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LSTM-MSA: A Novel Deep Learning Model With
Dual-Stage Attention Mechanisms Forearm

EMG-Based Hand Gesture Recognition
Haotian Zhang , Hang Qu , Long Teng , Member, IEEE, and Chak-Yin Tang

Abstract— This paper introduces the Long Short-Term
Memory with Dual-Stage Attention (LSTM-MSA) model,
an approach for analyzing electromyography (EMG) sig-
nals. EMG signals are crucial in applications like pros-
thetic control, rehabilitation, and human-computer inter-
action, but they come with inherent challenges such
as non-stationarity and noise. The LSTM-MSA model
addresses these challenges by combining LSTM layers with
attention mechanisms to effectively capture relevant signal
features and accurately predict intended actions. Notable
features of this model include dual-stage attention, end-
to-end feature extraction and classification integration, and
personalized training. Extensive evaluations across diverse
datasets consistently demonstrate the LSTM-MSA’s superi-
ority in terms of F1 score, accuracy, recall, and precision.
This research provides a model for real-world EMG signal
applications, offering improved accuracy, robustness, and
adaptability.

Index Terms— Electromyography, signal processing,
deep learning, attention mechanism, LSTM, hand gesture
recognition.

I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) signals, with their non-
stationarity, noise, and intricate relationship to intended

actions, present challenges in analysis. Overcoming these
obstacles is essential for optimizing applications such as
prosthetic control and rehabilitation that rely on accurate
interpretation of EMG data. While deep learning techniques
have shown great potential in extracting relevant features and
making accurate predictions about intended actions, there are
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still some limitations that need to be addressed, such as the
need for large amounts of labeled data and the non-stationary
and noisy nature of EMG signals.

To address these limitations, we propose the Long
Short-Term Memory with Dual-Stage Attention (LSTM-MSA)
model for processing EMG signals and predicting intended
actions. The LSTM-MSA model combines LSTM layers with
attention mechanisms to extract relevant features from input
signals and make accurate predictions about intended actions.
The novelty and contribution are summarized as follows:

1) Compared with existing myoelectric hand gesture recog-
nition methods, the model uses attention mechanisms to weigh
the important elements in the signal sequence and focus on the
most relevent parts of the signal, leading to improved accuracy
and robustness.

2) In particular, the model uses dual-stage attention, which
involves two levels of attention: one on the input sequence
and one on the output of the LSTM layer. Dual-stage attention
allows the model to capture both local and global dependencies
in the signal, resulting in better performance.

3) The model integrates feature extraction and classification
into a single end-to-end trainable network, which simplifies the
training process, reduces the risk of overfitting, and allows the
model to learn more representative and discriminative features,
leading to improved classification accuracy.

4) Innovative personalized training adapts EMG gesture
recognition models to individuals, enhancing sim2real transfer,
accuracy, and adaptability in real-world scenarios.

Moreover, We emphasize the novelty of our gesture recog-
nition framework and explicitly connect it to performance
improvements. We provide a detailed explanation of how our
model differs from existing methods, showcasing its unique
contributions to enhanced accuracy, robustness, and general-
ization, particularly in the context of challenging EMG signal
variations.

The proposed LSTM-MSA model is a powerful architecture
for processing EMG signals and making accurate predictions
about intended actions. By combining LSTM layers with atten-
tion mechanisms, the model can capture complex temporal
relationships in input signals while focusing on the most
relevant features.

The organization of the remaining part of this work is
as follows: In Section II, some related works are discussed.
In Section III, the LSTM-MSA model, which combines LSTM
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layers with dual-stage attention mechanisms for EMG signal
analysis and action prediction, is proposed. The architecture,
attention mechanisms, and training process of the model are
explained. In Section IV, the performance of the proposed
model is evaluated, and a comparison with other state-of-the-
art models is conducted. Various metrics are used to measure
the accuracy and robustness of the model. In Section V,
the paper is concluded, and future research directions are
suggested.

II. RELATED WORKS

The field of EMG for hand gesture recognition has been
investigated extensively using various techniques such as deep
learning, feature extraction, and pattern recognition [34]. This
section provides an overview of representative and important
works in this area.

A. Convolutional Neural Network (CNN) Based EMG
Classification Algorithms

CNN is often selected for gesture classification, and it
normally views EMG signals as an image. Several studies have
demonstrated the effectiveness of CNNs for hand gesture clas-
sification using EMG signals. Park et al. [1], Atzori et al. [2],
Olsson et al. [3], Zhai et al. [4], and Chen et al. [5] have
all explored different CNN-based approaches with promising
results. However, the large number of parameters in deep CNN
models can hinder real-time applications. To address this,
Chen et al. [6] propose a compact CNN model called EMGNet
with reduced parameters and improved accuracy. Additionally,
studies have investigated the use of larger and “thinner” filters
to exploit the narrow gap between the length and width of
EMG images [7], [8]. These developments contribute to the
advancement of real-time EMG-based gesture classification.

B. Recurrent Neural Network (RNN) Based EMG
Classification Algorithm

The RNN, which is usually selected to process temporal
information for tasks such as natural language process-
ing has also been applied to this problem [9], [10], [11],
[12], [13]. Nasri et al. [9] propose a GRU-based scheme
with 77.85% accuracy for processing EMG segments.
Koch et al. [10] present an RNN scheme with improved
performance. Simão et al. [11] use various deep learning meth-
ods for single-frame EMG processing. Samadani et al. [12]
achieve 86.7% accuracy with bidirectional LSTM for gesture
recognition. Alfaro-Ponce et al. [13] compare TDNN, DifNN,
and CVNN for EMG and foot pressure signals, all achieving
over 95% accuracy.

C. Auto-Encoder (AE) Based EMG Classification
Algorithm

AE-based schemes for EMG classification can be catego-
rized into two types: hand-crafted feature-based methods [14]
and raw data-based methods [15]. Rehman et al. [14] apply
stacked sparse auto-encoders (SSAE) to improve EMG classi-
fication using multiday recordings. SSAE outperforms linear

discriminant analysis (LDA) with four time-domain features
for intact and disabled subjects. Rehman et al. [15] compare
the performance of CNN, SSAE, and LDA for hand gesture
classification and find that SSAE performs better when using
time-domain features as input.

D. Deep Belief Network (DBN) Based EMG
Classification Algorithm

DBN approaches typically utilize hand-crafted fea-
tures [16], [17]. Shim et al. [16] propose the Split and Merge
DBN, enhancing its performance using a genetic algorithm
and achieving a 12.06% improvement over classical DBN.
Zhang et al. [17] use DBN with time-domain feature sets to
recognize normal and aggressive EMG signals, achieving an
accuracy of 90.66% ± 1.47%. Sun et al. [18] introduce a
generative flow model (GFM), similar to DBN, for converting
EMG data into factorized features and applying softmax
classification for EMG classification purposes.

E. Mixed Network Structures
Ding et al. [7] used a parallel multiple-scale CNN for hand

gesture classification, while Wei et al. [19] employed a CNN
with multiple sub-streams. Gao et al. [20] proposed a dual-flow
network with CNN and LSTM, Wu et al. [21] used CNN and
LSTM with attention mechanism, Xie et al. [22] combined
CNN and LSTM, and Tong et al. [23] used CNN and RNN for
gesture classification. Tsinganos et al. [24] achieved improved
performance with a temporal convolutional network (TCN) on
Ninapro DB1, and Zanghieri et al. [25] developed TEMPONet,
a TCN-based network on an embedded system, outperforming
existing methods on Ninapro DB6.

F. Associate Deep Learning With Machine Learning
Methods

In some studies, a CNN is combined with other techniques,
such as stacking ensemble learning [26] and machine learning
methods [27], to enhance decision performance in human
intention recognition. Shen et al. [26] used a CNN with inputs
of EMG data, Discrete Fourier Transform (DFT) of EMG
data, and Discrete Wavelet Packet Transform (DWPT) of EMG
data, optimized by a stacking ensemble learning algorithm.
Chen et al. [27] replaced the output layer of a typical CNN
with Support Vector Machines (SVM), LDA, and K-Nearest
Neighbors (KNN), showing improved performance compared
to traditional feature-based methods.

G. Applying Analogical Procedures for Movement
Recognition

Shao et al. [28] propose a scheme for upper limb motion
recognition using single-channel EMG, employing the singular
value decomposition (SVD) method and wavelet deep belief
networks (WDBN). Deep learning approaches, such as gait
stage classification [29], wrist motion recognition [30], [31],
and arm motion prediction [32], [33], can be applied to similar
tasks with slight differences in label names compared to hand
gesture classification.
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Fig. 1. Myo EMG Armband.

H. Other Analysis Methods for EMG
Several papers [35], [36], [37], and [38] introduce advanced

techniques, including graph neural networks, genetic algo-
rithms, semantic role labeling, and ensemble methods,
primarily in the context of EMG analysis. However, these
innovative methodologies have the potential to be adapted
and applied to enhance EMG signal processing and analysis,
bridging the gap between these domains.

III. METHODOLOGY

A. Data Collection Equipment
Myo EMG armband is a wearable device equipped with

eight surface EMG sensors, see Fig. 1. It captures and inter-
prets the electrical signals generated by muscles, allowing
users to control applications and devices through gestures and
muscle movements. With its wireless Bluetooth connectivity
and comprehensive software development kit (SDK), devel-
opers can create customized applications and integrations.
The Myo armband has been widely utilized in various fields,
including virtual reality, gaming, medical rehabilitation, and
human-computer interaction research. It offers a non-invasive
and intuitive way to harness muscle-generated signals for
interactive experiences.

B. Datasets
Our dataset comprises sEMG signals recorded from the

forearm muscles while individuals performed hand gestures.
In our study, we utilized three distinct datasets.

The first dataset focused on two primary hand gestures:
grasping and releasing. Each gesture was executed for 20 sec-
onds, and the signals were recorded at a sampling frequency
of 100 Hz. We collected data from 5 individuals, and each
person performed both gestures 10 times. This resulted in
a total of 100 samples, with 90% of them allocated for
model training and 10% for testing. Visual representations of
these gestures can be found in Fig. 2. The second dataset,
known as the number gesture dataset, featured hand gestures
corresponding to numbers 0 to 9. These gestures were also
performed for 20 seconds, recorded at a 100 Hz frequency,
and collected from 6 different individuals. Each individual
performed each gesture three times, resulting in a total of
180 samples. Similar to the first dataset, 90% of these samples

Fig. 2. Grasping and Releasing Gesture.

were used for training, and 10% for testing. This dataset
was specifically designed for transfer learning purposes and is
detailed in Fig. 3. Additionally, we collected data for 20 sec-
onds of continuous motion for both grasping and releasing
gestures, as well as for the number gestures. This additional
data helped us assess whether our model could effectively
recognize gestures in continuous motion scenarios.

Within our dataset, specific parameters were defined:
a 100 Hz sampling frequency and a 300-millisecond window
size. The sampling frequency represents the rate at which data
points were recorded, while the window size was used to
segment data for model training, enabling the analysis of local
signal characteristics.

In addition to our proprietary datasets, we incorporated the
NinaPro DB5 dataset to further validate the accuracy and
robustness of our algorithm. The NinaPro DB5 dataset is a
well-established benchmark in sEMG-based gesture recogni-
tion, encompassing a wide range of hand movements and
gestures. Its diversity makes it an ideal choice for evaluating
our algorithm’s performance under various conditions.

The NinaPro dataset includes data from a larger participant
pool, providing a comprehensive perspective on our approach’s
effectiveness. It encompasses 17 different hand gestures per-
formed by multiple individuals, allowing us to assess our
model’s generalizability across different users and gestures.

The integration of the NinaPro dataset into our study
demonstrates the versatility and effectiveness of our algorithm
in real-world scenarios, reinforcing its reliability and applica-
bility in sEMG-based gesture recognition.

C. Model Structure
The LSTM-MSA model proposed in this research is a deep

learning architecture designed to process EMG signals. The
model utilizes a combination of LSTM layers and attention
mechanisms to extract relevant features from the input signals
and make accurate predictions about the intended actions. The
overall framework is shown in Fig. 4.

The proposed model is designed to classify hand gestures
based on input EMG signals. The input consists of a batch
of EMG signal sequences, each with a length of 2000 and
8 features representing 8 channels of EMG sensors. The output
of the model is a two-dimensional vector representing the
predicted class probabilities for each input sequence. The
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Fig. 3. Number Gesture.

Fig. 4. Overall Framework of the Proposed Model.

model has four main layers: an input attention layer, an LSTM
layer, an output attention layer, and a fully connected layer.
The input attention layer applies a self-attention mechanism
to the input sequence to extract the most relevant features for
classification. This mechanism uses a query matrix Q, a key
matrix K , and a value matrix V to calculate an attention score
matrix S. The score matrix is then normalized by a softmax
function to obtain an attention weight matrix W , which is used
to weight the value matrix V to produce an attention output
matrix A. The attention output matrix is then fed into a fully
connected layer that maps it to the hidden size of the LSTM
layer.

The LSTM layer encodes the input sequence and generates
a sequence of hidden states by using long short-term memory
units. This allows the model to capture the temporal depen-
dencies and dynamics of the input sequence. The LSTM layer
consists of four gates: an input gate i , a forget gate f , an output
gate o, and a cell gate c. The input gate decides how much new
information to add to the cell state. The forget gate decides

how much old information to forget from the cell state. The
output gate decides how much information to output from the
cell state. The cell gate updates the cell state based on the
input and forget gates.

The output attention layer applies another self-attention
mechanism to the LSTM output sequence to weight their
importance for the classification task. This mechanism uses
different linear transformations for Q, K , and V but fol-
lows the same procedure as the input attention layer. The
output of this layer is a weighted sum of the LSTM hidden
states.

The fully connected layer concatenates the weighted sum
from the output attention layer with the weighted output from
the input attention layer and feeds it into a linear transforma-
tion followed by a softmax function to produce the final output
of the model - a two-dimensional vector representing the pre-
dicted class probabilities for each input sequence. The model
also includes additional layers to improve its performance
and generalization ability, including dropout layers to prevent
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Algorithm 1 Attention-Based LSTM for EMG Signal Classi-
fication
Require: Input sequences X ∈ RN×L×F , where N is the

batch size, L is the sequence length, and F is the number
of features.

Ensure: Predicted class probabilities P ∈ RN×C , where C is
the number of classes.

1: Apply self-attention to the input sequence:
2: Qi = W i

q X, Ki = W i
k X, Vi = W i

v X
3: Si = Qi (Ki )

T , Wi = softmax(Si )

4: Ai = Wi Vi , Hi = FC(Ai )

5: Apply LSTM to the input sequence:
6: Hl = LSTM(Hi )

7: Apply self-attention to the output sequence:
8: Qo = W o

q Hl , Ko = W o
k Hl , Vo = W o

v Hl

9: So = Qo(Ko)
T , Wo = softmax(So)

10: Ao = WoVo, Ho =
∑L

j=1 Ao, j
11: Concatenate the output of the input attention layer and

the output attention layer:
12: Hc = concat(Hi , Ho)

13: Apply fully connected layer and softmax function:
14: H f = FC(Hc), P = softmax(H f )

overfitting, batch normalization layers to improve training
stability, and activation functions such as ReLU to intro-
duce non-linearity. During training, the model is optimized
using the Adam optimizer with a learning rate of 0.001 and
cross-entropy loss as the objective function. The Adam opti-
mizer adjusts the learning rate for each parameter based on its
gradient magnitude and momentum. The cross-entropy loss
measures the difference between the predicted probabilities
and the true labels.

The model’s use of two attention layers enhances its ability
to process EMG signals. The input attention layer filters out
noisy or irrelevant parts of the input signals, while the output
attention layer highlights the most discriminative parts of
the output sequences. Together, these layers capture both the
global and local information of the EMG signals. The overall
algorithm is shown in Algorithm 1.

D. Sim2Real Problem
To address the challenge of sim2real transfer, we have

implemented a strategy of personalized training for users.
Prior to using our system, individuals are required to undergo
personalized training, which includes conducting ten consec-
utive training sessions. This process helps ensure that the
model adapts more effectively to the specific physiological
characteristics and EMG signal patterns of each individual,
thereby enhancing its performance and adaptability in real-
world applications.

In this approach, we maintain the parameters of the
pre-trained model fixed and append a two-layer MLP classifier
at the end. This personalized training setup allows us to
fine-tune the model specifically for each user. After the initial
ten training sessions, we evaluate and validate the model’s
suitability and accuracy for the individual user.

Through this personalized training process, our model is
better equipped to handle the transition from simulated to
real-world environments, ultimately improving its overall gen-
eralization and recognition accuracy in practical scenarios. For
more details, please refer to Experiment 5.

IV. EXPERIMENT AND RESULTS

A. Different Experiments
1) Experiment 1: EMG Direct Classification: In this exper-

iment, we aim to directly classify raw EMG signals into
different categories without any additional processing or
feature extraction. The main objective is to evaluate the
performance of various classification algorithms on the raw
EMG signals.

2) Experiment 2: EMG Transfer Learning in Direct Classifica-
tion: In this experiment, we investigate the transferability of
a trained EMG classification model. The model is initially
trained on one person’s data and then tested on another
person’s data. The goal is to assess whether a model trained
on one person can effectively classify EMG signals from a
different person.

3) Experiment 3: EMG Continuous Motion Classification:
In this experiment, our focus is on classifying EMG signals
based on continuous motion patterns. The objective is to study
the performance of different classification algorithms in accu-
rately categorizing EMG signals generated during continuous
motion. To achieve this, additional processing and feature
extraction techniques are applied to extract relevant features
from the EMG signals.

4) Experiment 4: EMG Transfer Learning in Motion Classifi-
cation: In this experiment, we explore the transferability of
a trained EMG motion classification model. The model is
initially trained on one person’s data and then tested on another
person’s data. The goal is to assess whether a model trained
on one person can effectively classify EMG signals from a
different person.

5) Experiment 5: EMG Online Learning in Motion Classifica-
tion: This experiment focuses on evaluating the performance of
online learning techniques in the context of direct EMG signal
classification. It aims to assess how well the model adapts to
evolving EMG patterns in real-time and maintains accuracy
during continuous learning, addressing the challenges model
stability.

B. Parameter Settings
The parameter settings for the LSTM-MSA model are cru-

cial for achieving high accuracy in EMG signal classification.
In this section, we will describe the key parameters used in
our experiments and the rationale behind their selection.

1) Input Sequence Length: The length of the input sequence
is set to 300 milliseconds (ms) of EMG signal data collected
from 8 channels, corresponding to a window time of 300 ms.
This choice is based on the assumption that the most relevant
information for action classification can be captured within
this time frame. Furthermore, longer input sequences would
increase computational costs and may not necessarily improve
classification accuracy.
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2) Hidden Size of LSTM Layer: The hidden size of the
LSTM layer is set to 64. This parameter determines the num-
ber of LSTM units used in the layer and affects the
model’s capacity to capture temporal dependencies in the
input sequence. A larger hidden size may result in improved
accuracy but may also increase the risk of overfitting. After
several experiments, we found that 64 is a reasonable size for
balancing performance and computational cost.

3) Dropout Rate: Dropout is used to prevent overfitting by
randomly dropping out nodes during training. We set the
dropout rate to 0.5 for both the input and output of the LSTM
layer. This means that during training, each node has a 50%
probability of being dropped out. This parameter was chosen
based on empirical results indicating that a dropout rate of
0.5 provides a good balance between preventing overfitting
and preserving model capacity.

4) Learning Rate: The learning rate determines the step
size of parameter updates during training. We use the Adam
optimizer with a learning rate of 0.001. Adam is a popular
optimization algorithm that adaptively adjusts the learning
rate based on the gradient of the loss function. A smaller
learning rate may result in slower convergence, while a larger
learning rate may lead to unstable training and suboptimal
solutions. After several experiments, we found that a learning
rate of 0.001 is a reasonable choice for achieving good
performance.

5) Batch Size: The batch size determines the number of
samples processed in each training iteration. We set the batch
size to 32 for our experiments. A larger batch size may result
in faster convergence but may also increase memory usage and
computational cost. After several experiments, we found that a
batch size of 32 provides a good balance between convergence
speed and memory usage. The parameter settings were selected
through empirical experiments and careful consideration of
their impact on the model’s performance and computational
cost. The chosen settings have been shown to produce good
results in our experiments and provide a solid foundation for
future research in EMG signal processing.

6) Experiment Times: Each experiment will be conducted
20 times to obtain reliable results, and the mean values will be
calculated for analysis. This approach allows us to account for
variations and fluctuations in the data, providing a more accu-
rate assessment of the classification algorithms’ performance.
By calculating the mean values of metrics such as accuracy,
F1 score, recall, and precision, we can evaluate the algorithms’
overall performance. This rigorous approach enhances the
reliability of our conclusions regarding the classification of
raw EMG signals in different experiments.

C. Evaluation Method
In this study, the performance of the proposed LSTM-MSA

model was evaluated using four commonly used metrics:
accuracy, recall, F1 score, and t-tests.

Accuracy, defined as the percentage of correctly classified
samples out of the total number of samples, measures the over-
all correctness of the model’s predictions. Recall, also known
as sensitivity or true positive rate, calculates the percentage of
true positive samples correctly identified by the model out of

all positive samples in the test set, focusing on the model’s
ability to capture positive instances. F1 score, the harmonic
mean of precision and recall, offers a balanced assessment of
both precision and recall.

To comprehensively assess the LSTM-MSA model’s per-
formance, we employed a 5-fold cross-validation approach.
The dataset was randomly divided into 5 folds, with each
fold used as the test set once and the remaining folds used
for training. Metrics were computed for each fold, and the
final evaluation results were obtained by averaging the metrics
across the 5 folds.

In addition to these metrics, t-tests were conducted to
determine the statistical significance of differences in perfor-
mance metrics between the LSTM-MSA model and alternative
models. These t-tests help validate whether the observed
performance improvements are statistically significant.

The use of this comprehensive evaluation methodology,
including accuracy, recall, F1 score, and t-tests within a
cross-validation framework, ensures a robust and statistically
validated assessment of the LSTM-MSA model’s effectiveness
in classifying EMG signals. It provides reliable insights into its
performance and the significance of its superiority over other
models

D. Comparision Models
Based on reference [34], in addition to the LSTM-MSA

model, we will also evaluate five other models for the analysis
of EMG signals:

1) Support Vector Machine (SVM): SVMs are a type of
machine learning model that can be used for classification
tasks. Like random forests, SVMs can be trained on smaller
datasets and still achieve good performance. However, they
may not be as effective at capturing complex patterns in the
data as neural networks, and they may be more sensitive to
the choice of hyperparameters.

2) Random Forest (RF): RFs are an ensemble learning
method that uses decision trees to classify data. Unlike neural
networks, which require large amounts of data to learn effec-
tively, random forests can be trained on smaller datasets and
still achieve good performance. However, they may not be as
effective at capturing complex patterns in the data as neural
networks.

3) Convolutional Neural Network (CNN): CNNs are com-
monly used for image classification tasks, but they can also
be used for time series data like EMG signals. By using 1D
convolutional layers, CNNs can extract local features from
the input signals, which can then be used for classification.
Compared to the LSTM-MSA model, CNNs may be more
computationally efficient and easier to implement, but they
may not be as effective at capturing long-term dependencies
in the data.

4) Linear Discriminant Analysis(LDA): LDA is a supervised
learning algorithm that extracts discriminative features and
reduces dimensionality for classification tasks by maximizing
the between-class scatter and minimizing the within-class
scatter. It is widely used in various domains for effective
separation and classification, although it assumes linearity in
the data.
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TABLE I
HYPERPARAMETERS FOR COMPARISON METHODS

TABLE II
RESULTS OF GRASPING AND RELEASING GESTURES

TABLE III
RESULTS OF NUMBER GESTURE DATASET

5) Gated Recurrent Unit (GRU): GRU is an efficient variant
of recurrent neural networks that addresses the vanishing gra-
dient problem and captures long-term dependencies. It utilizes
gating mechanisms to selectively update and reset information
within the hidden state, making it popular for processing
sequential data in various applications.

6) Long Short-Term Memory (LSTM): LSTM is a type of
recurrent neural network (RNN) architecture that addresses
the vanishing gradient problem and captures long-term depen-
dencies in sequential data. It utilizes memory cells with
input, forget, and output gates to selectively remember and
forget information over time, making it effective for modeling
sequential data.

We have assessed the performance of these models in
comparison to the LSTM-MSA model using the same set of
evaluation metrics: test accuracy, test recall, and test F1 score.
The hyperparameters for the comparative methods are detailed
in Table I. All method parameters have been fine-tuned to
guarantee the utilization of optimal configurations, eliminating
the influence of parameter variations on the comparative
analysis of the different methods.

E. Results
1) EMG Direct Classification Experiment: The results of

Experiment 1 are presented for three datasets in Table II and
Table III:

Based on the results, it is evident that the LSTM-MSA
algorithm consistently outperforms the other models in terms

TABLE IV
RESULTS OF NINAPRO DB5 DATASET

of F1 score, accuracy, recall, and precision for both datasets.
Specifically, the LSTM-MSA model achieved an F1 score of
0.8921 for the Grasping and Releasing Gestures dataset and
0.9392 for the Number Gesture Dataset, showcasing its ability
to accurately classify EMG signals into distinct categories.

In comparison, while the RF, CNN, and SVM mod-
els also demonstrated good performance, they consistently
yielded slightly lower scores across all metrics compared to
the LSTM-MSA model. This suggests that the LSTM-MSA
algorithm excels in capturing the temporal dependencies
within raw EMG signals, ultimately leading to enhanced
classification performance.

These results underscore the efficacy of the LSTM-MSA
algorithm in directly classifying raw EMG signals into dif-
ferent categories, without the need for additional processing
or feature extraction. Its superior performance compared to
other algorithms highlights its potential for accurate and robust
EMG signal classification.

To further assess our algorithm’s performance, we con-
ducted an experiment using the NinaPro DB5 dataset,
a well-established benchmark in the field of sEMG-based ges-
ture recognition. The results of this experiment are presented
in Table IV.

In this experiment, we employed the NinaPro DB5 dataset,
which encompasses a diverse array of hand movements
and gestures performed by multiple individuals. The dataset
presents a challenging scenario for sEMG-based gesture recog-
nition due to its complexity and variability.

Our algorithm, LSTM-MSA, achieved an F1 score of
0.9215, underscoring its robust performance in accurately
classifying hand gestures within the NinaPro DB5 dataset. The
high accuracy, recall, and precision values further validate the
effectiveness of LSTM-MSA in recognizing a wide variety of
gestures across different users.

Comparing these results with those from our previous exper-
iments (Tables II and III), it is evident that the LSTM-MSA
model consistently outperforms other models, including Ran-
dom Forest (RF), Convolutional Neural Network (CNN),
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TABLE V
T-TEST RESULTS FOR GRASPING AND

RELEASING GESTURES DATASET

TABLE VI
T-TEST RESULTS FOR NUMBER GESTURE DATASET

TABLE VII
T-TEST RESULTS FOR NINAPRO DB5 DATASET

Support Vector Machine (SVM), Linear Discriminant Analysis
(LDA), Gated Recurrent Unit (GRU), and Long Short-Term
Memory (LSTM).

These findings emphasize that our LSTM-MSA algorithm
not only excels in classifying gestures in proprietary datasets
but also maintains its strong performance when applied to the
challenging NinaPro DB5 dataset.The LSTM-MSA’s versatil-
ity and robustness make it a promising choice for sEMG-based
gesture recognition, prioritizing accuracy and adaptability.

In order to rigorously assess the statistical significance of
the observed performance differences in Experiment 1, t-
tests were conducted to compare the LSTM-MSA model with
each of the alternative models (RF, CNN, SVM, LDA, GRU,
and LSTM) across three distinct datasets: the Grasping and
Releasing Gestures dataset, the Number Gesture Dataset, and
the NinaPro DB5 Dataset.

Based on the conducted t-tests across the Grasping and
Releasing Gestures dataset, Number Gesture Dataset, and
NinaPro DB5 Dataset, the results consistently demonstrate
highly significant differences in performance between the
LSTM-MSA model and alternative models, including RF,
CNN, SVM, LDA, GRU, and LSTM. These findings strongly
support the superior performance of the LSTM-MSA model in
accurately classifying EMG signals across all three datasets.

2) EMG Transfer Learning in Direct Classification: The
results of Experiment 2 are presented for two datasets in
Table VII and Table VIII:

The experimental results for the two-gesture and number-
gesture datasets demonstrate the consistent and robust per-
formance of the models across multiple experiments. The

precision values, ranging from 86.60% to 92.47% for the
two-gesture dataset and 82.10% to 88.55% for the number-
gesture dataset, indicate the models’ ability to accurately
classify positive samples while minimizing false positives.
This demonstrates the models’ reliability in correctly identify-
ing the target gestures and number gestures. Furthermore, the
recall values range from 87.65% to 92.39% for the two-gesture
dataset and 82.12% to 88.05% for the number-gesture dataset.
These values highlight the models’ effectiveness in capturing
true positive samples, thereby minimizing false negatives. The
consistently high recall values demonstrate the models’ capa-
bility to accurately recognize and classify the desired gestures
and digits, ensuring fewer missed positive instances. The F1
scores, ranging from 0.8773 to 0.9212 for the two-gesture
dataset and 0.8222 to 0.8831 for the number gesture dataset,
provide a comprehensive evaluation by considering both pre-
cision and recall. These scores reflect a balanced performance,
indicating the models’ ability to achieve accurate and reliable
classification results while considering the trade-off between
false positives and false negatives. The consistently high F1
scores demonstrate the models’ capability to achieve a desir-
able balance between precision and recall, ensuring accurate
identification of the gestures and numbers gestures in both
datasets.

These findings suggest the models’ effectiveness and
potential transferability in recognizing and classifying ges-
tures and digits across different individuals, showcasing
their utility in various applications involving EMG signal
classification.

3) EMG Continuous Motion Classification Experiment: The
results of Experiment 3 are presented for two datasets in
Table VIII and Table IX. We collected additional data during
dynamic movements to verify if our model remains effective
amidst variations.

Among the compared models, the LSTM-MSA model con-
sistently outperformed the RF, CNN, and SVM models in
various performance metrics for both datasets. It achieved the
highest F1 score, accuracy, recall, and precision. These results
indicate that the LSTM-MSA model, which incorporates two
attention layers, excelled in classifying EMG signals based on
continuous motion patterns. The LSTM-MSA model’s superior
performance can be attributed to its ability to effectively
capture the temporal dependencies present in the EMG signals.
By incorporating attention mechanisms, the model can focus
on relevant information and extract meaningful features from
the continuous motion patterns, leading to accurate classifi-
cation. Although the RF and CNN models also demonstrated
good performance with competitive F1 scores and accuracy,
the LSTM-MSA model consistently outshined them across
multiple metrics. On the other hand, the SVM model exhibited
relatively lower performance compared to the other models,
indicating its limitations in accurately classifying EMG signals
with continuous motion patterns. These findings emphasize
the effectiveness of the LSTM-MSA model for classifying
EMG signals in the context of continuous motion patterns. Its
superior performance in terms of accuracy, recall, precision,
and F1 scores highlights its potential as a robust and reliable
approach for EMG signal classification.
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TABLE VIII
RESULTS OF TWO-GESTURE DATASET (5 INDIVIDUALS)

TABLE IX
RESULTS OF NUMBER GESTURE DATASET (6 INDIVIDUALS)

TABLE X
RESULTS OF GRASPING AND RELEASING GESTURES

TABLE XI
RESULTS OF NUMBER GESTURE DATASET

TABLE XII
T-TEST RESULTS FOR GRASPING AND

RELEASING GESTURES DATASET

To statistically evaluate the performance differences
observed in Experiment 3, t-tests were conducted between
the LSTM-MSA model and each of the other models (RF,
CNN, SVM, LDA, GRU, LSTM) for both the Grasping and
Releasing Gestures dataset and the Number Gesture Dataset.

For the Grasping and Releasing Gestures Dataset, the
LSTM-MSA model demonstrated statistically significant per-
formance improvements compared to all other models across
all metrics, including F1 score, accuracy, recall, and precision.

For the Number Gesture Dataset, the LSTM-MSA
model also exhibited statistically significant performance

TABLE XIII
T-TEST RESULTS FOR NUMBER GESTURE DATASET

improvements compared to all other models across all metrics,
including F1 score, accuracy, recall, and precision.

These t-test results confirm that the LSTM-MSA model
consistently outperforms all other models, including RF, CNN,
SVM, LDA, GRU, and LSTM, in terms of classifying EMG
signals for both datasets and across multiple performance
metrics. The significance of these differences underscores
the robustness and superiority of the LSTM-MSA algorithm
for EMG signal classification, particularly in the context of
continuous motion patterns.

4) EMG Transfer Learning in Motion Classification: The
results of Experiment 4 are presented for two datasets in
Table XIV and Table XV:

For the Two-Gesture Dataset, the models achieved high
accuracy, precision, recall, and F1 scores across various train-
ing and testing combinations. When training on one individual
and testing on another, the models consistently demonstrated
good performance. For example, when training on Person
A and testing on Person B, the models achieved an aver-
age testing accuracy of 91.23%, precision of 90.84%, recall
of 91.52%, and F1 score of 0.9121. Similar patterns were
observed for other training and testing combinations.

Moving on to the Number Gesture Dataset, the models
also exhibited notable performance in classifying continuous
motion patterns. Although the dataset involved more individu-
als, the models still achieved competitive accuracy, precision,
recall, and F1 scores. For instance, when training on Person
A and testing on Person B, the models achieved an average
testing accuracy of 88.73%, precision of 88.31%, recall of
89.11%, and F1 score of 0.8874. These results demonstrate
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TABLE XIV
RESULTS OF TWO-GESTURE DATASET (5 INDIVIDUALS)

TABLE XV
RESULTS OF NUMBER GESTURE DATASET (6 INDIVIDUALS)

TABLE XVI
ENHANCED PERFORMANCE THROUGH ONLINE LEARNING

the models’ ability to effectively classify EMG signals related
to number gestures in a continuous motion scenario.

The consistently high accuracy, precision, recall, and F1
scores across different training and testing combinations sug-
gest the models’ robustness in capturing the distinct patterns
and characteristics of continuous motion in EMG signals. This
performance indicates their potential in real-world applications
that require accurate classification of EMG signals during
continuous motion.

It is worth noting that the specific reasons behind the
superior performance of the models, such as the LSTM-
MSA algorithm, can be attributed to their ability to capture
temporal dependencies, leverage attention mechanisms, and
effectively model complex patterns in EMG signals. These
factors contribute to the models’ enhanced performance in
classifying continuous motion patterns compared to other
algorithms.

5) Experiment 5: EMG Online Learning in Motion Classifica-
tion: This experiment was primarily focused on evaluating the
performance of online learning techniques in the context of
direct EMG signal classification. The primary objective was
to assess the model’s adaptability to evolving EMG signal
patterns in real-time, particularly when exposed to continuous
learning scenarios. This investigation aimed to address the
challenges related to concept drift and model stability that can
occur in dynamic signal environments.

In the conducted experiment, the LSTM-MSA model
demonstrated a notable enhancement in performance after
incorporating online learning tailored to specific individuals.
A comparison of key performance metrics before training
(Epoch 0) and after 10 epochs of personalized online learning
is presented in Table XVI.

The results underscore the remarkable improvement
achieved by the LSTM-MSA model following personalized
online learning. Noteworthy observations from this experiment
include:

The integration of concept drift detection mechanisms,
allowing the model to identify and promptly respond to
significant changes in EMG signal patterns. This adapt-
ability ensures the model remains aligned with real-world
variations.

The implementation of fine-tuning procedures for individ-
ual users after ten training sessions, leading to personalized
adaptation and a substantial boost in overall accuracy.

These findings emphasize that personalized online learning
enhances the LSTM-MSA model’s performance, making it
better equipped to adapt to specific users’ EMG signal pat-
terns. The results not only showcase the practical benefits
of online learning in the realm of EMG-based motion clas-
sification but also elucidate the reasons behind the model’s
significant performance improvement. This adaptability is
especially valuable in applications necessitating timely and
precise gesture recognition, ensuring that the model remains
both responsive and accurate.

V. CONCLUSION

The proposed LSTM-MSA model provides a novel
approach to EMG signal processing and analysis. It effec-
tively addresses the limitations associated with analyzing
non-stationary and noisy EMG signals and the complex
relationships between signal features and intended actions.
By incorporating attention mechanisms, dual-stage attention,
and end-to-end training, the LSTM-MSA model achieves
improved accuracy, robustness, and feature extraction capa-
bilities. The effectiveness and advantages of the proposed
method have been validated by extensive experiments on dif-
ferent datasets and comparisons against representative machine
learning algorithms. These innovations have implications for
enhancing human-machine interaction and healthcare applica-
tions. Further research could explore advanced deep learning
techniques such as reinforcement learning, to further enhance
EMG signal classification performance.
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