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Abstract— Recent advances in deep learning have led
to increased adoption of convolutional neural networks
(CNN) for structural magnetic resonance imaging (sMRI)-
based Alzheimer’s disease (AD) detection. AD results
in widespread damage to neurons in different brain
regions and destroys their connections. However, current
CNN-based methods struggle to relate spatially distant
information effectively. To solve this problem, we propose
a graph reasoning module (GRM), which can be directly
incorporated into CNN-based AD detection models to
simulate the underlying relationship between different
brain regions and boost AD diagnosis performance.
Specifically, in GRM, an adaptive graph Transformer
(AGT) block is designed to adaptively construct a
graph representation based on the feature map given
by CNN, a graph convolutional network (GCN) block
is adopted to update the graph representation, and
a feature map reconstruction (FMR) block is built to
convert the learned graph representation to a feature
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map. Experimental results demonstrate that the insertion
of the GRM in the existing AD classification model can
increase its balanced accuracy by more than 4.3%.
The GRM-embedded model achieves state-of-the-art
performance compared with current deep learning-based
AD diagnosis methods, with a balanced accuracy
of 86.2%.

Index Terms— Alzheimer’s disease diagnosis, graph con-
volution network, plug-and-play, structural magnetic reso-
nance imaging.

I. INTRODUCTION

AD IS the most common neurodegenerative disease, affect-
ing millions of people worldwide. While there are no

specific remedies for AD, early and accurate diagnoses can
effectively improve patients’ living quality [1]. Structural
magnetic resonance imaging (sMRI) is a widely used imaging
technique in research as well as in clinical practice [2].
The sMRI is an extensively utilized imaging modality in
AD detection because of its non-invasive, high resolution,
and moderate cost characteristics [3]. While sMRI can cap-
ture brain structure and connection abnormalities caused by
AD, the clinician’s competence often affects the diagnosis
accuracy based on sMRI. Fortunately, computer-aided diag-
nosis technology offers a possible way to detect AD through
sMRI quantitatively and effectively. Fortunately, computer-
aided diagnosis technology has been widely used in the
medical field [4], [5], [6], [7], which provides a possible
method for quantitatively and effectively detecting AD through
sMRI.

Current sMRI-based AD detections mostly adopt CNN
[8]. Studies have tried to adopt 2D CNNs for AD detection
with input composed of 2D slices from 3D sMRI [9], [10].
The conversion to 2D images can avoid overfitting as it
expands the dataset and makes it possible to transfer existing
pre-trained CNNs with outstanding performance on image
classification tasks to AD detection. However, the absence of
3D information impairs performance. To better take advantage
of spatial information, 3D CNNs have been adopted. Some
studies selected 3D patches from the whole sMRI and trained
independent CNNs for each patch [11], [12]. Though the
3D structure was preserved, the patches selected may not be
informative as they may contain disease-irrelevant information,
thus causing the model to be computationally inefficient.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8806-2166
https://orcid.org/0000-0001-8206-0952
https://orcid.org/0000-0002-6599-8073
https://orcid.org/0000-0001-6531-7517
https://orcid.org/0000-0002-7602-4848
https://orcid.org/0000-0003-1790-8448
https://orcid.org/0000-0002-9566-1383
https://orcid.org/0000-0002-1534-5840


4774 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 1. The framework of GRM. GRM consists of an AGT block, a GCN block, and a FMR block, and can be divided into a graph representation
learning branch and a graph transformer learning branch. The AGT block adaptively constructs the graph representation G from the input feature
map X and generates an update matrix U for graph transformer learning. A GCN block is adopted in the graph representation learning branch for
graph feature extraction. The outputs of the two branches are combined and processed by the FMR block to reconstruct a new feature map X′ that
shares the same shape with X.

Region of interest (ROI)-based methods focus on informative
disease-related regions, effectively decreasing the complexity
of the framework. The hippocampus is commonly used as an
ROI as it has been affected since the early stages of AD
[13], [14]. Data extracted from the hippocampus is sent to
CNN for classification [15]. However, as AD also affects the
connections between multiple brain regions, focusing only
on selected ROIs fails to cover all possible pathological
locations in the whole brain. Some studies have tried to use
the whole sMRI as input directly, performing a subject-level
classification [16], [17]. It has been shown that different 3D
CNNs can achieve similar performances, which are better than
the 2D slice approaches [8].

Although CNN has attracted significant attention in AD
detection, its convolutional formulation is limited to data
structured in an ordered grid-like fashion [18]. It has trouble
relating spatially distant information as its feature extraction
depends on receptive fields that operate in constrained local
neighborhoods [19]. Approaches like deep-stacked convolu-
tional operations, increased kernel sizes, and new operations
like non-local attention layers have been used to tackle
this problem. However, they increased the computational
complexity and could only mitigate the problem to some
extent [20].

Therefore, it is not easy for CNN to directly capture the
potential relationship between different brain regions related
to AD. The intrinsic nature of AD patient’s brain struc-
ture and connectivity abnormalities motivates the exploration
of brain network representations based on graph theory to
quantitatively evaluate the connectivity properties of brain
networks. The graph convolutional network (GCN) generalizes
the convolution operation from grid data to graph represen-
tations [21] and makes it possible to model the relationship
between local features extracted by CNN. To date, only a few
studies explored AD diagnosis by GCN with sMRI data. Their
graph representation constructions relied on manually selected
features like cortical thickness and geometry from MRI scans
[22], [23]. Constructing an adaptive graph representation may
contribute to a better representation of the MRI data in a

data-driven way, and might provide richer information for the
reasoning of the graph network.

In this work, we design a graph reasoning module (GRM),
which can be directly incorporated into a CNN-based AD
detection model to boost performance. The feature represen-
tation extracted by CNN is processed by GCN to generate
a relation-aware representation. As shown in Fig. 1, GRM
consists of an adaptive graph Transformer (AGT) block,
a GCN block, and a feature map reconstruction (FMR)
block. The GRM can be divided into two branches, graph
representation learning and graph transformer learning. The
AGT block adaptively transforms the input feature map into a
corresponding graph representation, which is then sent to the
GCN block in the graph representation learning branch for
feature extraction. Also, an update matrix U is constructed
to update the parameters in the AGT. The outputs of the
two branches are then merged and sent to the FMR block
to reconstruct a new feature map that shares the same size as
the input.

Our main contributions can be summarized as follows:
• We propose a plug-and-play module, GRM, which can be

efficiently inserted into CNN-based AD detection models
to capture the underlying relationship between spatially
distant regions.

• We design an AGT block in GRM to adaptively convert
the input feature map into a graph representation without
requiring time-consuming feature extractions.

• We embed the GRMs into ResNet18 and ResNet34,
which increase their balanced AD classification accuracy
by more than 4.3%, achieving state-of-the-art perfor-
mance compared with current deep learning-based AD
diagnosis methods.

II. METHODS

In this section, we describe the proposed GRM, as shown in
Fig. 1. The AGT block adaptively converts the input feature
map to a graph representation, which is then sent to the graph
representation learning branch and processed by the GCN
block for feature extraction. As for the graph transformer
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Fig. 2. The framework of the proposed AGT block. The feature maps are shown as the shape of their tensors.“
⊗

” denotes matrix multiplication.

learning branch, an update matrix U is constructed to update
the parameters of the AGT block during training. The FMR
block is adopted to reconstruct corresponding feature maps by
combining the GCN block’s output and update matrix.

A. AGT Block

The AGT block transforms the input feature map X ∈

RC×D×W×H (where C , D, H , W are the channel, depth,
height, and width, respectively) into a graph G = (V, E)

with N nodes vi ∈ V and edges (vi , v j ) ∈ E . The graph
is characterized by its adjacency matrix A and node feature
matrix M . As shown in Fig. 2, A and M are obtained from
the adjacency matrix generator and node feature extractor,
respectively. An update matrix U is constructed to update the
parameters of the AGT block.

1) Node Feature Extraction: The input feature map X is
processed by a 3D convolution layer, denoted as Emb(·), with
kernel size 1 × 1 × 1 and stride 2 to extract a new feature
embedding, which is then reshaped to obtain the node feature

matrix M ∈ RN×
D W H

8 . Each node is associated with a D W H
8 -

dimensional feature vector.

M = R[Emb(X)] (1)

where R represents the reshape operation which converts the
embedded feature with shape RN×D′

×W ′
×H ′

to RN×D′ W ′ H ′

(D′
= D/2, W ′

= W/2, H ′
= H/2).

2) Adjacency Matrix Generation: As illustrated in Fig. 2,
for a given feature map X , we first downsample it by a 3D
maxpooling layer, denoted as Maxpool(·), to reduce its dimen-
sionality and computational complexity. A smaller feature map
Xd is obtained:

Xd = Maxpool(X) (2)

where X ∈ RC×D×W×H and Xd ∈ RC×D′
×W ′

×H ′

. Then, Xd is
fed into two 3D convolution layers, 2(·) and 8(·), to generate
new feature vectors, denoted as Xθ and Xφ :

Xφ = R[8(Xd)]T (3)
Xθ = R[2(Xd)] (4)
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Fig. 3. The framework of GCN block. GCN block adopts three ARMAConv [24] layers with LeakyReLU activation function to aggregate and update
the graph representation.

Xφ and Xθ is then reshaped into RD′ W ′ H ′
×N and RN×D′ W ′ H ′

,
respectively. We perform matrix multiplication between Xθ

and Xφ . The result is further processed by Tanh activation
function and then rescaled to range [0, 1] to get the weighted
directed adjacency matrix Aw,d :

Aw,d = Tanh(Xθ Xφ) (5)

Aw,d is processed by edge binarization, where a threshold t
is set, and only those edge values that exceed t are retained
and set to one. Then we convert the graph to an undirected
graph. The GCN block takes the adaptive graph represenataion
generated by the AGT block as input, which is characterized
by node feature matrix M given in Eq.(1) and adjacency
matrix A.

3) Update Matrix Construction: An additional branch U ∈

RN×D′ W ′ H ′

is constructed by merging the generated node
feature matrix M given in Eq.(1) and the weighted directed
adjacency matrix Aw,d given in Eq.(5) to update the parame-
ters of the AGT block during training:

U = ReLU[Aw,d M] (6)

B. GCN Block
The GCN block receives the node feature matrix M and

adjacency matrix A generated by the AGT block and processes
them by three graph convolution layers with ReLU activation
functions to aggregate and update the representation of node
features, as shown in Fig. 3.

We adopt the graph method from [25]. For input signal
M ∈ RN×D′ W ′ H ′

where each node is denoted by a D′ W ′ H ′-
dimensional feature vector, the convolutional operator can be
denoted as:

M ′
= D̂−1/2 ÂD̂−1/2 M9 (7)

where 9 ∈ RD′ W ′ H ′
×D′ W ′ H ′

is the matrix of graph filter
parameters, Â = A + I denotes the adjacency matrix with
inserted self-loops where I is the identity matrix, and D̂i i =∑

j Âi, j represents the degree matrix.

C. FMR Block
The FMR block is designed to reconstruct the feature map

from the node feature matrix M ′ given by the GCN block
(Eq.(7)) and the update matrix U given by the AGT block
(Eq.(6)). As shown in Fig. 4, M ′ and U are added and
then reshaped into RN×D′

×W′
×H′

. After that, a 3D transpose
convolution operator is applied to reconstruct a feature map
X ′ that shares the same shape as the original input X .

III. EXPERIMENTS

A. Dataset
Data used in this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, positron emission tomog-
raphy (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progressions of mild cognitive impairment (MCI) and early
AD.

The original dataset passes through the t1-linear pipeline
of Clinica [8], [26]. More precisely, bias field correction
is applied using the N4ITK method [27]. Next, an affine
registration is performed using the SyN algorithm [28] from
ANTs [29] to align each image to the MNI space with the
ICBM 2009c nonlinear symmetric template [30].

We adopt the same dataset setting as Wen et al. [8] and
follow its data split method. Specifically, sMRI data of 330 CN
subjects and 336 AD patients are used in our experiments.
This total record is split into training (466) and testing (200)
set at subject-level. The testing set consists of 100 randomly
chosen subjects for each diagnostic class (i.e., 100 CN subjects
and 100 AD patients). During training, we perform five-fold
cross-validation. For each fold, the model with the highest
balanced accuracy (BA) [31] on the validation set is saved
and further tested on the testing set.

B. Implementation Details
The models are implemented using Python 3.7.9 and

PyTorch on a workstation with NVIDIA Tesla V100 graphic
processing unit. For all experiments, we set the batch size to
8 and carry out exhaustive grid searches for optimal learning
rate and weight decay parameter combinations. The optimizer
used in training is adamw. We convert the original 2D ResNet
[32] to a 3D version and embed GRM in ResNet18 and
ResNet34, denoted as ResNet18_GRM and ResNet34_GRM.
Data are resized to 128 × 128 × 128 for further processing.
Their edge binarization threshold t is both set to 0.7, the
weight decay is both set to 5e-4, and the learning rate is
set to 5e-4 and 9e-4, respectively. The models are trained for
50 epochs, and the early-stop strategy is used. If the BA on
the validation set does not increase for 10 epochs, the current
experiment will be stopped. BA given in Eq.(8), sensitivity
given in Eq.(9), specificity given in Eq.(10), positive predictive
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Fig. 4. The framework of the FMR module. FMR takes the output of the GCN block (M′) as well as the update matrix (U) as input, and reconstruct
the feature map that shares the same shape with the input of GRM.

TABLE I
ARCHITECTURES OF RESNET18_GRM AND RESNET34_GRM

value (PPV) given in Eq.(11), and negative predictive value
(NPV) given in Eq.(12) are adopted to evaluate the classifica-
tion performance. The average and standard deviation of each
metric are recorded to compare the performance of different
models.

BA =
Sensitivity + Specificity

2
(8)

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

PPV =
TP

TP + FP
(11)

NPV =
TN

TN + FN
(12)

where TP represents true positive, TN represents true negative,
FP represents false positive, FN represents false negative,
P represents the total number of positives, and N represents
the total number of negatives.

C. Results

As shown in Table I, two GRMs, located in the shal-
low and deep layers, are both inserted into ResNet18 and
ResNet34, denoted as ResNet18_GRM and ResNet34_GRM,
respectively. Comparisons have been performed with three
existing state-of-the-art methods: ConvNet3D [16], Deep-
CNN [33], and VoxCNN [34]. The different classification
experiments and the results on the validation set (valida-
tion BA during five-fold cross-validation) are detailed in
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TABLE II
COMPARISON OF DIFFERENT WORK ON THE VALIDATION SET

TABLE III
COMPARISON OF DIFFERENT WORK ON THE TESTING SET

Fig. 5. Visualization results of graph data learned by the two GRMs in ResNet18_GRM.

Table II, where GRM-embedded models achieve better per-
formances. Specifically, ResNet34_GRM has the highest BA
and the second-best PPV. Compared with DeepCNN, the
best-performing baseline model, ResNet34_GRM improves
BA by 0.97% while decreasing the standard deviation by
5.12%. As for ResNet18_GRM, it achieves the best PPV and
ranks second on BA. While VoxCNN did perform well on
specificity, its standard deviation is relatively high, and BA
is only 78.36%. The performance of ConvNet3D is relatively
poor, which is close to random guessing.

Results on the testing set are presented in Table III.
Resnet18_GRM and ResNet34_GRM receive the top BA.
Meanwhile, ResNet34_GRM also has the highest specificity
and PPV. Compared with the best baseline model, DeepCNN,

GRM-embedded models’ BA is 1.8% higher while maintain-
ing a smaller standard deviation.

D. Ablation Study
We conduct ablation studies on the testing set to evaluate the

effectiveness of the proposed GRM. Here the baseline models
are referred to ConvNet3D, DeepCNN, VoxCNN, and the 3D
version of ResNet18 and ResNet34. As shown in Table IV, the
adoption of GRMs can significantly boost the performance of
the five baseline models on the testing set while maintaining
a relatively small standard deviation. Specifically, compared
with the performance of corresponding baselines, BA of
ResNet18_GRM and ResNet34_GRM is improved by 4.40%
and 4.30%, respectively, while reducing the standard deviation
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TABLE IV
ABLATION STUDY FOR GRM. PERFORMANCES ARE EVALUATED ON THE TESTING SET

by 1.38% and 0.46%, respectively. On the other three base-
line models, the BA of ConvNet3D_GRM, DeepCNN_GRM,
and VoxCNN_GRM is increased by 6.35%, 0.85%, and
4.30% respectively. Among them, the improvement of Deep-
CNN_GRM is smaller, which may be because the original
model has achieved good results, limiting the potential for
performance improvement. In terms of variance, the variance
of DeepCNN_GRM and VoxCNN_GRM is 1.75% and 12.51%
lower than the baseline model respectively. The variance of
ConvNet3D_GRM is larger than the baseline model, which
may be because the ConvNet3D model performs poorly and
has abnormally low variance. The adoption of GRMs also
improves the performance on other evaluation metrics like
sensitivity, specificity, PPV and NPV.

E. Discussion
To better understand how the GRM encodes the graph

information, we visualize the graph data learned by the two
GRMs in ResNet18_GRM. As shown in Fig. 5, the two rows
represent the result of GRM 1 and GRM 2 according to
Table I, and different columns denote the results obtained at
epochs 0, 10, and 30, respectively. GRM 1 and GRM 2 receive
input feature maps with shape 128×8×8×8 and 256×8×8×8,
respectively, and transform them to graph representations with
64 and 128 nodes, respectively. Each node is represented by a
64-dimensional feature vector. It can be seen that connections
between nodes are evenly distributed at the beginning. As the
training goes further, some nodes gradually become densely
connected, and some become sparsely related, indicating that
the AGT block is able to continuously adjust the construction
of the graph to obtain a more discriminative graph represen-
tation.

IV. CONCLUSION

In this paper, the GRM is proposed, which can be directly
embedded into existing AD detection models to boost its
performance by simulating the latent relationship between
spatially distant regions. Experimental results demonstrate that
GRMs can be directly embedded into existing CNN-based
diagnosis models and increase the balanced accuracy of AD
classification by more than 4.3%. Compared with the cur-
rent deep learning-based diagnosis baseline, GRM-embedded

models achieve state-of-the-art performance with a balanced
accuracy of 86.2%.

REFERENCES

[1] C. R. Jack et al., “The Alzheimer’s disease neuroimaging initiative
(ADNI): MRI methods,” J. Magn. Reson. Imag., vol. 27, no. 4,
pp. 685–691, 2008.

[2] M. Symms, H. Jäger, K. Schmierer, and T. Yousry, “A review of
structural magnetic resonance neuroimaging,” J. Neurol., Neurosurg.
Psychiatry, vol. 75, no. 9, pp. 1235–1244, Sep. 2004.

[3] W. Lin et al., “Convolutional neural networks-based MRI image analysis
for the Alzheimer’s disease prediction from mild cognitive impairment,”
Frontiers Neurosci., vol. 12, p. 777, Nov. 2018.

[4] D. Bai, T. Liu, X. Han, and H. Yi, “Application research on optimization
algorithm of sEMG gesture recognition based on light CNN+LSTM
model,” Cyborg Bionic Syst., vol. 2021, Jan. 2021, Art. no. 9794610.

[5] M. Hashizume, “Perspective for future medicine: Multidisciplinary com-
putational anatomy-based medicine with artificial intelligence,” Cyborg
Bionic Syst., vol. 2021, Jan. 2021, Art. no. 9160478.

[6] C.-C. Fan et al., “Group feature learning and domain adversarial neural
network for aMCI diagnosis system based on EEG,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2021, pp. 9340–9346.

[7] C.-C. Fan, H. Yang, Z.-G. Hou, Z.-L. Ni, S. Chen, and Z. Fang, “Bilinear
neural network with 3-D attention for brain decoding of motor imagery
movements from the human EEG,” Cognit. Neurodynamics, vol. 15,
no. 1, pp. 181–189, Feb. 2021.

[8] J. Wen et al., “Convolutional neural networks for classification of
Alzheimer’s disease: Overview and reproducible evaluation,” Med.
Image Anal., vol. 63, Jul. 2020, Art. no. 101694.

[9] J. Islam and Y. Zhang, “Brain MRI analysis for Alzheimer’s disease
diagnosis using an ensemble system of deep convolutional neural
networks,” Brain Informat., vol. 5, no. 2, pp. 1–14, Dec. 2018.

[10] A. Valliani and A. Soni, “Deep residual nets for improved Alzheimer’s
diagnosis,” in Proc. 8th ACM Int. Conf. Bioinf., Comput. Biol., Health
Informat., Aug. 2017, p. 615.

[11] D. Cheng, M. Liu, J. Fu, and Y. Wang, “Classification of MR brain
images by combination of multi-CNNs for AD diagnosis,” in Proc. SPIE,
vol. 10420, Jul. 2017, Art. no. 1042042.

[12] C. Lian, M. Liu, J. Zhang, and D. Shen, “Hierarchical fully convolutional
network for joint atrophy localization and Alzheimer’s disease diagnosis
using structural MRI,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 4, pp. 880–893, Apr. 2020.

[13] B. C. Dickerson et al., “MRI-derived entorhinal and hippocampal
atrophy in incipient and very mild Alzheimer’s disease,” Neurobiol.
Aging, vol. 22, no. 5, pp. 747–754, 2001.

[14] N. Schuff et al., “MRI of hippocampal volume loss in early Alzheimer’s
disease in relation to ApoE genotype and biomarkers,” Brain, vol. 132,
no. 4, pp. 1067–1077, May 2008.

[15] K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and
G. Catheline, “Classification of Alzheimer disease on imaging modal-
ities with deep CNNs using cross-modal transfer learning,” in Proc.
IEEE 31st Int. Symp. Computer-Based Med. Syst. (CBMS), Jun. 2018,
pp. 345–350.



4780 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

[16] K. Bäckström, M. Nazari, I. Y. Gu, and A. S. Jakola, “An efficient 3D
deep convolutional network for Alzheimer’s disease diagnosis using MR
images,” in Proc. IEEE 15th Int. Symp. Biomed. Imag. (ISBI), Apr. 2018,
pp. 149–153.

[17] F. Li, D. Cheng, and M. Liu, “Alzheimer’s disease classification based
on combination of multi-model convolutional networks,” in Proc. IEEE
Int. Conf. Imag. Syst. Techn. (IST), Oct. 2017, pp. 1–5.

[18] D. Ahmedt-Aristizabal, M. Ali Armin, S. Denman, C. Fookes, and
L. Petersson, “Graph-based deep learning for medical diagnosis and
analysis: Past, present and future,” 2021, arXiv:2105.13137.

[19] B. Wu et al., “Visual transformers: Token-based image representation
and processing for computer vision,” 2020, arXiv:2006.03677.

[20] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7794–7803.

[21] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[22] V. R. Sampathkumar, “ADiag: Graph neural network based diagnosis of
Alzheimer’s disease,” 2021, arXiv:2101.02870.

[23] C.-Y. Wee, C. Liu, A. Lee, J. S. Poh, H. Ji, and A. Qiu, “Cortical graph
neural network for AD and MCI diagnosis and transfer learning across
populations,” NeuroImage, Clin., vol. 23, Jan. 2019, Art. no. 101929.

[24] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural
networks with convolutional ARMA filters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 7, pp. 3496–3507, Jul. 2022.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[26] A. Routier et al. (Mar. 2021). Clinica: An Open Source Software
Platform for Reproducible Clinical Neuroscience Studies. [Online].
Available: https://hal.inria.fr/hal-02308126

[27] N. J. Tustison et al., “N4ITK: Improved n3 bias correction,” IEEE Trans.
Med. Imag., vol. 29, no. 6, pp. 1310–1320, Jun. 2010.

[28] B. Avants, C. Epstein, M. Grossman, and J. Gee, “Symmetric
diffeomorphic image registration with cross-correlation: Evaluating
automated labeling of elderly and neurodegenerative brain,”
Med. Image Anal., vol. 12, no. 1, pp. 26–41, Feb. 2008.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1361841507000606

[29] B. B. Avants, N. J. Tustison, M. Stauffer, G. Song, B. Wu, and
J. C. Gee, “The insight ToolKit image registration framework,”
Frontiers Neuroinform., vol. 8, p. 44, Apr. 2014. [Online].
Available: https://www.frontiersin.org/article/10.3389/fninf.2014.
00044

[30] V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins,
“Unbiased nonlinear average age-appropriate brain templates from
birth to adulthood,” NeuroImage, vol. 47, p. S102, Jul. 2009.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1053811909708845

[31] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann,
“The balanced accuracy and its posterior distribution,” in Proc. 20th
Int. Conf. Pattern Recognit., Aug. 2010, pp. 3121–3124.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[33] D. Cheng and M. Liu, “CNNs based multi-modality classification for
AD diagnosis,” in Proc. 10th Int. Congr. Image Signal Process., Biomed.
Eng. Informat. (CISP-BMEI), Oct. 2017, pp. 1–5.

[34] S. Korolev, A. Safiullin, M. Belyaev, and Y. Dodonova, “Residual and
plain convolutional neural networks for 3D brain MRI classification,”
in Proc. IEEE 14th Int. Symp. Biomed. Imag. (ISBI), Apr. 2017,
pp. 835–838.


