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Abstract— Virtual environments provide a safe and
accessible way to test innovative technologies for control-
ling wearable robotic devices. However, to simulate devices
that support walking, such as powered prosthetic legs,
it is not enough to model the hardware without its user.
Predictive locomotion synthesizers can generate the move-
ments of a virtual user, with whom the simulated device
can be trained or evaluated. We implemented a Deep Rein-
forcement Learning based motion controller in the MudJoCo
physics engine, where autonomy over the humanoid model
was shared between the simulated user and the control
policy of an active prosthesis. Despite not optimising the
controller to match experimental dynamics, realistic torque
profiles and ground reaction force curves were produced
by the agent. A data-driven and continuous representation
of user intent was used to simulate a Human Machine Inter-
face that controlled a transtibial prosthesis in a non-steady
state walking setting. The continuous intent representation
was shown to mitigate the need for compensatory gait pat-
terns from their virtual users and halve the rate of tripping.
Co-adaptation was identified as a potential challenge for
training human-in-the-loop prosthesis control policies. The
proposed framework outlines a way to explore the complex
design space of robot-assisted gait, promoting the transfer
of the next generation of intent driven controllers from the
lab to real-life scenarios.

Index Terms— Al and machine learning, human-robot
interaction, locomotion synthesis, simulation, rehabilita-
tion robotics.

[. INTRODUCTION

OMMERCIALLY available powered lower limb Pros-
Cthetics and Orthotics (P&O) have yet to realise their
potential impact [1], [2]. Price, weight and user perception
are all key factors in determining whether these devices
are a worthwhile intervention for their users [3]. Moreover,
appropriate strategies are needed to synchronise the upcoming
generated motion with the user’s motor intent. Many wearable
robotic devices are limited by unintuitive control interfaces,
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low number of degrees of freedom (DoFs) control and reliance
on signals acquired as a result of a movement already in
progress [2], [5]. This is especially true for non-steady-state
locomotion (e.g. turning, changing walking speed or starting
stair ascension) and for partial assistance systems [2]. The
design, development and evaluation of novel control strategies
are hindered by limited access to hardware and participants,
as well as by the risks inherent to testing incomplete device
controllers. The physical test-beds and frameworks, which
can be used for validated, reproducible and safe tests require
complex and unique equipment [6]. Time-efficient iterations
on hardware and controller designs can be facilitated by
device emulation hardware [7]. However, these may introduce
restrictions on the range of test environments and locomotion
tasks due to the mobility constraints of the emulation platform.

In the context of upper limb device design, virtual environ-
ments are a well established approach to alleviate the afore-
mentioned issues [8]. However, there are additional challenges
when this approach is applied to locomotion tasks. To provide
the kinematic and kinetic context that is necessary for the oper-
ation of a simulated lower limb device, the user’s movements
need to be synthesised as well. It is insufficient to solely use
inverse dynamics for this purpose. Indeed, motion trajectories
reconstructed from experiments quickly become inaccurate
with the occurrence of forces from a virtual device, which
leads to instability if deviations from the prerecorded states are
permitted. Instead, predictive forward simulations can generate
stable walking policies, modelling key aspects of the simulated
user’s motor control [9], for example, the ability to:

« React and recover from disturbances and to take advan-
tage of the assistance from the wearable device.

o Generate movement conditioned on a modelled gait
pathology, and produce or learn compensatory move-
ments.

o Perform long and short-term motion planning during non-
steady-state locomotion tasks.

There are various methods for constructing gait policies
with these characteristics, such as heuristic reflex-rule-based
systems [10], trajectory optimisation [11], [12], evolutionary
strategies [13], supervised learning [14], [15] and reinforce-
ment learning [16], [17], [18]. Summaries on related work are
available from the neuromechanical [9], [19] and computer
graphics perspectives [20], [21]. Deep Reinforcement Learning
(DRL) in particular has led to solutions that generalise well to
multiple locomotion tasks simultaneously with realistic motion
[16], while also reproducing key biomechanical aspects of
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Developing a virtual lower limb device testbed. A predictive walking policy was learnt, incorporating information from experimental data-

driven references. A gait pathology was then simulated. Addressing the induced biomechanical deficit was the goal of the device’s agent. Additional
conditions and tasks can be introduced to assess the versatility of the controllers. 3D model from the Open Source Limb project used to represent

the prosthesis [4].

gait [18]. In contrast to model predictive control methods,
it requires an additional learning phase. However, once trained,
DRL can perform inference using less resources than col-
location methods. Furthermore, there have been promising
examples of sim2real capability using DRL [22], [23], [24],
an essential property when simulating robotics [25]. If a
kinematic reference animation is available, learning time can
be significantly reduced by using a motion tracking approach
[16], [17], [18]. Musculoskeletal actuation may be essential
when investigating orthotic devices [26]. However, direct
torque actuation is multiple times faster to train in comparison
[18], and may be appropriate for simulating users of prosthetic
systems, which do not directly control the same DoFs as the
device.

Simulating human locomotion along with the behaviour of
active assistive devices is a promising way to introduce an
inner design loop to the development of controllers. Signal
modalities, model hyperparameters and calibration algorithms
can be first investigated this way, before applying the gained
insights to the real-life robot-human system. One benefit is
the potential to use access to hardware, end-user subjects and
testing equipment more efficiently. Alternatively, parameter
ranges determined in simulations could be used as starting
points when fitting models to real users through adaptive [27]
or manual methods [28]. Finally, the device calibration and
parameter tuning process, which is one of the most challenging
aspects of current powered P&O [1], can be improved with
insights from simulation.

Simulated gait policies have been previously proposed as
suitable test environments for lower limb assistive devices
[9], [29], and have been applied to orthotic [30], [31] and
prosthetic [11], [18], [32] systems. However, existing exam-
ples primarily use passive devices during mostly steady-state
locomotion tasks. Here, we explored a model of a Propor-
tional Derivative (PD)-controlled unilateral powered ankle
prosthesis, while its simulated user walked on a level surface
with frequent turns and stops. Motion tracking DRL gait
policies were learned based on reference kinematic animations
generated with motion-matching [17], [33], which provided
a data-driven representation not only of the user’s desired

movements, but also of their high-level abstract intent. Fol-
lowing this phase, agency over the user’s below knee control
signals on one side was assigned to a second control policy to
mimic a transtibial prosthesis. The device control policy was
also trained with DRL. We compared a prosthesis controller
that only had inputs from implicit sensors [2], [34] with one
that additionally received a representation of the simulated
user’s locomotion intent. This low-dimensional abstract intent
serves as a surrogate signal of a neural interface in a late-
fusion setting. In addition to reinforcement learning-based
controllers tuned automatically using Proximal Policy Optimi-
sation (PPO), we also reimplemented a Finite-State Machine
(FSM) device controller [28]. The gait phase estimated by
this rule-based system progressed naturally, indicating that the
kinematic and kinetic context of the virtual device is plausible.
The parameters of the FSM were tuned manually through a
slider interface. An overview of the main stages of constructing
the device controller testbed are illustrated in Figure 1.

Main Contributions: In summary, the following are the main
contributions of this paper:

o Modelling of prosthesis use in a non-steady-state loco-
motion scenario involving stops and turns, with a virtual
user that can react to perturbations or intent changes.

« Implementation of a motion tracking gait controller from
the field of character animation, and demonstration that
it generates a plausible dynamic context for a transtibial
prosthesis.

o Modelling the co-adaptation setting where both the user
policy and device controller could be learned through
DRL simultaneously, but as separate agents.

« Demonstration that the desired horizontal walking veloc-
ity is a suitable control signal for a prosthetic ankle
and reduces the need for compensatory gait patterns,
compared to an ankle without inputs controlled by the
user.

Il. MATERIALS AND METHODS
The following section details the key subsystems used
to simulate the dynamic human-prosthesis model. First, the
motion-matching approach for generating kinematic reference
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Fig. 2. lllustration of the features used in the nearest neighbour search

for the motion-matching system, and the local orientation frame they
were quantified in. The orange trajectory consists of the position and
normalised forward direction of the pelvis reference frame, projected
on the horizontal plane at 1/3, 2/3 and 1s in the future. This curve
represents the upcoming walking path in the motion capture data set.

motions is explained. Second, the DRL environment for learn-
ing gait without a prosthesis is presented, followed by the
changes introduced to model prosthesis use.

A. Locomotion Intent Synthesis

The high-level intent driving the motion synthesis was char-
acterised as the desired horizontal two-dimensional velocity
vector of the pelvis, ranging in amplitude from O to a moderate
speed of 1.4 7 [35]. The process for generating the desired
walking velocity during gait policy learning will be detailed
in Section II-B.

To convert this abstract locomotive goal to specific mid-level
motion trajectories, the high-level intent was used to extrapo-
late a 1 s long, critically damped walking path, which was used
to drive a motion-matching system [33]. Motion-matching
allows efficient usage of limited motion capture data sets by
generating transitions between disparate parts of them. These
transitions are key in augmenting the training data to include
a diverse range of non-steady-state walking including turns
and stops. The motion capture recordings of [36] were used
as the data set in this study. They consist of unsegmented
clips of diverse locomotion. A “meta-data” feature vector was
calculated for each frame of these recordings, as described in
[17]. This vector consists of the following elements (illustrated
in Figure 2):

« Velocity of the pelvis (vF<Vis € R3).

« Position and velocity of the feet (p}(fc’fl], V}(l;c’fl] c R3).

« Position and normalised forward direction of the pelvis

reference frame projected on the horizontal plane at 1/3,
2/3 and 1 second in the future (t[1 2,3, dj123) € R?).
These are referred to as the trajectory and direction
features respectively.
This gives a total of 27 dimensions for motion-matching,
which were all normalised to zero mean and unit standard
deviation. These features were described from a semi-local
frame of reference, which was located at the pelvis, with
one axis aligned with the global vertical and another with

pelvis forward directions and was assigned zero global veloc-
ity relative to the ground. Therefore, only the directions of
velocities described in this local frame were influenced by
pelvis kinematics, but not their magnitudes. Motion-matching
velocity features were estimated using a first order Savitzky-
Golay filter. To adjust the relative importance of the elements
in this feature vector they can be scaled by a set of weights.
These weights determine the trade-off between responsiveness
to matching the desired trajectory and the smoothness of
motion. A factor of 6 was used for velocity, 3 for position,
4 for trajectory and 2 for direction features, set through manual
tuning.

During every 10" frame of motion synthesis, the meta-data
vector of the current motion frame was collected. Then, its
walking trajectory and direction features were replaced by the
critically damped walking path, as determined by the artificial
high-level intent. This modified vector was then compared
with all other meta-data vectors in the data set, and the
kinematic motion continued from the frame that corresponded
to the nearest neighbour of the current feature vector. Due
to the inclusion of a single locomotion style and task (level
ground walking with turns and stops), the data set was small
enough that parallelisation or KD-tree based methods yielded
no performance gains over a linear search for the nearest
neighbour match [33]. “Inertialization” was applied on the
kinematic animation targets to smooth discontinuities [37],
a blending technique inspired by zero-jerk trajectory control
principles [38]. The walking generated by motion-matching
is kinematic in the sense that it cannot describe interactions
between the humanoid, the ground and other elements in
the scene (such as a virtual prosthesis). Indeed, tracking the
output of motion-matching with a pure PD controller will
almost immediately lead to tripping and falling. However, this
movement provides a plausible first guess for target poses of
a dynamically simulated humanoid controlled by a PD-DRL
hybrid system, described below and illustrated in Figure 3.
This combination of motion-matching with DRL was first
proposed in [17].

B. Gait Policy

The “CMU humanoid” model described in [39] was simu-
lated in the MuJoCo physics engine [40] at 125 Hz. The torso,
lower back, neck, shoulder and hip joints were replaced in the
model with spherical joints instead of serial hinge joints. A 2
DoFs ankle model was used, and all joints distal from the
elbow were removed. This resulted in a total of 43 DoFs. The
clavicle body segments, modelled as 2 DoF joints were fully
passive, leading to 39 DoFs to be controlled by the gait policy.
The agent received no external forces or torques aiding its
balance. Scene construction, visualisation and task logic was
performed in the Unity engine, using the ML-Agents package
for communication with a learning framework implemented in
PyTorch [41].

1) Reinforcement Learning: The gait control problem can
be represented as a Markov decision process. Then, the
probability of transitioning to a specific physics simulation
state at the next time step is wholly determined by the current
state (s;), the system dynamics and the actions (a;) taken by
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Fig. 3. The control problem solved using DRL. The target kinematic state from motion-matching is modulated by the gait policy, which receives
observations from the simulation state. These targets are then converted into joint torques through stable PD. The simulation and reference states
are then updated, and the process repeats. In prosthesis use conditions, below knee DoFs are controlled by a separate prosthesis policy, which
receives its observations. Both gait and prosthesis policies are trained using the same reward signal.

the decision-making agents in the system. If we don’t assume
a priori what the ideal actions are, we can instead quantify
desirable properties for the controlled system with a reward
function 7, (s;, S;+1, a;). DRL is a family of optimisation algo-
rithms that use past experiences of states, actions and rewards
to maximise the weighted sum of rewards gained within an
episode of learning. The “deep” part of DRL refers to the use
of deep learning function estimators in the agent’s behaviour.
In PPO [42], this is achieved through the use of an actor and
critic system. The critic is iteratively updated to predict the
future weighted sum of rewards that will be collected after
taking a given action at a given state. The actor maps states to
actions through a stochastic policy. The policy (7 (a;|0;)) takes
a subset of the state vector (called observations o) as inputs,
and outputs the probability distribution for each possible action
to take. The parameters of the policy determine how likely
it is to select an action conditioned on the state. When an
action results in more/less reward than anticipated by the
critic for a given observation, these parameters are adjusted
by gradient ascent to make that action more/less likely in
the future. PPO was chosen as the learning algorithm due
to its robustness with respect to hyperparameter choice, its
suitability for continuous action spaces and previous successes
in applying it for locomotion [17], [18], [43].

The policy trained by PPO was a feedforward neural
network with 3 hidden layers, 512 units each with swish
activation [44]. The same architecture was used for the critic
network. A visual graph of the gait policy’s role in the
simulation is shown in Figure 3. Training was performed on
6 parallel environments running on the same system. Further
hyperparameters of the learning environment are detailed in
the configuration file included in the supplementary materials.

2) Observations, Actions, Rewards: A vector of observations
was sampled from the simulation environment at each control
step queried at 60 Hz, based on the feature set used in
[17]. Inside this observation vector, 6-dimensional kinematic
information (position and linear velocity) was collected of the
following body segments from the pelvis’ coordinate frame:

o Left and right feet (12 dimensions)

o Left and right forearms (12 dimensions)

o Upper back (6 dimensions)

o Head (6 dimensions)

The difference between the desired and actual kinematics of
these body segments was also provided as an observation
(36 dimensions), as it was previously found to speed up the
learning process [17]. This was concatenated with the desired
and actual centre of mass velocity, as well as their difference
(3 x 3 dimensions). The high-level walking intent in the form
of the desired horizontal walking velocity used in the motion
matching process was provided, along with its difference from
the actual horizontal centre of mass velocity (2 x 2 dimen-
sions). Lastly, the agent’s previous actions (described below)
were also provided as observations (39 dimensions). In total,
the observation vector was 124 dimensional. This feature set
[17] is different from many other implementations due to a
lack of reliance on a phase variable [29], [43], [45], which
is not straightforward to define during continuous but non-
steady-state motions. The observation vector was concatenated
with the previous decision step’s observations before using
them as inputs for the policy network.

Given this input, the policy outputs an action vector at each
control step. Exponential smoothing was applied to this output
with a smoothing factor of 0.9 [17], and was assumed to be
constant between control steps. The actions modulated the
open-loop poses of the motion-matched animation. They were
not interpreted as velocity targets [17] or position targets [43]
from which PD errors were then calculated. Instead, the action
vector was added directly to the PD error vector calculated as
the difference between the open-loop reference and the current
pose. While this is equivalent to pose modulation in the case of
hinge joints, it reduces the amount of computation necessary
for spherical joints. This is because their error signal has a
smaller dimensionality (3D) than their quaternion-based (4D)
positional descriptions. Torques generated by Stable PD [46]
actuators were limited under 190 N'm, constraining the output
to reasonable values for gait [47] and improving simulation
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Fig. 4. The local reference frame and the bounding box surface points
used in the reward calculation. Segments distal to the forearm were not
included in the reward calculation.

stability. A position gain of 510 N and a velocity gain of
52 Nr“&“ was used, roughly appr0x1mating the human upper
limit of stiffness in the knee and hip [48], [49]. By modulating
the error signal the agent can mimic other stiffness and
damping parameters. However, particularly in early stages
of learning, a high stiffness starting point was found to be
helpful in learning to avoid collapsing. A copy of the simulated
humanoid followed the motion-matching animation, enforced
through equality constraints on position and orientation. In this
way, joint-space state and higher-order kinematics could then
be queried from this “puppeteered” character for reference
observations and actions.

The reward collected by the agent was calculated based on
the kinematic differences between the reference and simulated
body, consisting of four terms summed together (Equation 1).

re = eqan (rp + 1o + Tiocal + Tocyy) (D

The first two were calculated using the
method introduced in [17].

The position reward was defined as the distance between
the body segments of the dynamic humanoid and its kinematic
reference (Equation 2).

“surface point”

6 N, segments

-7.3
Z Z |bij — Pz/”z (2

rp exp Nsegments i=1

where Ngegments 1S the total number of tracked segments. pij
denotes the i™ centre point among the j reference segment’s
bounding box faces. The square distance is then calculated as
the positional difference from the corresponding point on the
dynamic humanoid (p;;).

A squared distance measure rather than the L2 norm was
used in the position, velocity and local pose rewards, based
on the implementation of [50], which led to faster learning
during preliminary results. The surface points’ positions were
resolved in the pelvis’ reference frame, illustrated on Figure 4.
Like [17], the dynamic humanoid’s local reference frame was
also considered to originate from its pelvis, but its orientation

matches the reference frame’s. This implicitly penalises facing
the wrong direction with the dynamic humanoid.

The second term, the velocity reward, was used to match
the linear velocities of these points (Equation 3).

6 N segments

Z Z HVU Vlj“Z &)

i=1

ry = exp
begmems

The linear velocities of these points were also affected
by the angular velocity of their parent segments. While the
direction of the velocity vectors was also resolved in the local
reference frame, the pelvis’s global velocity was not subtracted
from their values. This strengthens the requirement to match
the overall velocity of the locomotion.

The local rotation of each segment with respect to its parent
segment determines the third term in the reward (Equation 4).

Nsegmems

> lajea; ||§ )

N,
segments le

—6.5
Flocal = CXP

where ||ﬁ j©a; Hq is the angle magnitude of the angle-axis
decomposition of the quaternion difference of the two rota-
tions.

The last reward term was provided based on matching the
velocities of the two centres of mass (Equation 5).

Focw = exp (= [Vew = veu|3) 5)

Finally, these reward signals were combined with a scaling
factor based on the difference of the vertical location of the
two head segments [17] (Equation 6). This prioritises learning
how to avoid falling and tripping first, before reward from
motion tracking can be gained.

1).9)
2

(6)

This reward was collected at every time step ¢
when the agent takes an action. If an episode lasts more
than 15s, or the agent’s rewards in a step fell below a near-
zero threshold, the episode was terminated, and the simulated
agent was reinitialised to the reference’s state. As the reference
animation was not restarted, episodes started at different states
of walking. This approach can be thought of as a simplified
version of Exploring Starts [51], or Reference State Initialisa-
tion [43].

3) Locomotion Task: The learning process took place in
an 8x8m? area. The motion-matching animation was gener-
ated independently of the dynamic simulation (i.e. the state
and actions of the agent did not influence the animation).
This kinematic animation moved between target locations,
smoothly transitioning between turning and straight walking
(see Figure 5).

When the character was closer than 0.8m to a target
location, a new one was generated that was at least 2.4 m
away, sampled from a uniform distribution within the learning
area. A wait period was introduced between target locations
with a 30% probability, sampled uniformly from the range
[6-9] s. During a wait period, the animation comes to a stop,

erar = max (min (1.3 = 1.4 [Bersug = BOMy0s
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Fig. 5. Snapshot of the non-steady-state locomotion learning environ-
ment. The vector pointing from the reference to the target location is
the high-level intent provided to the gait synthesis agent. Once a target
location was reached, a new one was generated which may necessitate
turning. Please refer to the video in the supplementary materials for
demonstration of the environment in action.

and stands still with a desired horizontal velocity of 0 %,
before receiving the next target location. Once the agent learnt
to handle turns and the policy’s performance converged to a
static level (~10 million decision steps), additional perturba-
tions were introduced every 1.2 s, in a uniformly sampled
direction, applied for 0.24 s at a uniformly sampled body
segment, with a force sampled uniformly from the range of
[50-150] N. This type of perturbation can force the agent to
explore recovery strategies in situations it would not encounter
in its regular environment, but will once a change is introduced
(such as a gait pathology) [22].

C. Virtual Device

The use of a transtibial prosthesis was modelled by reassign-
ing control over below knee DoFs unilaterally to a separate
agent [32], [52]. Dividing autonomy over the humanoid
character, the locomotion and assistive agent then share the
collaborative goal of restoring the character’s original gait.
This approach does not reproduce the behaviour or limitations
of any one specific prosthetic device and assumes perfect
weight matching and mechanical interface conditions, sim-
plifying an already complex design space. Both flexion and
adduction were controlled by the assistive agent, in contrast
to more common flexion-only designs.

Similarly to the gait policy, PPO was used to train the
prosthesis policy with the same network structure. However,
only 128 units were used per hidden layer, and the assistive
agent was queried only at 30 Hz.

1) Observations, Actions, Rewards: There is an important
distinction to make in the types of observations used as inputs
to the device policy when compared to the gait policy. The
gait policy may use all privileged information available from
the simulation. In contrast, the kinematic poses from the
motion-matching process should not be used by the assistive
agent. Instead, inputs to the device’s control should be signals
available through plausible instrumentation of real hardware.
The simulated powered ankle device uses virtual accelerometer
(¢ R?) and gyroscope (¢ R?) measurements from virtual
Inertial Measurement Units (IMUs) placed on both the shank
and foot, as well as virtual encoder signals for the ankle joint
angle (€ R) and angular velocity (€ R) for a 14 dimensional
observation vector in total.

One of the main benefits of simulated locomotion environ-
ments is the ability to test novel control schemes. Conditioning
behaviour on high-level intent is one such improvement pro-
posed for improving performance in non-steady-state and
irregular environments [2]. Since biosignals commonly used in
making this type of control schemes anticipatory and intuitive
are not available in a straightforward way in simulation,
an intermediate representation of the intent is necessary. In a
real-life system, this representation would need to be estimated
with human-machine interfaces (e.g., with electromyography).
The intermediate signal could then be provided to the worn
device as a compressed form of its user’s intent. If the
intermediate representation is chosen so that it is available
during simulation, then it can be used as a surrogate input for
controllers conditioned on high-level intent. As the desired
walking velocity was used to drive the locomotion synthesis
based on the experimentally determined relationship between
movement and this abstract intent (enforced through motion
matching), it is a natural representation to use for this
purpose.

The actions of the device agent were interpreted as PD
parameters of stiffness, damping and joint angles. No refer-
ence motion was used to influence this target for the device
agent. Similarly to the gait policy, a high stiffness and damp-

ing starting point was used for the controller (35 I;Z—fj“ and
10 Bms)
ra :

This horizontal velocity (e R?) is a continuous high-level
control signal and is conceptually between activity recognition
and direct volitional control methods [2]. The prosthesis policy
was conditioned on this intent by manipulating the policy
network parameters through a hypernetwork [53].

D. Simulation Conditions

In early tests with simulated characters using a passive
prosthesis, it was confirmed that robust locomotion policies
can be learnt with passive devices. However, this was at the
cost of compensatory movements [18]. Therefore, conditions
were included where the gait policy was frozen after training
without a prosthesis, then the device was introduced and
only the prosthesis policy was trained. Once a gait policy
was learned without a prosthesis (stopping training after
~20 million decision steps), it was used as a starting point
for these conditions after it. In these cases, compensatory
changes to the gait were prevented, and the assistive agent had
the responsibility to restore stable locomotion. When the gait
policy was no longer trained, the action with the maximum
likelihood was selected for it deterministically (the prosthesis
policy remained stochastic). All conditions involved walking
with turns and stops:

1) No prosthesis, perturbations added.

2) Active, non-intent-driven prosthesis, gait policy pre-
trained.

3) Active, intent-driven prosthesis, gait policy pre-trained.

4) Active, non-intent-driven prosthesis, gait policy
pre-trained and frozen.

5) Active, intent-driven prosthesis, gait policy pre-trained
and frozen.
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Fig. 6. Path tracking ability of the gait policy. “Stroboscopic” visual trail
of the agent’s poses made by following the learned gait policy recorded
at 1 Hz. The agent was capable of performing continuous circuits without
falling or deviating from the path.
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Fig. 7. Ground reaction force during walking as measured by virtual
sensors placed on both feet of the character. Recorded at 1.3 F straight
walking.

[1l. RESULTS
A. Gait Policy

The learned policy generates robust walking between arbi-
trary landmarks, while being underactuated (no external forces
applied to center of mass to help balancing). It was able
to synthesise turning at various degrees and recover from
losing balance (Figure 6). A video demonstration of the
motion-matched reference and the synthesised dynamic gait
is available in the supplementary materials.

While the DRL reward implemented only constrained
kinematic properties of the motion synthesis, important charac-
teristics of gait dynamics were reproduced by the final policy.
This includes bimodal peaks of the ground reaction force
(Figure 7) [47], and ankle dynamics (Figure 8).

The peaks of the ground reaction force were between 1 and
1.2 times the body weight, following normative data [54].
Moreover, there were contact forces (above 5% body weight)
with both feet in the simulated walking during 21% of the gait
cycle. This matched the expected ratio for double and single
support within the gait cycle [55]. The peak ankle moment was
1.56 1\;(—;“, which was also in accordance with experimental

results [56].

To verify the suitability of the learned locomotion synthe-
sizer to test prosthesis controllers, the Finite State Machine
based controller of the Open-Source Leg [4], [28] was
reproduced and tuned manually for the virtual user. This
rule-based controller transitions between stance and swing
states, as determined by the load on the prosthesis, and changes
its behaviour based on knee velocity and ankle angle. Gait
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Fig. 8. Plantar flexion torque in one of the ankles during simulated gait.

Early stance dorsiflexive and late stance plantar-flexive torque can be
observed [47].
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Fig. 9. Phase profile of the rule-based classifier used in a traditional
Finite State Machine controller reproduced from [28], applied to the
virtual user using an active prosthesis.

phase detection progressed naturally through early stance, late
stance, early swing and late swing states (Figure 9), and the
virtual device was able to restore walking. Transition to swing
phases happened at 60% of the gait cycle (tracked between
heel strikes), a value matching the expected timing in gait
[55]. This FSM controller was primarily used as a validation
of the locomotion synthesizer. Its natural progression through
estimated gait phases indicated that the synthesized locomo-
tion provided a reasonable kinematic and kinetic context to the
virtual prosthesis. In further results the FSM controller was no
longer used, instead a DRL policy controlled the prosthetic
ankle.

Interestingly, in the condition where the gait policy was
learned in parallel with the prosthesis policy, the additional
observations of user intent provided no advantage to the joint
performance of the human-prosthesis system (Figure 10).

In contrast, in the case where a pre-trained and frozen
gait policy was used (hence no compensatory behaviour was
adopted), conditioning the policy on user intent led to sig-
nificant improvements in stability (Figure 11). In particular,
the benefit was most apparent when the character transitioned
between standing and walking. Without intent available, and
with no compensatory movements, the assistive agent was
unable to find an appropriate policy. This resulted in more
frequent stumbling or tripping. When the intent was avail-
able, the prosthesis policy adjusted the control parameters
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Fig. 10. Collaborative performance evolution of learning the (pretrained)
gait policy and prosthesis policy simultaneously (conditions 2 and 3).
Providing the intent as additional observation yields no improvement in
these conditions.
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Fig. 11.  Collaborative performance of user-prosthesis system, when
the gait policy was pretrained without a prosthesis and could no longer
learn. Only the prosthesis policy was adapted (Conditions 4 and 5). Note
that the gait policy is deterministic here, as it no longer needs to explore
by injecting noise in its actions. This yields the higher performance at
the start compared to Figure 10.

immediately and continuously as soon as there was a change
in intent, allowing the human-prosthesis team to transfer
between locomotion modes (Figure 13). Without adaptation
from the user, the mean time before the first trip event was
34s and 12s for the intent-driven and the non-intent-driven
prosthesis respectively. If learning compensatory movements
was allowed, the prosthesis user could walk for more than
3 minutes without tripping.

These two prosthesis conditions (4 and 5) were com-
pared with the non-prosthesis-user (condition 1) through their
average walking speeds, produced ankle torques and pose
tracking error during steady-state straight walking (Table I).
Both prosthesis conditions led to slower walking when their
gait policy was prevented from learning compensatory motion.
Furthermore, the intent-driven prosthesis exhibited torque pro-
files closer in magnitude to those of the original gait policy
(Figure 12). This potentially arises from the non-intent-driven
prosthesis policy being unsure whether it should prepare for a
transition to standing or keep walking.

Pose tracking error was evaluated using by quantifying
the average total Euclidean distance of the joint positions in
Cartesian space and the position of the corresponding joint in
the reference animation (Equation 7) [16]. The positions were
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o
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100

Fig. 12. Plantar flexion torque output of the ankle of the non-prosthesis-
user (condition 1), the prosthesis with no intent input (condition 4), and
intent-driven prosthesis (condition 5).

TABLE |
PERFORMANCE OF NON-PROSTHESIS (CONDITION 1),
NON-INTENT-DRIVEN PROSTHESIS (CONDITION 4)
AND INTENT DRIVEN PROSTHESIS (CONDITION 5)
DURING STRAIGHT WALKING

Measure No No intent Intent
Prosthesis
Walking speed [%] 1.30 0.98 1.05
Peak ankle torque [1\11(lrn 1.52 0.59 0.97
g
Pose error [m] 0.026 0.045 0.043

relative to the location of the corresponding root joints (x'°
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IV. DISCUSSION

We have presented a human-prosthesis system model that
provides key insights for its real-life equivalent. A high-level,
abstract but continuous locomotive intent representation was
shown to be helpful in non-cyclic gait scenarios, usually
handled by classification processes [2]. By observation, most
of the stability gained from relying on intent in conditions
4 and 5 was present when the agent was coming to a stop,
or starting to walk from standing. The intent-driven policy
was able to change its behaviour when the virtual user’s
goal changed, whereas the policy relying only on intrinsic
sensing could react to movement already underway, leading to
stumbling and trips (Figure 13). Sharing information through
a limited channel is a known way of stabilising and improving
performance in multi-agent learning scenarios [57], and intent
estimation is an experimentally plausible approach to represent
this.

However, it is important to note that adaptive controllers,
such as those learned through DRL, have challenging learning
dynamics when collaborating with a second non-static agent
(conditions 2 and 3). Since the human has significantly more
agency over managing the gait, exploration in assistive policies
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parameters, set by the intent-driven (condition 5) and non-intent-driven
(condition 4) systems when there’s a step change between the virtual
user’s intent (going from standing to walking).

can hinder the gait policy’s ability to exploit its competence,
leading to lower the overall performance. This is apparent, for
example, in the initial dip in the reward shown in Figure 11,
where the gait policy was frozen. In a co-adaptation setting,
this can encourage the prosthesis policy to act “lazily” [58],
and let the human to learn safer, compensatory strategies.
We believe this leads to an under-utilisation of the information
available to the device policy, which explains the lack of
difference when providing intent to the device (Figure 10).
Indeed, the peak plantar flexion torque from the prosthesis in
condition 3 is 0.5 I\L—gm, half as much as in condition 5 where
no compensation from the user is available. This type of situ-
ation may arise as well when applying reinforcement learning
methods with real users who cannot risk falling over, who will
also adapt their movements, potentially leading sub-optimal
prosthesis policies. Through robust simulation environments,
exploration can be enforced that discourages “lazy” policies
(e.g., by disabling or slowing virtual user adaptation). Control
parameters identified this way may provide starting points
during fine tuning with real life users, which may avoid control
strategies that do not fully take part in the shared autonomy
of the movement they are supposed to assist. Although DRL
was used to learn the device policy as well, the locomotion
synthesizer could be combined with other, non-deep-learning
based controllers [59].

During the development of the environment, sources of
instability, errors in the implementation and suitable parameter
ranges were identified for the prosthesis controller. Solving
these issues first in the context of the synthesised locomotion
partially mitigates the risk discovering these experimentally,
and could contribute to using laboratory, equipment, and most
importantly participant time more efficiently. In addition to
the DRL device policy, reimplementing an FSM controller
served as a proof-of-concept for testing rule-based policies in
simulation, and practising or evaluating their tuning process.

The construction of the learning environments was consid-
erably accelerated through the use of Unity, a development
platform designed for efficient editing of virtual scenes. Its
potential use case to model biomechanics and robotics has
been recognised before, with the main criticism being towards
the built-in physics engine’s prioritisation of performance over

accuracy [25]. Thanks to the recently released Unity plugin
of the MuJoCo physics engine, it is possible to benefit from
streamlined design and visualisation tools of Unity and still
simulate biomechanically validated interactions.

The presented actuation scheme, managed by the DRL pol-
icy originated from the computer graphics field [17]. Despite
this, there are rough parallels with current neuromechanical
theories of human motor control. The controller consists of an
open-loop control signal assembled from motion templates,
which was then modulated based on signals of abstracted
proprioception and high-level goal observations. This is rem-
iniscent of the concept of Central Pattern Generator-based
movement [60]. The motion-tracking and torque actuation-
based method allowed for fast training of policies on limited
hardware, while still producing plausible dynamics. For the
purposes of simulating prosthesis use, torque actuation may
be sufficient to provide the necessary context for the device.
However, in partially over-actuated systems, like exoskeletons,
realistic models of joint mechanics and actuation are more
important, which is likely to involve musculoskeletal actuation
[30]. Lastly, an important consideration is the simulation of the
gait pathology. Prosthesis use can be characterised by various
patterns, such as gait asymmetry or specific compensations
such as circumduction. These could be closely replicated by
tracking patient motion instead of non-prosthesis user data.
However, this could be counter-productive, as then the virtual
user would actively resist assistance from the prosthesis that
would mitigate these gait patterns, just to better imitate its
reference. It is more appropriate to motivate the agent to match
non-compensatory movements, and constrain it mechanically
(e.g., by limiting joint power, adding extra weight) or “phys-
iologically” (e.g., by penalising joint load to simulate pain,
or introducing fatigue mechanisms) in a way that the expected
gait patterns emerge on their own. The scope of this study did
not include a detailed comparison with experimental prosthesis
use; however, this is a key aspect to be investigated in future
work.

MuJoCo in particular is an attractive physics engine to use
for future work due its efficient computation, which extends to
muscle modelling [61], [62]. Furthermore, due to its flexible
collision constraint configuration [40], surfaces of different
materials and compliance can be easily simulated. This can
be advantageous when trialling cushioned heels, or different
types of challenging terrains.

Other key additions to this work would include other
environments mimicking key activities of daily living, such as
climbing stairs, tackling rough terrain or navigating crowds.
The model of the prosthesis could also be extended. Key
properties of the real socket-limb interface, such as pistoning,
could be modelled to better capture the dynamics of gait during
prosthesis use. This could reveal stress/strain relationships,
which the optimisation process could take into account. The
impact of aspects such as the number of DoFs, their range
of motion, stiffness and power could also be further investi-
gated to inform the design of new devices. The observations
used as inputs to the policy are related to biological signals
associated with human balancing (e.g., otholiths sensing linear
acceleration of the head [63]). Further biologically inspired



HODOSSY AND FARINA: SHARED AUTONOMY LOCOMOTION SYNTHESIS WITH A VIRTUAL POWERED PROSTHETIC ANKLE

4747

input signals (e.g., the Golgi-tendon-like observations used in
[29]) could not only improve artificial locomotion policies,
but have implications on their role in human motion learning.
Similarly, more nuanced multi-agent learning schemes should
be explored to robustly model short- and long-term coadapta-
tion. Lastly, augmenting the reference motion synthesizer with
a more diverse motion capture data set could have positive
effects on performance. Motion-matching is prone to reuse
only segments of its database, therefore not all reference gait
cycles will be equally represented, which may bias the policy.
More complex reference motion synthesizer, such as neural
state machines [64] could induce a more diverse training
set. Alternatively, other DRL controllers that do not rely on
synchronised reference motion in the first place could be
applied [16].

There are various benefits to using DRL methods for finding
the gait policy. While there is a computational overhead
associated with training a DRL policy, once trained they are
cheap to evaluate. A single policy may be trained to be robust
for a range of virtual users and devices [29], [45], [65]. Loco-
motion agents with differences in weight, height and other
parameters could be generated to evaluate devices and their
controllers on a diverse virtual user population. Furthermore,
DRL strategies can mimic various walking styles with a given
humanoid model [43]. The function approximators commonly
used in these methods can also establish connections between
different representations of intent, sensory observations and
the control policy. This is possible even if they are not directly
accounted for in the cost or reward function, unlike trajectory
optimisation methods.

The locomotion synthesis framework created and used in
this study to train the gait policy was refactored, documented
and released as an open-source project [66]. Additional fea-
tures, such as the prosthesis environments updated for the
latest package version along with more diverse walking envi-
ronments (e.g., rough terrain and stairs) are planned additions
for the future.

V. CONCLUSION

A gait policy learning environment was built through the
combination of an accurate physics engine, a kinematic motion
synthesizer and an accessible DRL framework. Autonomy
over the simulated human’s movement was shared between
the gait policy and a second controller that operated a model
of a unilateral transtibial prosthesis, forming a representative
virtual test platform for wearable robotic devices. Controllers
were trained and evaluated in a non-steady-state locomotion
scenario involving walking, standing and turning. A continu-
ous high-level intent representation was shown to be a useful
control input, provided that compensatory gait patterns from
the locomotion agent do not prevent the assistive device to
capitalise on the additional information.

Human locomotion is capable of tackling various situations
such as rough terrain or navigating crowds. By decoding the
motor intent, assistive devices could adapt to their user’s
movements and their diverse environments. Using simulated
gait and assistive devices, this complex design space can be

explored in a low-cost and accessible way, promoting the
transfer of the next generation of intent driven controllers from
the lab to real-life scenarios.
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