
4760 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

A Novel Hybrid Brain–Computer Interface
Combining the Illusion-Induced VEP and SSVEP
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Abstract— Traditional single-modality brain-computer
interface (BCI) systems are limited by their reliance on
a single characteristic of brain signals. To address this
issue, incorporating multiple features from EEG signals can
provide robust information to enhance BCI performance.
In this study, we designed and implemented a novel hybrid
paradigm that combined illusion-induced visual evoked
potential (IVEP) and steady-state visual evoked potential
(SSVEP) with the aim of leveraging their features simul-
taneously to improve system efficiency. The proposed
paradigm was validated through two experimental studies,
which encompassed feature analysis of IVEP with a static
paradigm, and performance evaluation of hybrid paradigm
in comparison with the conventional SSVEP paradigm.
The characteristic analysis yielded significant differences
in response waveforms among different motion illusions.
The performance evaluation of the hybrid BCI demon-
strates the advantage of integrating illusory stimuli into
the SSVEP paradigm. This integration effectively enhanced
the spatio-temporal features of EEG signals, resulting in
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higher classification accuracy and information transfer
rate (ITR) within a short time window when compared
to traditional SSVEP-BCI in four-command task. Further-
more, the questionnaire results of subjective estimation
revealed that proposed hybrid BCI offers less eye fatigue,
and potentially higher levels of concentration, physical
condition, and mental condition for users. This work first
introduced the IVEP signals in hybrid BCI system that could
enhance performance efficiently, which is promising to ful-
fill the requirements for efficiency in practical BCI control
systems.

Index Terms— Brain-computer interfaces, electroen-
cephalography, steady-state visual evoked potentials,
illusion-induced visual evoked potential, event-related
potential, hybrid paradigm.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is a technology that
enables individuals to control external devices by trans-

lating brain signals into commands, without the need for
peripheral nerves or muscles [1]. Electroencephalography
(EEG) has been extensively used for measuring brain activity
in the field of BCI research because of its non-invasive, easily
portable, and low-cost properties [2]. BCI systems utilize
diverse EEG patterns for the purposes of device control,
communication, and neural rehabilitation [3], [4], [5]. In EEG-
based BCI studies, there are three classic modalities of BCI
systems, including event-related potential (ERP), steady-state
visual evoked potentials (SSVEP), and motor imagery (MI).

Stimulus-elicited ERP responses can be extracted as brain
control signals for BCI systems, such as the P300, motion-
onset visual evoked potential (mVEP), N170, vertex positive
potential (VPP), and illusion-induced visual evoked potential
(IVEP). Among them, the P300 component has been widely
employed for BCI systems within the framework of oddball
paradigm [6]. P300 response is evoked approximately 300 ms
after the presence of an intended stimulus, characterized by
its low probability of occurrence. To identify P300 from
background noise, multiple EEG epochs are averaged to
enhance signal-to-noise ratio (SNR). However, it may increase
the stimulus duration and reduce the communication rate [7].
The mVEP mainly refers to the N200 component, which
is the neural response with a negative deflection around 200ms
after the onset of actual motion [8]. Compared to P300 BCI
system, it is more comfortable for users, but it also has
losses in BCI speed due to the requirement for averaging. The
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N170 and VPP have been validated to be face-sensitive ERP
responses associated with the neural processing of face [9].
Many P300-based BCI studies utilize facial images to replace
flashing characters for stimulus intensification in P300 speller
paradigm and obtained better performance when compared
to the conventional P300 BCI [10], [11]. Recently, the IVEP
has been introduced to BCI systems and evidenced the stable
modulation of ERP components N1 and P2 by illusory stimuli
in our previous study [12].

The SSVEP-based BCI has caught increasing attention from
researchers over the past few decades because of its high
information rate, reliability, and no training requirement [13],
[14], [15]. In the SSVEP paradigm, all stimuli are presented
simultaneously and each flickering at a specific frequency
independently. When the user focuses on one of the flickering
stimuli, robust EEG responses with corresponding frequency
and harmonics are evoked. Among EEG-based BCIs, SSVEP
is considered to be the fastest BCI approach. However, long-
term exposure to repetitive flashing stimuli may cause user
fatigue or even epileptic seizures.

The MI approach applies the synchronization and desyn-
chronization (ERD/ERS) of sensorimotor rhythm to identify
control command [16], [17]. In MI paradigm, generating neu-
ral response requires subjects to perform endogenous mental
tasks, for instance imagining hand movements, which necessi-
tates sufficient training to acquire recognizable features [18].
Compared to exogenous BCI systems which depend on exter-
nal stimuli such as ERP and SSVEP, the implementation of
MI BCI is more restricted by BCI illiteracy among users [19].

For BCI communication and control, the attempt to improve
BCI performance has always concentrated on speed and
accuracy [1]. In addition to signal analysis techniques and
classification algorithms that have been well-studied, expand-
ing the dimension of features is also a promising approach
to improve BCI performance. In this regard, the development
of hybrid BCI has emerged as an effective direction, which
combines two or more brain patterns. Here we are interested
in the EEG-based hybrid BCI systems, which are considered
pure hybrid BCIs since they do not require additional signal
acquisition equipment [20]. Recently, many efforts have been
made to combine two types of EEG signals in hybrid BCI sys-
tems for communication that can improve information transfer
rate (ITR), accuracy, and usability. For example, Combaz and
Van Hulle proposed a hybrid visual P300-SSVEP paradigm for
icons recognition, which leads to a significant improvement
in ITR compared to conventional P300 and SSVEP [21].
Allison et al. presented a hybrid BCI that can simultaneously
detect ERD and SSVEP activity for two-dimensional control
by imagining movement while focusing on flickering targets
[22]. Although the accuracy was increased, most subjects
were still unable to communicate effectively due to the task
complexity. Indeed, many studies have endeavored to evoke
SSVEP and other ERP signals simultaneously in order to
enhance the efficiency of BCI control or communication,
as demonstrated in various applications such as BCI spellers
and cursor control systems [23], [24]. Both P300 and SSVEP
are exogenous EEG responses elicited by external stimuli,
which suffer little from BCI illiteracy and are easy to extract

reliable features. These hybrid systems leverage multiple
characteristics to enhance the distinguishability of different
stimuli and expand the accessibility of BCI systems for users.
In reported synchronous hybrid BCI studies, the adopted
ERP signals such as P300 and mVEP utilize a time-division
coding scheme where multiple targets are scheduled in differ-
ent time intervals [25]. However, the IVEP method exploits
spatio-temporal discrepancy features for classification instead
of detecting the specific time slot in which the evoked
component appears, which provides room for reducing target
detection time. For the goal of enhancing both speed and
accuracy, there is great potential to combine IVEP and SSVEP.

In this study, we designed a novel IVEP-SSVEP hybrid
paradigm and evaluated performance in a 4-command classifi-
cation task. To assess its feasibility, two different experiments
were conducted in our study. In the first experiment, the
static IVEP paradigm was conducted to examine the dis-
tinguishability between different motion illusions. Different
visual motion illusions were presented simultaneously and
evoked IVEP signals (consists of N1 and P2 ERP compo-
nents) with distinct spatio-temporal characteristics. The second
experiment comprised two paradigms: the proposed hybrid
paradigm, which integrated SSVEP and IVEP stimuli by
periodically superimposing motion illusions on flickering, and
the conventional SSVEP paradigm, which served as a control
condition for performance comparison. Spatial filters enabled
the co-extraction of multiple features that were time-locked
to the stimuli from EEG background noise. The results
demonstrate that the IVEP-SSVEP hybrid BCI outperforms
the SSVEP-based BCIs in terms of classification accuracy
and ITR. We also investigated the user experience by employ-
ing a questionnaire to evaluate the subjects’ conditions. The
collected self-assessment data provide evidence that proposed
hybrid BCI offers less eye fatigue. Thus, these findings sug-
gest that our hybrid paradigm can enhance BCI performance
without imposing additional burdens on users.

The remaining parts of this paper are organized as follows.
The experimental setup and methods are introduced for the
proposed paradigm in Section II. The results of data analysis
and performance are presented in Section III. Discussions
regarding the experimental results are presented in Section IV,
and the conclusions are given in Section V.

II. MATERIALS AND METHODS

A. Participants and Data Acquisition
Twelve healthy subjects (3 females and 9 males, aged

between 22 and 25) from ShanghaiTech University partici-
pated in this experimental study. All participants had normal
or correct-to-normal vision and did not have any neurological
diseases that could have affected the experimental results.
The study protocol was approved by the Ethics Commit-
tee of ShanghaiTech University, and all subjects provided
written informed consent prior to the experiment. During
the experiment, subjects followed the procedural instructions.
Each participant was paid for their engagement at the end of
experiment.

EEG signals were recorded using a Neuroscan SynAmps2
system equipped with a 64-channel electrode cap, where the
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Fig. 1. (a) Stimulation design for IVEP paradigm, containing four illusory stimuli to induce the perception of illusory motion. (b) Stimulation design
for SSVEP paradigm. Four frequencies are 14 Hz (left), 13 Hz (up), 12 Hz (right), and 11 Hz (bottom) with a 0.5 π phase interval. (c) Stimulation
design of each hybrid stimulus in each frame for one second with 60 Hz refresh rate. Cosine modulation of luminance from 0 to 1 represents dark to
bright. The gray shaded area indicates the time window for the onset of the illusory stimuli. (d) The display protocol of hybrid paradigm in one trial.
The illusory stimuli were periodically presented after SSVEP stimuli onset for 200 ms. The SOA was 400 ms where illusory stimuli are presented
for 50 ms.

electrode distribution was consistent with the international 10-
20 system. Subjects were seated in front of the monitor with
a viewing distance of approximately 70 cm. All experiments
were performed in a dark electromagnetic shielded room to
eliminate external noise. The impedance of each electrode was
kept below 10 k�. Both IVEP and SSVEP were elicited by
external visual stimuli, which were associated with the visual
cortex. In this study, we adopted nine electrodes overlaying
parietal and occipital areas including Oz, O1, O2, Pz, POz,
PO3, PO4, PO5 and PO6. The electrodes were chosen as
their established contribution to the recognition of SSVEP
and IVEP signals, as demonstrated in prior studies [12], [26].
The reference electrode was placed in the central area and
the ground electrode was placed in the frontal area. EEG data
were sampled at 1000 Hz and then filtered at 50 Hz with a
notch filter to exclude power line interference.

B. Stimulation Design
For this study, three paradigms were involved to assess the

feasibility of proposed hybrid BCI paradigm. These paradigms
were displayed on an LCD monitor with a resolution of
1920 × 1080 pixels and a refresh rate of 60 Hz. The user
interface layout for all three paradigms consisted of four target

selection items which were positioned on the left, right, up,
and bottom of the monitor, respectively (see Fig. 1). Each
stimulus had a fixed size of 250 × 250 pixels, corresponding
to a visual angle of 4.5◦ horizontally and vertically. The
paradigms was implemented by the Psychophysics Toolbox
[27] and programmed in MATLAB 2020b. The stimulation
designs of three paradigms are as follows.

1) IVEP: For IVEP stimulation, we applied four static
motion illusions designed by A. Kitaoka (see Fig. 1(a)) [28].
All chosen illusory stimuli incorporated the elements to gener-
ate the illusory perception of rotational motion that an object
is rotating when no physical rotation is actually occurring.
Previous studies have found that the neural activities associated
with illusory motion perception and actual motion perception
were indistinguishable [29]. Moreover, our recent study has
observed that the evoked oscillatory responses for different
visual illusions exhibit distinct characteristics [12]. In this
study, we replicated the paradigm by presenting stimuli in
a stationary manner to explore the characteristics of evoked
responses for illusory stimuli.

2) SSVEP: The conventional SSVEP stimuli were encoded
with phase and frequency. Four distinct SSVEP stimuli
were generated with each stimulus flickering at frequencies
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Fig. 2. Illustration of the experimental procedures for Experiment 1 and 2. Experiment 1 consists of 20 blocks for IVEP task and each block includes
four trials for four targets. In Experiment 2, there are two SSVEP and hybrid tasks and each task contains 10 blocks. A questionnaire for subjective
evaluation is conducted at the end of Experiment 2.

of 14 Hz, 13 Hz, 12 Hz, and 11 Hz, respectively. The phase
interval between the stimuli was set at 0.5 π (see Fig. 1(b)).

3) Hybrid: The designed hybrid stimuli displayed in this
paradigm was a periodic superposition of IVEP stimuli on the
SSVEP flickering stimuli. The stimulus settings for flickers
and motion illusions were consistent with those employed in
the IVEP and SSVEP paradigms. Fig. 1(c) depicts the stimulus
modulation for four hybrid stimuli in each frame within one
second. Considering that the latency for the evoked N1 and
P2 component typically falls within the range of 100-200 ms
and 200-300 ms, the stimulus onset asynchrony (SOA) for
the illusory stimuli was set to 400 ms to avoid overlaying.
Thereby the presentation frequency of all illusory stimuli
was 2.5 Hz, with a fixed duty cycle of 12.5% (50 ms the
illusory stimuli on and 350 ms off). The illusory stimuli were
periodically presented after SSVEP stimuli onset 200 ms, and
the stimulation procedure of hybrid paradigm is shown in
Fig. 1(d).

C. Experimental Procedures
The experimental studies comprised two distinct steps:

Experiment 1 aimed to examine the distinguishability of the
IVEP paradigm, while Experiment 2 focused on performance
evaluation by comparing the proposed hybrid paradigm with
SSVEP paradigm. All experiments were conducted on the
same day for each subject to ensure consistent experimental
conditions. The whole procedures for Experiment 1 and 2 are
illustrated in Fig. 2.

In Experiment 1, the IVEP paradigm was conducted inde-
pendently. Each subject completed 20 blocks and each block
consisted of 4 trials corresponding to the four targets. Thus,
there were 20 trials for each stimulus in total and 80 trials
for the entire experiment. During each trial, a 2 s visual cue
in the form of a red dot instructed subjects to focus on the
assigned target. This was followed by a 5 s stimulus period,
during which all stimuli were simultaneously presented. The
order of attention targets within each block was random.

In Experiment 2, classification tasks were conducted to
compare the performance of hybrid paradigm and SSVEP

paradigm. A questionnaire for subject self-assessment was also
utilized. The classification tasks consisted of two SSVEP tasks
and two hybrid tasks, with a total of 40 blocks (10 blocks per
task). The procedure design in each block and trial followed
the structure implemented in Experiment 1. To mitigate the
potential impact of order effects on the experimental results,
the presentation sequence of the two tasks was counterbal-
anced among subjects.

Following the stimuli tasks in Experiment 2, a questionnaire
was employed to evaluate subjects’ experiences, as it is also
considered an important aspect of BCI performance. Four
representative subjective states, namely eye fatigue, concentra-
tion, physical condition, and mental condition, were selected
for assessment [19]. Subjects were required to rate each
state based on the 5-point Likert scale. For eye fatigue and
concentration, the scale ranged from 1 to 5 represented the
degree from lowest to highest, while for physical condition
and mental condition, it represented the degree from worse to
best.

D. Data Processing and Analysis
We collected a total of 240 trials from each subject for

the entire experimental study. The raw EEG data were filtered
using a band-pass filter ranging from 1 to 30 Hz and segmented
from -200 to 800 ms in Experiment 1. Baseline correction was
performed using the 200 ms period preceding the stimulus
presentation.

In the ERP evoked model, the signals s(t) are typically
regarded as being independent of the unrelated ongoing EEG
activity which is considered as random noise n(t) [30].
To visualize task-related ERP, multiple EEG epochs were
averaged across trials and subjects for each time point, then
random noise varied from trial to trial was effectively attenu-
ated, hence the ERP measure method is

ERP(t) =
1

N K

N∑
i=1

K∑
j=1

(si j (t) + ni j (t)), (1)

where N is the number of subjects, K is the number of trials,
i is the subject index, and j is the trial index. The ERP
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components were evaluated by measuring their mean ampli-
tudes and local peak latencies within specific time windows.

In Experiment 2 study, data epochs were extracted from 0 to
2 s for grand average waveforms analysis of the EEG
responses elicited by hybrid stimuli and SSVEP stimuli. For
the analysis in frequency domain, 5 s data epochs were filtered
by the bandstop filter ranging from 1 to 10 Hz in order
to exclude the fundamental frequency (2.5 Hz) and part of
the harmonics caused by the illusion stimulus in hybrid task.
In this study, the 140 ms latency delay was considered in epoch
extraction for performance evaluation [31].

Given the hybrid features incorporating both IVEP and
SSVEP, two different methods are applied to estimate the SNR.
For SSVEP responses, we computed SNR by computing the
ratio of Fourier power at stimulus frequencies to the mean
power in adjacent frequencies [32]. Then the SNR of SSVEP
responses in decibels (dB) can be estimated as

SNRf =10 × log10
n × P( f )∑n/2

k=1[P( f +0.2 × k)+P( f − 0.2 × k)]
,

(2)

where f denotes the frequency, P(f) represents the power of
signal, and the frequency step is set to 0.2 Hz. The n is set to
6 then the adjacent frequency range of ±0.6 Hz.

For waveform estimation, the SNR in time course is com-
puted as the ratio between mean amplitude of EEG responses
and baseline noise [33]. In specific, we extract the epochs
from 200 ms to 600 ms after stimulus onset, which includes
the entire stimulus period containing both IVEP and SSVEP
responses for hybrid paradigm. Noise is assessed within the
baseline interval of −400 ms to 0 ms before the stimulus onset.
The SNR of waveform expressed in dB is computed as follows

SNRt = 20 × log10

∑T
t=1 Xs(t)∑T
t=1 Xn(t)

, (3)

where T represents the number of time points, Xs denotes the
average feature-relevant waveform, and Xn denotes the average
baseline waveform.

E. Classification
We employed task-related component analysis (TRCA)

algorithm to detect targets, which has been introduced to
SSVEP-based BCI and achieved high accuracy and ITR
[34]. Note that the spatio-temporal characteristics of evoked
ERP and SSVEP vary from different stimuli and they are
time-locked to stimulus onset. Hence, in the case of hybrid
paradigm, the TRCA enables simultaneous extraction of fea-
tures without additional separate extraction steps for IVEP and
SSVEP. Ideally, it is assumed that the task-related component
is linearly separable from the background EEG activities in
line with the linear model of evoked ERP. The EEG signals
for the l-th trial is assumed as X l

∈ RNc×Ns , l = 1, 2, . . . ,Nt ,
where Nc is the number of channels, Ns is the number of
sampling points, and Nt is the number of trials for each
stimulus. The linear combination of l-th trial is formulated
as

Y l
= wT X l , (4)

where the spatial filter w ∈ RNc×1 is the goal that TRCA
method aims to optimize.

To obtain optimal spatial filter, the covariance of all pos-
sible combination of trials needs to be maximized, which is
performed as

Nt∑
l1,l2=1
l1 ̸=l2

Cov
(

Y (l1), Y (l2)
)

=

Nt∑
l1,l2=1
l1 ̸=l2

Nc∑
i, j=1

wiw j Cov
(

X (l1)
i , X (l2)

j

)
= wTSw, (5)

where X (l1)
i represents the signals of i-th channel in l1-th trial,

and the X (l2)
j represents the signals of j-th channel in l2-th

trial. Here denotes a concatenated matrix of all trials H =

[X1, X2 . . . X Nt ]. The variance of Y l normalized to one is
calculated as

Var(Y) =

Nc∑
j1, j2=1

w j1w j2 Cov
(
H j1 , H j2

)
= wT Qw

= 1. (6)

where j1 and j2 are the index of channels. Then the con-
strained optimization is given by the Rayleigh-Ritz problem

w = arg max
w

wT Sw

wT Qw
. (7)

Thereby, the spatial filter is obtained from the eigenvector
corresponding to the maximum eigenvalue. The individual
template X̄ is computed by averaging all trials of the training
data. Given the optimal spatial filter, the correlation coefficient
between the test signals and corresponding individual template
of n-th stimulus is calculated as

λn = ρ
(

XT wn, XT
n wn

)
. (8)

The filter bank analysis was applied to decompose signals
into sub-band components in order to effectively extract the
harmonics [31]. The bandwidth for each subband m-th is
defined as [m×8 Hz, 90 Hz], m = 1, 2, . . . ,Nm , where Nm
represents the number of subbands. The Nm is set to 5, and
the low-pass cut-off frequency for the first subband is set to
0.5 Hz to accommodate the frequency range relevant to IVEP
signals in hybrid paradigm. Then the targeted stimulus can be
identified as

Itarget =arg max
i

Nm∑
m=1

a(m)·
(
λ(m)

n

)2
, i =1, 2, · · · , Nk, (9)

where Nk is the total number of stimuli, and a(m) = m−p
+q.

For the traditional SSVEP paradigm, the constants are set to
p = 1.25 and q = 0.25, respectively. Considering the potential
influence of IVEP on SSVEP, we optimized the parameters
utilizing the grid search approach in which p ranges from 0 to
2 and q ranges from 0 to 1, using a step size of 0.1. Following
optimization, the parameters p and q for the hybrid paradigm
are 0.5 and 0.1.
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TABLE I
LOCAL PEAK LATENCY AND MEAN AMPLITUDE OF THE N1 AND P2 COMPONENTS (MEAN ± SEM)

Fig. 3. Grand average ERP waveforms for IVEP paradigm under four conditions in Experiment 1. ERP responses are averaged over all electrodes,
trials, and subjects. The vertical dashed line marks the stimulus onset, and the filled fields in different colors represent the standard error of mean
(± 1 SEM) corresponding to each illusory stimulus.

To evaluate and compare the performance of hybrid and
SSVEP paradigms, we also calculated the ITR. The compu-
tation of ITR in bits/minute defined by Wolpaw et al. [1] is
shown as follows.

I T R =
60
T

(
log2 N + P · log2 P + (1 − P) · log2

1 − P
N − 1

)
,

(10)

where N represents the number of choices, P denotes the
classification accuracy, and T is the average time for each
selection, consisting of 0.2 s to 2 s of stimulation time (at
0.2 s intervals) and 2 s of gaze shift time.

III. RESULTS

A. Characteristics Analysis
We first investigated the EEG responses evoked by four

different illusory stimuli in Experiment 1. Fig. 3 depicts the
grand average waveforms under four conditions. Based on the
waveforms, the latency range of the N1 and P2 components
of interest were set between 110-210 ms and 210-350 ms,
respectively. In this study, we conducted one-way repeated
measures analysis of variance (ANOVA) to assess signifi-
cance of difference. The normality assumption was validated
through the Kolmogorov-Smirnov (KS) test. In cases where
the assumption of homogeneity of variance was not met,
we applied Welch’s ANOVA as an alternative method. Here,
we abbreviate the stimuli according to their corresponding
locations (L, U, R, and B). Within the defined latency range,
negative deflection N1 and following positive deflection P2
were shown in the waveforms for L, U, R, and B conditions.
With statistical tests, the amplitude of waveforms for N1
and P2 both show significant difference (p < 0.0001). ERP
quantification analysis for N1 and P2 components involved
local peak latency and mean amplitude detected from the
defined latency range. In detail, mean amplitude was calculated
from the mean voltage in fixed latency range, and local

peak latency was extracted at the local maximum amplitude.
Table I shows the grand average local peak latency and mean
amplitude for each static visual illusion condition. The results
of statistical comparison are presented as p-values. Across
subjects, the local peak latency of N1 component shows
statistically significant differences (p < 0.05), while that of
P2 component shows no significant differences (p = 0.57),
and there is also no significant difference in mean amplitude
under four conditions (N1: p = 0.67, P2: p = 0.81).
The Tukey-Kramer post-hoc test was employed to conduct
pairwise comparison of local peak latency of the N1 across
four conditions. The results reveal a statistically significant
mean difference in local peak latency (p < 0.01) between
stimuli U and R, and no significant differences are observed
between the other pairs of illusory stimuli (L&U: p = 0.1032,
L&R: p = 0.2137, L&B: p = 0.9897, U&B: p = 0.0522,
R&B: p = 0.3535).

To analyze the joint modulation of SSVEP and IVEP
stimulation, we compared the EEG responses between SSVEP
and hybrid paradigms in the time domain. As depicted in
Fig. 4, the amplitude of waveforms are significantly different
between hybrid and SSVEP (p < 0.0001). In hybrid paradigm,
the SSVEP signals were superimposed on the IVEP signals.
Specifically, for all hybrid stimuli, there were obvious oscilla-
tions superimposed on the evoked P2 component, and the N1
component is superimposed only under the R hybrid stimulus
condition. In Fig. 5, spatio-temporal features of each hybrid
stimulus are visualized through amplitude topographic maps,
depicting both negative and positive peaks during the first
period of illusory stimulus onset. These maps were created
using data from nine electrodes positioned over the parietal
and occipital regions.

The aim of the comparison of spectrum amplitude was to
assess the influence of the overlaid IVEP against SSVEP.
Here, we plot spectrum calculated with fast Fourier transform
(FFT) from averaged recorded 5 s data, as shown in Fig. 6.
For all stimulus conditions, distinct amplitudes at fundamental
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Fig. 4. The grand average waveforms of hybrid and SSVEP stimuli in 2 s time window after stimulation onset. The vertical solid lines denote the
motion illusions onset, and the gray rectangular filled areas are its presentation period (50 ms). The filled fields along waveforms indicate the SEM.

Fig. 5. The amplitude topographic maps of negative and positive peaks during the first period of illusory stimuli onset in the hybrid paradigm. Nine
electrodes overlaying parietal and occipital areas are involved.

Fig. 6. The spectrum amplitude of average data from all subjects and channels for the SSVEP stimuli and hybrid stimuli flickering at 14 Hz, 13 Hz,
12 Hz, and 11 Hz, respectively. The amplitude of the fundamental frequency and its harmonics for each stimulus frequency are marked with red
circles, and the intermodulation frequencies are marked with gray crosses.

frequency and its harmonics of corresponding stimulus fre-
quencies were evoked. The spectrum peaks of hybrid stimuli
for 14 Hz and 13 Hz are reduced compared with SSVEP

stimuli. However, the amplitude of fundamental frequencies
for 12 Hz and 11 Hz are increased with hybrid stimuli. In the
comprehensive analysis, no statistically significant differences
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Fig. 7. (a) Average SNR of frequency response for each stimulus across subjects. (b)Average SNR of waveform for each stimulus across subjects.
Error bars = ± SEM.

Fig. 8. The average SNR of intermodulation frequencies for four stimuli
in hybrid paradigm. Error bars = ± SEM.

were observed in the spectral peak values for the fundamen-
tal and harmonic frequencies between these two paradigms.
To provide a comprehensive assessment, we conducted a
comparative analysis of SNR between the hybrid paradigm
and the traditional SSVEP paradigm using two distinct SNR
estimation methods. Fig. 7(a) illustrates the average SNR
values across subjects associated with frequency responses.
In the SSVEP paradigm, the SNR of frequency responses
is relatively high. The statistical analysis indicates that there
are no statistically significant differences in SNR between
the two paradigms across four stimulus frequencies: 14 Hz
(p = 0.6331), 13 Hz (p = 0.2095), 12 Hz (p = 0.4367),
and 11 Hz (p = 0.6302). Regarding waveform estimation in
Fig. 7(b), the hybrid paradigm demonstrates relatively high
SNR in terms of mean amplitude within the specified time
window. Furthermore, the SNR difference is significant for
the L and U stimuli (p < 0.05 for L stimulus, p < 0.05 for
U stimulus).

As the presence of intermodulation components arising from
the superposition of illusory stimulus and SSVEP flickering
stimulus, here we also evaluated the SNR of two intermod-
ulation frequencies (f±2.5Hz) corresponding to each stimuli,
as shown in Fig. 8.

B. Performance Evaluation
During Experiment 2, we compared the conventional

SSVEP performance with single flickering pattern stimulus

against performance with hybrid stimulus embedded with
illusory stimuli for each subject. The classification accu-
racy was evaluated under the leave-one-out cross-validation
procedure.

Fig. 9 shows the classification accuracy of the SSVEP and
hybrid paradigms for each subject and the average accuracy
over all subjects. It was observed that the accuracy improved
gradually with increasing data length for both paradigms.
The accuracy results of hybrid paradigm were significantly
higher than conventional SSVEP paradigm from 0.2 s to
1.4 s data length (p < 0.05). Fig. 10 illustrates the ITR
(bits/min) with respect to different data lengths for each sub-
ject and average ITR across subjects. With statistic analysis,
the hybrid paradigm achieved higher average ITR between
the 0.2 s to 1.4 s data lengths (p < 0.05). The maximal
average ITR of 44.2 bits/min was obtained at the 0.4 s data
length, increasing by 6.9 bits/min compared to the SSVEP
paradigm. As for individual results of s4, s6, and s7, there
was no improvement in hybrid conditions when compared
to SSVEP. Particularly, for subject S6, the SNR values for
intermodulation at f −2.5 Hz are 16.18 dB, 15.54 dB, 6.82 dB,
and 9.49 dB under four conditions, respectively, and the SNR
for f + 2.5 Hz are 13.82 dB, 12.32 dB, 10.29 dB, and
11.72 dB, respectively. According to statistical analysis, for
intermodulation frequency, there is no significant difference
between SNR of s6 and the mean SNR of the subject group
in these four conditions ( f −2.5 Hz: p = 0.6225; f +2.5 Hz:
p = 0.9559). For the waveform in time course, s6 exhibits low
SNR values, measuring at 2.09 dB, 13.90 dB, 3.92 dB, and
4.62 dB, respectively, which were significantly lower than the
average subject level (p = 0.015 < 0.05).

The performance difference between the hybrid and SSVEP
paradigms was reduced as the data length increased. To inves-
tigate the capacity of the hybrid paradigm to cope with
individual differences, we further utilized a one-to-one frame-
work for cross-subject experiment, in which each subject in
the source data was utilized for training spatial filters, and
the final identification results were generated through a voting
strategy [35]. Table II presents the cross-subject classification
results for each subject in different time windows.

The questionnaire scores for each subject, along with the
mean results and standard deviation (SD) are presented in
Table III. To visualize the distribution of data, the boxplot
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Fig. 9. The classification accuracy for each subject, and average accuracy across all subjects of hybrid paradigm and SSVEP paradigm with
different data lengths from 0.2 s to 2 s data length with an interval of 0.2 s.

TABLE II
CROSS-SUBJECT CLASSIFICATION RESULTS FOR EACH SUBJECT

was provided as depicted in Fig. 11. We conducted Kruskal-
Wallis tests to examine the differences in four subjective state
evaluations, containing eye fatigue, concentration, physical
condition, and mental condition, between the hybrid and
SSVEP paradigms. A significant reduction in eye fatigue was
observed in hybrid paradigm as indicated by the statistical

analysis (p = 0.0269). In boxplot, the whisker range of
hybrid is longer than SSVEP, which represents a higher level
of dispersion of scores within subjects in hybrid paradigm.
Regarding the mean values of the scores, subjects exhib-
ited higher levels of concentration, and better physical and
mental conditions in hybrid paradigm when compared to the
SSVEP paradigm. However, none of these three differences
were statistically significant (for concentration, p = 0.4196;
for physical condition, p = 0.5702; for mental condition,
p = 0.0999).

IV. DISCUSSION

Hybrid BCI systems integrate multiple signal modalities,
offering enhancing performance compared to single-modality
BCIs. Conventional SSVEP-based BCIs have achieved consid-
erable progress and demonstrated high communication rates.
However, by combining SSVEP with other EEG signals,
the system’s performance can be further improved, enabling
more efficient and reliable communication for users. In this
study, we introduced IVEP to combine with SSVEP, and
implemented a hybrid paradigm. For IVEP, the target identifi-
cation is based on the spatio-temporal characteristics of ERP
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Fig. 10. The ITR (bits/min) for each subject and average ITR across all subjects of hybrid paradigm and SSVEP paradigm with different data
lengths from 0.2 s to 2 s data length with an interval of 0.2 s.

components N1 and P2 elicited by different visual illusion
stimuli. This study conducted two experiments to evaluate
feasibility of the proposed hybrid paradigm.

We first measured the original features of different motion
illusion stimuli in a static IVEP paradigm to analyze the dis-
tinguishability. As expected, the statistical analysis of overall
amplitude waveforms revealed significant differences across
different illusory stimuli. For quantification analysis, mean
amplitude and local peak latency of N1 and P2 were measured
in specified time windows. The local peak latency of N1
component exhibited variations across different illusory con-
ditions, as indicated in Table I. Indeed, it is well-established
that the latency and amplitude of ERP components can
exhibit independent variations due to various factors [36]. This
discrepancy may partly be explained by previous research
indicating that augmenting stimulus luminance leads to a
reduction in peak latency of N1 over occipital region [37].

Note that the mVEP is dominated by the same negative
peak between 150 and 200 ms in occipital and occipito-
temporal areas, which are commonly designated as N1, N200,

or N2 [38], [39]. This component is associated with motion
processing and may originate in the primary visual cortex
(V1) and the middle temporal area (MT) area. A near-infrared
spectroscopy (NIRS) study has found the activation of the
MT/VT area during motion illusion perception, suggesting that
both actual motion and illusory motion are involved in the
same brain area [40]. Therefore, it is likely that the negative
N1 peak observed in our study could possibly be considered
as a motion-specific component, given the implication of
the relationship between illusory motion perception and real
motion perception.

In Experiment 2, we evaluated the performance of the
hybrid paradigm and compared it with conventional SSVEP
paradigm. From the comparison of grand average waveforms,
EEG responses to the hybrid stimuli achieved significantly
larger amplitudes than SSVEP stimuli, and IVEP signals
can be stably induced after each onset of motion illusion.
According to the previous study, it has been demonstrated
that the established SSVEP oscillation, which is phase-locked
to the onset of flicker, remains stable and is not disrupted
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TABLE III
QUESTIONNAIRE RESULTS FOR SSVEP AND HYBRID PARADIGMS

Fig. 11. The boxplot of subjective evaluation of SSVEP and hybrid
paradigms concerning the eye fatigue, concentration, physical and
mental conditions for participants.

by transient stimulus-induced ERP [41]. This suggests that
embedded IVEP may not interfere with the oscillatory phase
of SSVEP. However, relevant ERP components might be
influenced due to the occupied neural oscillation resources by
preceding SSVEP [42]. For instance, Moratti et al. discovered
that N1 latency was delayed and the amplitudes of both
N1 and P2 were reduced during flickering stimulation [41].
In terms of frequency-domain features, the results indicate
that the spectral peak for fundamental and harmonic frequency
were not influenced significantly by embedded illusion in
hybrid stimuli. From comparative analysis of SNR, the SNR
of frequency responses do not exhibit significant disparities,
indicating comparable SSVEP responses in both paradigms.
In addition, when examining the SNR in waveform estimation,
we found significant differences for the L and U stimuli. These
observations suggest that the hybrid paradigm may exhibit
better performance attributed to its additional time-domain
characteristics.

In performance evaluation, we validated classification accu-
racy and ITR, both of which demonstrated hybrid paradigm
yielded superior performance. The benefits of performance
enhancement diminished as the data length increased. The
EEG signals that incorporate multiple features are able to
exhibit relatively satisfactory classification performance in
shorter stimulation times, which facilitates the reduction of
detection time in practical applications. The improvements

Fig. 12. The relative deviation of intermodulation frequency SNR and
waveform SNR from mean SNR for each subject. For waveform SNR,
the deviation is averaged over stimuli, and for intermodulation frequency
SNR, the deviation is averaged over stimuli and two intermodulation
frequencies.

in performance could be attributed to the detectable and
differentiable features provided by IVEP, which added an
additional dimension of features in EEG responses. The inte-
gration of flickering stimuli with motion illusions effectively
enlarged the SNR of EEG responses without significantly
compromising frequency features, which facilitated feature
extraction through spatial filters. Nevertheless, it is neces-
sary to consider the potential implications of intermodulation
frequencies due to their SNR that cannot be disregarded.
The intermodulation frequency is the combination of two
different stimulus frequencies contained in the stimulus, which
reflects the process of integrative perception in the brain
[43]. From the results of s6, the intermodulation frequency
responses is not weak. However, the SNR of waveform related
to the IVEP signals is significantly low. It suggests that
the performance enhancement in hybrid paradigm may be
associated with the IVEP signals. Fig. 12 displays the relative
deviation of intermodulation frequency SNR and waveform
SNR from the subject mean for each subject. We have found
that subjects exhibiting performance improvements tend to
demonstrate large positive deviations (s1, s2, s9, s10) or small
negative deviations in waveform SNR (s3, s5) relative to
the subject average. The waveform SNR appears to correlate
positively with performance in the hybrid paradigm. However,
intermodulation frequency SNR does not necessarily correlate
with performance. Notably, for subjects who exhibit poor
performance in SSVEP paradigm (s8, s12), intermodulation
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frequency SNR seems to be a primary factor for performance
improvement in hybrid paradigm. In the classification process,
steady-state frequency information and IVEP features are
co-extracted as task-relevant components. At present, it is
difficult to separate the contribution of IVEP and intermodula-
tion due to the design of periodic superimposition of illusory
stimuli, which is a limitation of our experiments. In addition,
the capacity of the hybrid paradigm in coping with individual
difference was investigated through cross-subject experiments,
which have yielded acceptable classification results but not
as efficient as subject-specific training results. Hence, con-
sidering the individual differences in IVEP, it is essential
to explore cross-subject approaches that are optimal for the
hybrid paradigm.

The questionnaire results were assessed for four subjective
states. Intriguingly, we found a significant difference between
the questionnaire scores of eye fatigue, indicating the hybrid
paradigm might induce less eye fatigue compared to the
SSVEP. According to feedback from part of subjects, this
result could be attributed to the non-continuous flickering in
hybrid stimuli. However, it is worth noting that the degree
of eye fatigue experienced with the hybrid paradigm shows
considerable variations between subjects. Furthermore, differ-
ences in mean values for concentration, physical condition,
and mental condition imply that proposed hybrid paradigm
offers a relatively favorable subjective experience.

In hybrid BCI systems, enhanced BCI classification accu-
racy and reduced brain-command detection time are two of the
main objectives [44]. Through experimental research, the pro-
posed hybrid BCI paradigm was validated to be more effective
and reliable than the single-modality SSVEP paradigm, which
is advantageous for communication and control applications.
The features of IVEP and SSVEP are co-extracted together
by TRCA method, without additional extraction steps therefore
does not increase the system cost. It is worth noting that IVEP
exhibit distinct characteristics within the narrowband waves,
including alpha, beta, theta, and delta waves, as supported
by previous studies [12]. However, this narrow bandwidth
component has not been fully considered. Therefore, the
performance could be further improved by exploiting the nar-
rowband frequency information of the IVEP while extracting
the harmonics of SSVEP in the hybrid paradigm [45]. The lack
of our study is that we do not explore the interaction effect
of IVEP and SSVEP in experimental study. Since different
motion illusions were combined with flickering stimuli of
different frequencies, which are considered as variables that
need to be controlled. In previous study, Lee et al. found
competing effects in the ERP and SSVEP signals while did
not directly affect the classification performance [46].

In this study, we utilized four distinct motion illusions
in combination with flickering stimuli to establish a BCI
system with four available commands. Indeed, this system
fulfills fundamental control requirements, such as wheelchair
or cursor control. The number of targets plays a crucial role in
the practical applications of BCIs due to its close association
with communication efficiency and adaptability across various
application scenarios. Given that our stimulus interface has
not been fully utilized, there is a potential to augment the

number of targets while maintaining the same stimulus size
configuration. However, in contemplating such an expansion,
it is essential to carefully evaluate the distinguishability among
illusory targets. In fact, IVEP may be influenced by the
visual stimulus properties. Note that visual stimuli of differ-
ent contrasts can result in different response timing among
visual neurons [47]. These differences in response timing can
contribute to the perception of illusory motion when there
are sequential changes in luminance within a visual stimulus.
Hence, the motion illusion stimuli need to include pairs of
elements with different contrasts with repetitive arrangements
to generate illusion. As for the color, it might enhance the
illusion perception when compared to gray-scale illusion [48].
It is noteworthy that the stimulus size may also influence
the elicited IVEP signal, as subjects may not easily perceive
motion illusions when the stimulus size is relatively small.
To comprehensively investigate the relationship between stim-
ulus size and BCI performance within the hybrid paradigm,
it is imperative to conduct experimental studies on this matter.
These further studies will not only facilitate the exploration of
the upper limit for encoding different illusory targets but also
pave the way for expanding the range of potential application
scenarios. In addition, performance can be further enhanced
by modulating the onset time for each motion illusion in
hybrid paradigm in order to expand the differences of temporal
features between targets.

V. CONCLUSION

In this study, we presented a novel hybrid paradigm that
combined IVEP and SSVEP to improve performance in
four-command task. The motion illusions were embedded in
steady-state flickers so that the IVEP and SSVEP can be
evoked simultaneously. The results from Experiment 1 vali-
dated the difference among motion illusions in time domain.
In comparison to the conventional SSVEP in Experiment 2,
the proposed hybrid paradigm outperformed in classification
accuracy and ITR in short time window. The introduction of
illusion significantly enhanced the SNR of EEG responses,
thus facilitating spatial filter in feature extraction phase.
Through improving classification accuracy and reducing detec-
tion time, the proposed paradigm could alleviate the users’
burden of usage. Meanwhile, the subjective questionnaire
results indicate that hybrid BCI system with non-continuous
flickering stimulation with motion illusion might be able
to reduce eye fatigue to some degree. Further research in
IVEP-SSVEP hybrid BCI is a worthy endeavor, and has the
potential to further improve the performance of BCI systems
for practical applications.
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