In summary, the superior performance of SFDA, as shown

in Table II and Table III, can also be explained by the t-SNE
clustering and PAD results as follows: (i) The classifica-
tion accuracy relies on task-specific features, which form
the fundamental of proposed model. As depicted in Fig. 4,
in certain MMST settings, the high risk subjects and low risk
subjects could be easily distinguished in feature space, which
guarantees a lower bound for fall risk assessment accuracy.
(ii) Since task-specific features capturing are inevitable in
MSST cross-subject setting, source subject fusion module
helps reducing internal gap within source domain and prompts
target samples to fully adapt to the task-specific features. (iii)
In addition to the better performance in reducing domain gap
(good at extracting domain-invariant features) demonstrated in
Table II, Table III, Fig. 3 and Fig. 4, the lower PAD may also
result from poor classification ability (bad at extracting task-
specific features). For example, CDAN achieved the lowest
PAD when P2 is target domain and VggNet-16 is backbone,
but its accuracy in this setting is poor.

Despite the improvement achieved by SFDA, there are some
limitations. Although SFDA outperforms all the baselines
in average accuracy, there are a few MSST settings where
SFDA fails to achieve the best performance. The outliers and
larger standard deviation of sensitivity in Fig. 2 (a) and (b)
of SFDA may be attributed to the challenge in fusing source
subjects for two reasons. First, subjects shifts within source
domain are too difficult to eliminate. Second, the coverage or
representative of source subjects is limited, thereby resulting in
slight fluctuation. This deficiency reveals the need for further
improvement, particularly dealing with the subjects that have
huge domain gaps. Moreover, the key of increasing lower
bound of generalization error is that the source subjects should
be representative and comprehensive enough, allowing SF to
extract more task-specific features.

Based on the summary and limitations, we plan to explore
the outlier identification procedure in data pre-processing to
boost the overall performance. Additionally, in the future,
we will investigate the combination of universal domain
adaptation with subject fusion, as there are always patients
with specific characteristic who are not involved in the source
domain dataset. On top of that, as gait features closely connect
to various diseases, it is essential to construct a new dataset
containing plantar pressure data from patients with different
diseases to establish the mapping between complex plantar
pressure features and diseases features. In physiological data
classification, other types of data, such as ECG, EEG, PPG,
EMG, accelerometer data, could be used and evaluated in
SFDA and related modified methods. We expect to propose
a general method that can be applied in various physiological
data based on the main idea of subject fusion and domain
adaptation.

V. CONCLUSION

In this paper, we propose a novel method named SFDA
for multi-source and single-target fall risk assessment. The
proposed approach improves the generalization ability and
efficiency of domain adaptation through alleviating source
subject shifts. Subject fusion is achieved by adopted the
adversarial module to mix the source subject distributions.
By synchronously carrying out DA and SF, the robustness of
adversarial network is enhanced. Our proposed approach is
revealed to outperform the state-of-the-art methods in contin-
uous plantar pressure dataset, providing a method that could
be adopted in real-world clinical application.
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TABLE VI
ACCURACY (%) OF DIFFERENT METHODS ON FOUR MSST SETTING BASED ON VGGNET-19

TABLE VII
SENSITIVITY (%) OF DIFFERENT METHODS ON FOUR MSST SETTING BASED ON RESNET-50

TABLE VIII
SENSITIVITY (%) OF DIFFERENT METHODS ON FOUR MSST SETTING BASED ON VGGNET-16

TABLE IX
DOMAIN DIVISION IN PD DATASET

APPENDICES

In this section, we provide external validation results as well
as supplementary experimental results.

A. Performance Evaluation Based on More Backbones
We additionally evaluate the robustness of SFDA based

on ResNet-34, VggNet-19 and Inception-V3. As shown in
Table IV, V, VI, three average classification accuracy from

all MSST settings shows that SFDA outperforms other base-
lines regardless of the backbone architecture (Except for
Inception-V3, which is only 1.34% lower than the highest
accuracy achieved). In Inception-based testing, SFDA gener-
ally achieves second-best accuracy. In backbones of ResNet-34
and VggNet-19, SFDA performs the best in average accu-
racy. However, SFDA performed slightly different compared
with ResNet-50 and VggNet-16 mainly due to the depth of
network. When training with a deeper architecture, SFDA
based on VggNet-19 performs almost better in all MSST
settings (especially in P1, the accuracy of SFDA based on
VggNet-19 has increased by 6% compared to VggNet-16).
When training with a shallower architecture, SFDA based on
ResNet-34 performs poorly in all MSST settings. Compared
to ResNet-50, the accuracy of SFDA based on ResNet-34 in
all divisions (except P3) has significantly decreased, with a
maximum drop of 7.9%. However, we still could testify the
robustness of SFDA upon above results and it is natural to
obtain different results from different backbones due to various
factors, such as network frameworks, parameters number, etc.

B. Concrete Value of Sensitivity From Fig. 2
We supplement the concrete sensitivity value from Fig.2.

in Table VII and Table VIII for specifically understanding.
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TABLE X
ACCURACY (%) AND SENSITIVITY (%) OF SFDA ON FOUR MSST SETTING BASED ON TWO BACKBONES

C. External Validation
To evaluate whether the good performance of SFDA is

only specific to dataset [67] or not, we added external
validation experiment on Parkinson Disease (PD) Classi-
fication based on a public PD dataset (Gait in Parkin-
son’s Disease [52]), which is available on: https://www.
physionet.org/content/gaitpdb/1.0.0. This dataset collected
multichannel recordings from force sensors beneath the feet of
93 patients with Parkinson’s Disease, and 73 healthy controls
(CO), and detail could be checked in above website. To better
implement proposed SFDA in this dataset, we split the raw
data into 16×200, and each sample contained one gait cycle
from 16 sensors. As the fall risk assessment dataset was built
through flat walking, we therefore selected a treadmill walking
study from PD dataset. Among this study, 29 CO and 35
PD patients were collected and we divide them into 4 MSST
settings (4-fold cross validation) as we did before. The MSST
division are summarized in Table IX. Due to the GPU memory
limitation, we adopt ResNet-34 and VggNet-16 as backbones.
Also, the dimensions of fully connected layer are set as 128 for
less computation complexity. The accuracy of SFDA based on
two backbones are shown in Table X. SFDA performed better
in all MSST settings in Parkinson disease classification, which
could also demonstrate that SFDA is not only specific to the
fall risk assessment dataset.

D. Explanation of Equation (6)
In sensor-based human data classification, the changes in

sensors’ state during different experiment sessions and days
[46] might significantly impact the distribution of raw data,
leading to a deterioration in model prediction stability.

Hysteresis, response time, and cyclic stability are factors
to evaluate the sensors’ performance upon dynamic loadings.
Among them, the inconsistent sensing performance between
loading and unloading is caused by hysteresis behavior. Cyclic
stability is considered to ensure endurance against periodic
stretching and releasing cycles. However, a significant chal-
lenge for piezoresistive materials lies in their poor stability
and the presence of hysteresis effects when subjected to cyclic
strain loading, which causes the collected data to change
over time [73]. Also, the strength of interfacial interaction
severely affects the performance of the flexible sensor in long-
term measurements [74], [75]. What’s worse, the conductive
material easily aggregates and slides, or even falls off from
the matrix when subjected to long-term cyclic compressive
strain, resulting in unstable sensor signal [76], [77]. Hence, the
characters of sensors determine that the gap between different

subjects who were collected at different days would be larger
than that were collected at the same day.

In particular, the piezoresistive flexible pressure sensors
[8] from the public dataset used in this paper [67] exhibit
similar characters. In [8], it is observed that the conductivity
of the sensor increases slowly with the number of compression
times, which is caused by the decreasing resistance because of
the increasing number of conductive paths in the conductive
rubber during compression. After further increasing the times
of compressions to six thousand (after a device has been used
for a period of time), the resistance output of the sensor drops
significantly, which is determined by the characteristics of the
composite sensor.

To sum up, when comparing Dist(X2, Xd̃) (distance
between source data and target data that are collected
at between long time interval) and Dist(X1, X2) (distance
between source data that are collected at same batch), it could
be formulated as equation (6) in manuscript most of the time.
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