
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023 4703
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Abstract— Accurate human motion estimation is crucial
for effective and safe human-robot interaction when using
robotic devices for rehabilitation or performance enhance-
ment. Although surface electromyography (sEMG) signals
have been widely used to estimate human movements,
conventional sEMG-based methods, which need sEMG sig-
nals measured from multiple relevant muscles, are usually
subject to some limitations, including interference between
sEMG sensors and wearable robots/environment, compli-
cated calibration, as well as discomfort during long-term
routine use. Few methods have been proposed to deal
with these limitations by using single-channel sEMG (i.e.,
reducing the sEMG sensors as much as possible). The
main challenge for developing single-channel sEMG-based
estimation methods is that high estimation accuracy is
difficult to be guaranteed. To address this problem, we pro-
posed an sEMG-driven state-space model combined with
an sEMG decomposition algorithm to improve the accuracy
of knee joint movement estimation based on single-channel
sEMG signals measured from gastrocnemius. The effec-
tiveness of the method was evaluated via both single-
and multi-speed walking experiments with seven and four
healthy subjects, respectively. The results showed that the
normal root-mean-squared error of the estimated knee joint
angle using the method could be limited to 15%. Moreover,
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this method is robust with respect to variations in walk-
ing speeds. The estimation performance of this method
was basically comparable to that of state-of-the-art studies
using multi-channel sEMG.

Index Terms— Single-channel sEMG, joint movement
estimation, decomposition, state-space model.

I. INTRODUCTION

IN CHINA, the number of patients suffering from stroke
was 13.00 million in 2019 [1]. Many stroke survivors

suffer from knee impairments, which makes walking diffi-
cult or even impossible [2]. Knee exoskeletons can provide
extension assistance for these patients to perform daily life
activities, such as walking and standing [3], [4]. Most of
these devices face the challenge of how to ensure accurate and
safe human-robot interaction (HRI) [5]. To improve the HRI,
bioelectric signals, such as electromyogram and electroen-
cephalogram [6], or electrical impedance tomography signals
[7], have been used for controlling the robotic devices. Surface
electromyography (sEMG) signal has been widely used as an
effective means for estimating human state/intention in HRI
due to its characteristics such as non-invasive application,
accurate measurement of muscle activity, and the capability
of predicting human motion (i.e., preceding the corresponding
motion by 20-100 ms) [8], [9], [10].

For sEMG-based HRI, an important issue is to decode
human movement intention, including discrete and continuous
movements. The continuous movements, such as joint angles,
joint moments, and angular velocities, can make the robotic
devices consistent with human movement. Many approaches
have been proposed to estimate continuous human joint move-
ments based on sEMG signals, such as BP neural network
[11], convolutional neural network [12], [13], EMG-driven
model [14], Hill-based state-space model [15]. To obtain high
estimation accuracy, all of these approaches need multiple
electrodes placed on different muscles to detect multi-channel
sEMG. However, the use of a large number of electrodes has
several limitations in practice [8]: firstly, it may be difficult
to collect the sEMG signals from some specific muscles
because of weakness or spasticity; secondly, the mechani-
cal/signal interference between sEMG sensors and wearable
robots/environment (e.g., sitting on a chair) also limits the
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Fig. 1. Flowchart of the proposed method. The dotted box showed the flowchart of the decomposition algorithm.

acquisition of sEMG signals; thirdly, increasing the number of
electrodes would increase the cost and preparation/calibration
time. The above drawbacks limit the possible applications of
the sEMG-based HRI in mobile and wearable robotic devices.
Therefore, it is important to improve the performance of
continuous movement estimation based on a minimal number
of electrodes [16], [17].

Extracting more muscular information from sEMG signals
effectively reduces the required number of sEMG sensors to
ensure the high accuracy of human joint estimation. One of
the most common methods of augmenting muscular infor-
mation is decomposing sEMG signals into motor unit action
potentials (MUAPs). In practice, the measured sEMG signals
are influenced by many factors, such as skin and fat [18].
The amplitude and frequency of the sMEG signals are only
coarse indicators of the neural-driven characteristics, which
cannot fully reflect the motion information. The MUAPs
propagated by the innervated muscle fibers cumulated and
composed the sEMG signals, which contained more muscu-
lar information than directly measured sEMG signals [18],
[19]. Several decomposition techniques have been proposed to
obtain MUAPs from sEMG signals. Blind-source separation
methods, including convolution kernel compensation (CKC)
[20], [21], [22] and progressive FastICA peel-off (PFP) [23],
have been developed to decompose high-density sEMG signals
into MUAPs.

Inspired by the decomposition in high-density sEMG sig-
nals, one-channel sEMG signals can also be decomposed
into m sub-channels to obtain more muscular informa-
tion, although the decomposed signals can not be directly
regarded as MUAPs. Meanwhile, neuromusculoskeletal mod-
eling method can overcome the limitation of training sample
scale related to the complexity of the sEMG models [24].
In this study, an sEMG-driven state-space model combined
with an sEMG decomposition algorithm is proposed for
guaranteeing the performance of knee-joint motion estimation
from single-channel sEMG signals (see Fig. 1). The sEMG
decomposition algorithm is aimed to extract more muscular
information by decomposing one-channel sEMG into multiple
sub-channels depending on the shape of detecting spikes.
Then an observation function is designed based on features
extracted from the sub-channel signals to correct the knee
joint angles estimated by an sEMG-driven model in the state-
space model. The single-channel sEMG signals are recorded
from the gastrocnemius, which has the functions for both
foot plantar flexion and knee joint flexion [25], [26]. And the
sEMG signals of gastrocnemius can be easily obtained. From
the practical application perspective, the proposed method can

ensure more usability and robustness in knee exoskeletons for
rehabilitation or performance enhancement. The contributions
of this study are given as follows:

1). Developing a decomposition method depending on the
shape of the sEMG signals’ spikes to extract more
muscular information.

2). Proposing a scheme to estimate knee joint angles from
single-channel sEMG signals using an sEMG decom-
position algorithm and a state-space model-based joint
estimation method.

3). Evaluating the effectiveness of the proposed method to
show that it can be comparable to the state-of-the-art
methods with multi-channel sEMG signals.

4). Discussing the effect of the decomposed sub-channel
number and walking speeds on the performance.

This work is an extended version of our previous con-
ference publication [27](received Best Paper Award) that
further includes: 1) introducing more technical details of
the state-space model derivation; 2) applying a second-order
dynamics model and a nonlinear transfer function to calculate
the muscle activities with respect to mimic the physiolog-
ical generation process of human movements; 3) using the
Levenberg-Marquardt algorithm and particle swarm optimiza-
tion to identify the constants in the sEMG-driven model;
4) re-designing experiments of the robustness with respect
to walking speeds; 5) extensive validation of the proposed
method via more experiments with eleven healthy subjects;
6) and detailed analysis of the proposed method performance
compared to state-of-the-art methods.

II. METHODS

A. Decomposition Algorithm
The process of decomposing single-channel sEMG signals

has four steps, namely Pre-processing, Detecting spikes, Clus-
tering spikes, and Forming sub-channel sEMG, as shown in the
dotted box in Fig. 1. The details of these steps are described
as follows.

1) Pre-Processing: A second-order differentiator [28] is
used to filter the raw sEMG signals to remove background
noise and improve the signal-to-noise ratio. This filter is
defined as:

zi = xi+2 − xi+1 − xi + xi−1 (1)

where x and z denote the raw sEMG signal and the pre-
filtered signal, respectively. The subscript i denotes the index
of sampling time.
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2) Detecting Spikes: The process of detecting spikes mainly
contains calculating a detection threshold and determining
peak positions. The spikes are detected if the filtered signals
are over the threshold. The threshold (µ) is calculated by the
following equation [29]

µ = 1.5

√√√√ 1
N

N∑
i=1

z2
i (2)

where N indicates the number of sample points. The parameter
1.5 is the experimental value [29].

Two baselines (with values of ±µ) are set on the
pre-processed sEMG to determine peak positions. The peak
position (with the maximum value) appears between two
neighboring positions i and j , where the sEMG signal crosses
the baselines µ from down to up or −µ from up to down. The
peak position is described as follows:

ppeak = arg max
i<k< j

{|zi |, . . . , |zk |, . . . , |z j |}. (3)

One spike is a 2h-dimensional real vector consisting of the
sampling at the peak position, the previous h − 1 samplings
before the peak, and the next h samplings after it. In this
study, parameter h is chosen as 6 [29]. The spike is described
as follows:

Spike = {z ppeak−h−1, . . . , z ppeak , . . . , z ppeak+h}. (4)

3) Clustering Spikes: After detecting, K-means is used to
classify n spike vectors into m clusters determined in advance,
where m presents the sub-channel number. Firstly, m vectors
are randomly selected and used as initial means in m clusters.
Secondly, the others are assigned to the m clusters based on
the least squares Euclidean distance. Thirdly, the mean of each
cluster is recalculated. Then, the last two steps are repeated
until the assignment is no longer changed. The shape of each
cluster’s mean is considered a template.

4) Forming Sub-Channel sEMG: Generate m zero sequences
with a one-to-one correspondence of m clusters. In each
sequence, the spikes from the same cluster are reordered by
their positions in the original sEMG signals and are placed on
this sequence. The values on other positions of this sequence
are set as zero. According to this method, m sub-channel
sEMG, i.e., generated m sequences, are formed.

B. State-Space Model

A state-space model consisting of an sEMG-driven model
and an observation model is proposed to estimate the knee
joint angle. The sEMG-driven model and observation model
are established based on a Hill-based muscle sub-model [30]
and the extracted features from sub-channel sEMG signals,
respectively. The details are described as follows.

1) sEMG-Driven Model: The sEMG-driven model is built
based on the Hill-based muscle sub-model (calculating the
muscle force from EMG signals) and a joint dynamics sub-
model (mapping the force to joint motion). Before that, the
single-channel sEMG signals should be converted into muscle

Fig. 2. Hill-based muscle sub-model. CE and PE represent the active
contractile and passive elastic elements, respectively. Fce,Fpe,Fm, and
Fmt are the forces of the contractile element, passive elastic element,
muscle fiber, and the musculotendinous unit, respectively. lm, lt, and lmt
are the length of muscle fiber, tendon, and the musculotendinous unit,
respectively. φ represents the pennation angle.

activation using a second-order dynamics model (5) and a
nonlinear transfer function (6)

u(t) = αe(t − d) − β1u(t − 1) − β2u(t − 2) (5)

a(t) =
eAu(t)

− 1
eA − 1

(6)

where u(t) is neural activation; e(t) is the filtered sEMG; α,
β1, and β2 are coefficients that define the dynamics model with
the constraints: β1 = γ1 + γ2, β2 = γ1γ2, α = 1 + β1 + β2,
|γ1| < 1, and |γ2| < 1; d is the electromechanical delay;
a(t) is the muscle activation; A is the nonlinear shape factor
varying between -3 to 0.

On the basis of the Hill-based muscle sub-model, a muscle-
tendon model is generally arranged in series with two parallel
elements: an active contractile element (CE) generating active
muscle force Fce and a passive elastic element (PE) generating
passive muscle force Fpe, as shown in Fig. 2.

The muscle force is the combined force of Fce and Fpe,
which calculated as follows:

Fmt = Fm cos φ = (Fce + Fpe) cos φ (7)

where Fm denotes the force generated by muscle fibers. φ is
the pennation angle, which is set as a constant in this study.

The Fce and Fpe are expressed as:{
Fce = fc(l) fc(v)aFmax

Fpe = f p(l)Fmax
(8)

where fc(l), fc(v), and f p(l) denote the active force-length
relationship, the force-velocity relationship, and the passive
force-length relationship, respectively. l is the normalized
muscle fiber length, l = lm/ lo

m , where lm and lo
m represent

the muscle fiber length and the optimal muscle fiber length,
respectively. a is the muscle activation. Fmax is the maximum
isometric muscle force, which is set as a constant in this study.

The muscle fiber length lm can be calculated from the
tendon length lt and the musculotendinous unit length lmt .
According to Fig. 2, the relationship among lm , lmt , and lt is
described as:

lmt = lt + lm cos φ. (9)
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The lmt can also be expressed by a first-order polynomial
of the joint angle [31]

lmt = b0 + b1θ (10)

where b0 and b1 are constant values. θ is the joint angle.
Combining (9) and (10), the muscle fiber length can be

expressed by joint angle θ :

lt =
b0 + b1θ

cos φ
. (11)

Therefore, the value of Fmt is only related to two variables,
i.e., muscle activation a and joint angle θ , since the physiolog-
ical parameters (Fmax, lo

m, lt , φ) are all considered as constants.
In the joint dynamics sub-model, joint torque τ is calculated
as follows:

τ = Fmtrmt (12)

where rmt shows the moment arm.
In [32], the moment arm can be calculated by

rmt =
∂lmt

∂θ
= b1. (13)

According to the joint dynamics, the angular acceleration θ̈

of the joint can be calculated as:

θ̈ =
τ − G

Ie
=

τ − Gmax sin θ

Ie
(14)

where the G is the gravitational moment, and the Gmax is the
maximum value of G. Ie is the moment of inertia of the knee
joint.

Substituting (7)-(13) into (14), the angular acceleration can
be expressed by muscle activation and knee joint angles. The
sEMG-driven model can be obtained

θ̈t+1 = (c0 + c1θt + c2θ
2
t )a(t) + c3ec4θt − c5 sin θt

θ̇t+1 = θ̇t + 1t θ̈t

θt+1 = θt + 1t θ̇t

(15)

where the c j ( j = 0, 1, . . . , 5) are constants identified using
a Levenberg-Marquardt algorithm [33] and particle swarm
optimization, which are related with physiological parameters
(Fmax, lo

m, lt , φ), Gmax, Ie, b0, and b1. θ̈t+1, θ̇t+1, and θt+1
denote the angular acceleration, angular velocity, and angle at
time t + 1, respectively. 1t denotes the sampling time.

2) Observation Model: An observation model is built to cor-
rect the estimated angles from the sEMG-driven model. In this
study, the observation model is constructed by two kinds of
sub-channel sEMG signals features, i.e., root mean square
(RMS) and waveform length (WL) are used as observations,
which are calculated as follows:

RMS =

√√√√ 1
Nw

Nw∑
i=1

(si )2 WL =

Nw−1∑
i=1

|si+1 − si | (16)

where si denotes the i th sample of one sub-channel sEMG
signals. Nw is the size of a time window calculated by the
time window length divided by the sampling time of the
sub-channel sEMG signals. In this work the window length

is 256 ms, and the increment is 50 ms. The optimal window
length was generally 200 ms and 300 ms for static contractions
and dynamic contractions, respectively [34]. Thus, the delay
caused by a 256 ms time window with a 50 ms increment is
acceptable in real-time application.

Second-order polynomials are used as the observation func-
tions to map the relationships between the two features and
joint motions

hi j
t = ki j

0 + ki j
1 θt + ki j

2 θ̇t + ki j
3 θ2

t + ki j
4 θ̇2

t + ki j
5 θt θ̇t (17)

where i = 1, 2, and j = 1, 2, . . . m; h1 j
t and h2 j

t represent the
RMS and WL features of j th sub-channel sEMG, respectively.
kl(l = 0, 1, . . . , 5) are constants that are identified using a
least squares method.

Combining (15) and (17), a state-space model is built and
described as follows:{

Xt+1 = f(Xt , at ) + wt

Yt+1 = h(Xt+1) + vt
(18)

where Xt = (θ̈ , θ̇ , θ). f(Xt , at ) is the sEMG-driven model,
i.e., (15). h(Xt+1) is the observation model, i.e., (17). wt ∼

N (0, Q) and vt ∼ N (0, R) are the process noise and obser-
vation noise, respectively.

In the following, an extended Kalman filter (EKF) is applied
to estimate the joint angles from (18). Define the current state
vector as X̂t with a covariance of Pt . The first step performs
a prediction of the next state X̂t+1|t and its covariance Pt+1|t
by (19) {

X̂t+1|t = f(X̂t , at )

Pt+1|t = Ft Pt FT
t + Q

(19)

where F is the Jacobian matrix of f(·).
The next step corrects the predicted state and its covariance

through (20)
Kt+1 = Pt+1|t HT

t+1(Ht+1Pt+1|t HT
t+1 + R)−1

X̂t+1 = X̂t+1|t + Kt+1(yt+1 − h(X̂t+1|t ))

Pt+1 = (I − Kt+1Ht+1)Pt+1|t

(20)

where H is the Jacobian matrix of h(·); Kt+1 is the Kalman
gain.

III. EXPERIMENTS

A. Subjects
Eleven non-disabled subjects (six males and five females,

aged 24.58 ± 3.00 years old; referenced as S1-S11) partici-
pated in the experiments. Seven subjects (S1-S7) attended the
single-speed walking experiments, while the remaining four
(S8-S11) participated in the multi-speed walking experiments.
Referring to the results reported in [35] that the walking
speed for pedestrians (aged from 14 to 65) was 1.25 m/s,
we chose the gait speed of 1.25 m/s as the normal walking
speed. Before the experiments, each participant was fully
informed of the experimental purpose and procedures and
provided their written consent to participate in this study. The
experiments were approved by the local ethics committee of
Nankai University, China.
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B. Experimental Protocols
1) Single-Speed Experiments: In the beginning, two sEMG

sensors (acquiring sEMG signals under a sample rate of 5 kHz)
and two inertial measurement units (acquiring knee joint angle
under a sample rate of 100 Hz) were attached to the subject’s
muscles (lateral gastrocnemius (LG) and medial gastrocnemius
(MG)) and right lower limb (thigh and shake), respectively. All
the signals were simultaneously and synchronously collected
by a real-time target machine (dSPACE), as shown in Fig. 3(a).
Then the sensors’ outputs are calibrated when the subject
is standing statically. After that, each subject was asked to
perform 11 trials of walking (60 s per trial) on a treadmill at
a speed of 1.25 m/s with a 3-min break in-between to avoid
muscle fatigue. For each subject, data from one trial was used
to calibrate the parameters of the proposed model. And data
from the other trials were applied to test the method.

2) Multi-Speed Experiments: Due to the experimental setup
used during the single-speed walking test was no longer avail-
able during multi-speed testing, another experimental setup
with an sEMG system and a vision system was utilized,
as shown in Fig. 3(b). It has been reported that both IMU
measurement and markers-based motion capture measurement
are capable of providing human joint kinematics [36]. The
accuracies of these two experimental setups (IMU-based:
0.5 degree; vision-based: 0.2 mm) are both acceptable for
evaluating the proposed method. During the multi-speed exper-
iments, two sEMG sensors (a sample of rate 5 kHz) and
27 markers (acquiring knee joint angle under a sample of
rate 100 Hz) were attached to the subject’s muscles (same as
the single-speed experiment) and body (16 worn on the lower
limb, 8 worn on the arm, 3 worn on the trunk), respectively.
A synchronization signal was applied to collect all the signals
synchronously. Then, a calibration process (same as the above
experiments) is performed. Each subject (S8-S11) was asked to
walk on the treadmill at the speed of 0.75 m/s, 0.9 m/s, 1 m/s,
1.25 m/s, 1.35 m/s, and 1.5 m/s, respectively. Three trials were
acquired under each speed. Likewise, for each subject, data
from the first trial with a speed of 1.25 m/s was used to
calibrate the parameters, and data from the other seventeen
trials were used for testing.

C. Experimental Evaluation
For each subject, the estimated knee angles of each testing

trial are separately evaluated using three criteria, i.e., nor-
mal root-mean-squared error (NRMSE), correlation coefficient
(CC), and R-Square (R2). Then, for all subjects, the evaluation
results at the same speed are statistically analyzed. The three
criteria are calculated as follows:

NRMSE =

√
1

Nn

∑N
k=1(θk − θ̂k)2

θmax − θmin
(21)

CC =
C

θ θ̂

σθσθ̂

R2
= 1 −

∑N
k=1(θk − θ̂k)

2∑N
k=1(θk − θ)2

(22)

where Nn denotes the sample size of one trial. θk and θ̂k
represent the measured and the estimated knee joint angles at
the sample k, respectively. θ is the mean value of the measured

Fig. 3. (a) The experimental setup for the single-speed walking test.
(b) The experimental setup for the multi-speed walking test.

angles. θmax and θmin are the maximum and minimum values
of the measured knee joint angles, respectively. C

θ θ̂
denotes

the covariance between the measured and estimated angles,
σθ and σ

θ̂
indicate the standard deviation of the measured and

estimated angles, respectively.

IV. RESULTS

A. Decomposition Results
For each subject in the single-speed experiments, his/her

single-channel sEMG signals measured from LG and MG
muscles were decomposed into 2-10 sub-channels using the
proposed decomposition algorithm, respectively. The decom-
position results of the LG signals with 5 sub-channels from S1
were shown as representative examples (See Fig. 4). Fig. 4 (a)
presented the pre-filtered sEMG signals. Fig. 4 (b) showed
the spikes (the gray lines) in the same cluster. The pat-
tern of each sub-channel, the red star line, is the mean
of the detected spikes. Fig. 4 (c) presented the decomposed
sub-channel sEMG signals. Based on the shape of the spikes,
the single-channel sEMG signals can be decomposed into
several sub-channels, which can eliminate some superposition
effects. Although the sub-channel sEMG signals can not be
directly considered as MUAPs, they still contain more muscu-
lar information compared to directly measured single-channel
signals, which can be demonstrated in the next subsections.

B. Estimation Results
The identified parameters of the sEMG-driven model from

LG and MG are given, respectively, in Tables I and II. It can
be seen that the parameters among the eleven subjects are
largely different, which mainly reflects that the positive and
negative signs of the identified c0, c1, and c2 parameters
are inconsistent. The parameters should be consistent with
the role of the LG or MG in knee flexion and extension
physiologically, such as positive c0, c1, and c2 values. But
one muscle, i.e., LG or MG, replaces the multiple muscles
to affect knee movement in our study. Thus, the parameters
will lose the initial physiological function. Moreover, some
studies demonstrated that some muscle synergies differed
between individuals, which could explain the large variability
of identified parameters among the eleven subjects [37], [38].
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TABLE I
IDENTIFIED PARAMETERS OF THE SEMG-DRIVEN MODEL FROM LG

TABLE II
IDENTIFIED PARAMETERS OF THE SEMG-DRIVEN MODEL FROM MG

Fig. 4. Illustration of the decomposition process with decomposing the
sEMG signals of LG from S1 into 5 sub-channels. (a) The pre-filtered
sEMG signals. (b) The pattern of each sub-channel. (c) The decom-
posed sub-channel sEMG signals.

Knee joint angles of all subjects in single-speed walking
experiments were estimated using the non-decomposed single-
channel sEMG signals (ND-S) and the decomposed signals
with m sub-channels (D-S-m, m from 2 to 10), respectively.
Fig. 5 presents the results of S1 using the ND-S and D-S-

Fig. 5. Comparisons between the average measured (solid line) and
estimated (dash lines) knee joint angles of S1 across 386 strides.
The symbols “ND-S” and “D-S-5” represent the non-decomposed
single-channel sEMG signals and decomposed sEMG signals with
5 sub-channels, respectively. (a) Estimation results from LG. (b) Esti-
mation results from MG.

5, respectively, in which the gait cycle is divided based on
the shape of the knee joint angles measured by IMUs. The
differences between the estimated (solid lines) and measured
angles (dash lines) were obviously reduced when using the
decomposed LG/MG sEMG signals compared to using the
non-decomposed signals.

To quantitatively evaluate the estimation results between
ND-S and D-S-m, three indicators mentioned above were used,
and the results of all subjects are shown in Fig. 6. The detailed
analyses of the results are given as follows:

1). The mean NRMSE values of D-S-m were less than or
equal to 14.32±2.73% (D-S-2, LG) or 14.36±2.87%
(D-S-2, MG), which were decreased by 24.15±15.62%
(LG) and 27.76±23.09% (MG) compared to the ND-S
(LG: 19.29±3.55%, MG: 20.83±4.38%).

2). The average CC values of D-S-m were greater than or
equal to 0.902±0.039 (D-S-2, LG) or 0.904±0.027 (D-
S-2, MG), which were increased by 14.63±11.24% (LG)
and 27.62±32.35% (MG) compared to the ND-S (LG:
0.793±0.079, MG: 0.742±0.143).

3). In addition, the mean R2 values of D-S-m were
greater than or equal to 0.758±0.089 (D-S-2, LG)
or 0.762±0.085 (D-S-2, MG), which were increased
by 25.80± 21.66% (LG) and 43.66±40.44% (MG)
compared to the ND-S (LG: 0.567±0.139, MG:
0.492±0.189).

To determine if the differences between the experimental
results with D-S-m and ND-S were statistically significant,
the Kruskal-Wallis test was conducted on the NRMSE, CC,
and R2, respectively. The statistical results showed that
all p−values were smaller than 0.05, as shown in Fig. 6.
These results suggested that the estimation accuracy using
D-S-m significantly outperformed that using ND-S. The results
demonstrated that the proposed state-space model with the
decomposition algorithm can effectively improve the estima-
tion accuracy.

C. Influence of Sub-Channel Number
It is also interesting to study the effects of sub-channel

number on knee angle estimation accuracy. Fig. 7 presented
the relationship between the estimation accuracy and the
sub-channel number across all subjects in the single-speed
experiments. When the sub-channel number was below 3, the
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Fig. 6. Comparison estimation accuracy of different sub-channel sEMG
signals. (a) NRMSE values; (b) CC values; (b) R2 values. ND-S: non-
decomposed single-channel sEMG signals; D-S-m: decomposed sEMG
signals with m sub-channels, m from 2 to 10. The left and right of
each subfigure present the results of single-channel sEMG from LG and
MG, respectively. Bars and whiskers are means and standard deviations
across all subjects in the single-speed experiments. *Statistical signifi-
cance (p < 0.05) with respect to ND-S.

NRMSE values decreased significantly along with the sub-
channel number, and the values of CC and R2 increased
significantly along with the sub-channel number. The estima-
tion accuracy remained high and stable when the number was
over 3. The Kruskal-Wallis test was also used to determine
if there were differences between the D-S-3 and the other
D-S-m (m = 2, 4, 5, 6, 7, 8, 9, 10). Table III showed the
p−values on NRMSE, CC, and R2. Statistical differences in
all the evaluation criteria were found between D-S-2 and D-
S-3 (p <0.05). No differences were found between D-S-3
and the other D-S-m (m = 4, 5, 6, 7, 8, 9, 10). The above
results demonstrated that the optimal decomposed number of
LG and MG was 3 in terms of estimation accuracy and cost
of computation. Some possible physiological reasons for the
optimal decomposed number are discussion in the next section.

D. Influence of Walking Speeds
To verify the robustness of the proposed method to walking

speeds, four subjects (S8-S11) conducted the multi-speed
walking experiments. For each subject, the model established
at 1.25 m/s was directly tested on six walking conditions with-
out any calibration, including speeds of 0.75, 0.9, 1.0, 1.25,
1.35, and 1.5 m/s. Fig. 8 shows the results of a representative
subject (S9), in which the gait cycle is divided based on the
vertical ground reaction force measured using the treadmill.
All the estimation profiles were close to the reference angle
profiles. Moreover, the average values of the evaluation criteria
from the four subjects were listed in Table IV. The results

Fig. 7. The relationship between the estimation accuracy and
the sub-channel number across all subjects in the single-speed
experiments. Left ordinate: NRMSE values; Right ordinate: CC and
R2 values; Abscissa: the sub-channel number. (a) The accuracy
with single-channel sEMG signals from LG. (b) The accuracy with
single-channel sEMG signals from MG.

TABLE III
STATISTICAL RESULTS BETWEEN D-S-3 AND OTHER D-S-m ACROSS

ALL SUBJECTS IN THE SINGLE-SPEED EXPERIMENTS

indicated that the proposed method is robust with respect to
walking speed covering from 0.9 m/s to 1.35 m/s with the
mean NRMSE value lower than 16%, the average CC values
near 0.89, and the R2 value over 0.7. It should be noted that
the NRMSE values at 0.75 m/s and 1.5 m/s are larger than the
values at walking speed covering from 0.9 m/s to 1.35 m/s.
Although increased NRMSE values when the walking speed
is too fast or slow, relatively high CC values can be ensured.
Some possible reasons are discussed in the next Section, and
will be investigated in our future work.

E. Comparison Between Different Models
A recursive artificial neural network (RANN) was used to

map the relationship between the muscle activation, angle, and
angular velocity at time k and the angle and angular velocity
at time k + 1. The RANN model contained four layers: one
input layer, two hidden layers, and one output layer. The
hidden layers had eight and four neurons, respectively. The
estimation accuracy from the RANN model was compared
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Fig. 8. Demonstration of knee angle estimation from S9 with
single-channel sEMG signals of GL in multi-speed experiments.

TABLE IV
NRMSE (MEAN±STD), CC (MEAN±STD), AND R2 (MEAN±STD)

ACROSS S8-S11 USING THE DECOMPOSED SIGNALS

WITH 3 SUB-CHANNELS IN MULTI-SPEED EXPERIMENTS

with that of the sEMG-driven model in multi-speed exper-
iments. The comparison results showed that the estimation
accuracy by sEMG-driven model was superior to that of the
RANN model when the walking speed was below 1.25 m/s, see
Fig. 9. However, when the walking speed was over 1.35 m/s,
the estimation performance of sEMG-driven model decreased
larger than that of the RANN model. These results indicated
that the two models exhibit different robustness with respect
to different walking speeds.

V. DISCUSSION

In this study, a method namely the sEMG-driven state-space
model combined with an sEMG decomposition algorithm is
proposed to provide a reference trajectory to enhance voluntary
participation, which is important for control of rehabilita-
tion robots (e.g., [39], [40], [41]). Meanwhile, single-channel
sEMG replaced the multiple-channel sEMG in this study,
which can largely reduce the calibration time and improve
the wearer’s comfort. Moreover, muscle synergy is a widely
accepted hypothesis to understand muscle coordination [42],
[43]. It has been postulated that the central nervous system

Fig. 9. Comparison estimation accuracy between different models in
the multi-speed experiments.

controls muscles in groups during functional tasks. The results
of this study indicated that the knee joint angles can be
accurately estimated based on the single-channel sEMG of
gastrocnemius, which gives a good agreement with the muscle
synergy.

The activity of gastrocnemius is a strong correlation with
the knee joint angles during walking. This is the physiological
reason that the knee joint angles can be accurately estimated
based on the single-channel sEMG of gastrocnemius using
the proposed method. A determining factor in adapting the
proposed method to the other joints is whether there is a
strongly correlated muscle with the motion of these joints.
Therefore, it is possible to generalize this method to other
joints, such as the hip joint or elbow joint. For example, hip
joint angles may be accurately estimated from single-channel
sEMG signals of vastus using this method. When this method
is applied to the other joints, the model of the joint dynamics
should be carefully established, considering whether external
loads of the joint exist.

It is observed that three sub-channels was the optimal
decomposed number of LG and MG (see Fig. 7 and Table IV).
From the physiological perspective, the three decomposed
sub-channel sEMG signals may be related to three kinds of
neurons in gastrocnemius, including Type S units, Type FR
units, and Type FF units, as shown in a prior study [44].
When the sub-channel number was over three, the sEMG
signals maight be just decomposed meticulously from the
these three types. It is a possible reason that the estimation
accuracy cannot be improved significantly with sub-channel
number over three. Although it is impossible to have the one-
to-one correspondence between the three types and the three
sub-channel sEMG signals, it does not affect its advantage
in the motion estimation, which can effectively increase the
estimation accuracy.

The proposed state-space model with the decomposed
sub-channel sEMG signals can be robustness to different
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TABLE V
COMPARISON WITH RELATED RESEARCH

walking speeds. The main reason may be that the Hill-based
muscle sub-model and the joint dynamics sub-model incorpo-
rates the anatomical and biomechanical structures/constraints
of the lower limb’s neuromusculoskeletal system. The
state-space model can well mimic the physiological generation
process of human movements by explicitly representing the
anatomical and biomechanical structures/constraints [45].

Although a few studies attempted to use single-channel
sEMG signals to perform the classification of lower limb
movement modes or the estimation of upper limb muscle force
[46], [47], to the best of our knowledge, this is the first study
to use single-channel sEMG signals to estimate the knee joint
angles. Therefore, we only compared the proposed method to
the existing ones using multi-channel sEMG signals for knee
joint movement estimation. It showed that the performance
of the proposed method (using sEMG of gastrocnemius with
three sub-channels) was comparable to those of the state-
of-the-art studies using multi-channel sEMG signals (see
Table V). It should be noted that the proposed method is firstly
established with a small dataset measured only one walking
speed and tested with a wide range of walking speeds from
0.75 m/s to 1.5 m/s (covering the main walking speed range
of healthy adult subjects) while the studies like [48], [49],
and [51] utilized the training data covering all experimental
speeds to train their models. Therefore, the proposed method
has application potential for individuals with neurological
diseases whose sEMG signals from some specific muscles
were collected with difficulty. Moreover, it has significant
potential for various applications of gait patterns, such as
level-ground walking, stair-ascent, and ramp-ascent because
the muscle synergy phenomenon can also be observed during
such activities. We will further evaluate the performance of the
method during different daily living activities in future work.

Walking speeds significantly affected gait patterns with
respect to joint kinematics, joint kinetics, and ground reaction
force [52]. As walking speeds increase, not only does the mus-
cle activation of gastrocnemius increase, but also the periods
of peak muscle activation change in the whole gait cycle. The
change of the knee angle magnitude is significantly lower
compared to the change of the muscle activation in a wide
range of walking speeds. The inconsistent changes between the
muscle activation and knee angles are considered as the main
reason that leads to large estimation errors. A possible way to
further enhance the performance of the proposed method for
these speeds is to consider change rules of muscle activation
and knee joint angles with walking speeds in the EMG-driven
model when modeling. In future work, we will further design
experimental protocol and recruit more subjects to study such
change rules.

VI. CONCLUSION AND FUTURE WORK

This study focused on improving the accuracy of human
joint angle estimation using single-channel sEMG signals to
overcome the limitations in robust practical applications, such
as weakness or spasticity of one or more specific muscles,
mechanical/signal interference between the sEMG sensors and
wearable robots/environment, or discomfort during long-term
routine use. For this purpose, a novel method, which includes
a decomposition algorithm and a state-space model, was
proposed. The proposed method was evaluated with eleven
healthy subjects to estimate the knee joint angles using LG
or MG sEMG signals. The experimental results indicated this
method has significant potential benefits over multi-channel
sEMG-based methods for joint angle estimation with mobile
and wearable robotic devices in practice.

In future work, we will study the change rule between the
muscle activation and the knee angle with different walking
speeds, and evaluate the proposed method with more subjects,
including older and disabled subjects, and under more practical
scenarios such as stair-ascent, ramp-ascent, and level-ground
walking.

REFERENCES

[1] TWC of the Report, “Report on cardiovascular health and diseases in
China 2021: An updated summary,” Biomed. Environ. Sci., vol. 35, no. 7,
pp. 573–603, 2022.

[2] J. S. Lora-Millan, F. J. Sanchez-Cuesta, J. P. Romero, J. C. Moreno, and
E. Rocon, “A unilateral robotic knee exoskeleton to assess the role of
natural gait assistance in hemiparetic patients,” J. NeuroEng. Rehabil.,
vol. 19, no. 1, pp. 1–24, Oct. 2022.

[3] B. Chen, B. Zi, Z. Wang, L. Qin, and W.-H. Liao, “Knee exoskeletons
for gait rehabilitation and human performance augmentation: A state-of-
the-art,” Mechanism Mach. Theory, vol. 134, pp. 499–511, Apr. 2019.

[4] M. K. Shepherd and E. J. Rouse, “Design and validation of a torque-
controllable knee exoskeleton for sit-to-stand assistance,” IEEE/ASME
Trans. Mechatronics, vol. 22, no. 4, pp. 1695–1704, Aug. 2017.

[5] W. Huo, S. Mohammed, and Y. Amirat, “Impedance reduction control
of a knee joint human-exoskeleton system,” IEEE Trans. Control Syst.
Technol., vol. 27, no. 6, pp. 2541–2556, Nov. 2019.

[6] D. Xiong, D. Zhang, X. Zhao, and Y. Zhao, “Deep learning for EMG-
based human–machine interaction: A review,” IEEE/CAA J. Autom.
Sinica, vol. 8, no. 3, pp. 512–533, Mar. 2021.

[7] E. Zheng, J. Wan, L. Yang, Q. Wang, and H. Qiao, “Wrist angle
estimation with a musculoskeletal model driven by electrical impedance
tomography signals,” IEEE Robot. Autom. Lett., vol. 6, no. 2,
pp. 2186–2193, Apr. 2021.

[8] J. He, X. Sheng, X. Zhu, C. Jiang, and N. Jiang, “Spatial information
enhances myoelectric control performance with only two channels,”
IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 1226–1233, Feb. 2019.

[9] C. Caulcrick, W. Huo, W. Hoult, and R. Vaidyanathan, “Human joint
torque modelling with MMG and EMG during lower limb human-
exoskeleton interaction,” IEEE Robot. Autom. Lett., vol. 6, no. 4,
pp. 7185–7192, Oct. 2021.

[10] C. Caulcrick, W. Huo, E. Franco, S. Mohammed, W. Hoult, and
R. Vaidyanathan, “Model predictive control for human-centred lower
limb robotic assistance,” IEEE Trans. Med. Robot. Bionics, vol. 3, no. 4,
pp. 980–991, Nov. 2021.



4712 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

[11] F. Zhang et al., “SEMG-based continuous estimation of joint angles
of human legs by using BP neural network,” Neurocomputing, vol. 78,
no. 1, pp. 139–148, Feb. 2012.

[12] C. Ma et al., “A bi-directional LSTM network for estimating continuous
upper limb movement from surface electromyography,” IEEE Robot.
Autom. Lett., vol. 6, no. 4, pp. 7217–7224, Oct. 2021.

[13] Y. Geng et al., “A CNN-attention network for continuous estimation of
finger kinematics from surface electromyography,” IEEE Robot. Autom.
Lett., vol. 7, no. 3, pp. 6297–6304, Jul. 2022.

[14] J. W. L. Pau, S. S. Q. Xie, and A. J. Pullan, “Neuromuscular interfacing:
Establishing an EMG-driven model for the human elbow joint,” IEEE
Trans. Biomed. Eng., vol. 59, no. 9, pp. 2586–2593, Sep. 2012.

[15] Q. Ding, J. Han, and X. Zhao, “Continuous estimation of human multi-
joint angles from sEMG using a state-space model,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 25, no. 9, pp. 1518–1528, Sep. 2017.

[16] D. Farina et al., “The extraction of neural information from the surface
EMG for the control of upper-limb prostheses: Emerging avenues and
challenges,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4,
pp. 797–809, Jul. 2014.

[17] J. Liu, X. Sheng, D. Zhang, N. Jiang, and X. Zhu, “Towards zero
retraining for myoelectric control based on common model component
analysis,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 4,
pp. 444–454, Apr. 2016.

[18] R. Merletti and D. Farina, “Muscle coordination, motor synergies, and
primitives from surface EMG,” in Surface Electromyography: Physiol-
ogy, Engineering, and Applications. Piscataway, NJ, USA: IEEE, 2016,
pp. 158–179.

[19] C. J. De Luca, A. Adam, R. Wotiz, L. D. Gilmore, and S. H. Nawab,
“Decomposition of surface EMG signals,” J. Neurophysiol., vol. 96,
no. 3, pp. 1646–1657, Sep. 2006.

[20] D. Farina et al., “Noninvasive, accurate assessment of the behavior
of representative populations of motor units in targeted reinnervated
muscles,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4,
pp. 810–819, Jul. 2014.

[21] Y. Ning, X. Zhu, S. Zhu, and Y. Zhang, “Surface EMG decomposition
based on K -means clustering and convolution kernel compensation,”
IEEE J. Biomed. Health Informat., vol. 19, no. 2, pp. 471–477,
Mar. 2015.

[22] C. Chen, G. Chai, W. Guo, X. Sheng, D. Farina, and X. Zhu, “Prediction
of finger kinematics from discharge timings of motor units: Implications
for intuitive control of myoelectric prostheses,” J. Neural Eng., vol. 16,
no. 2, Apr. 2019, Art. no. 026005.

[23] M. Chen, X. Zhang, X. Chen, and P. Zhou, “Automatic implemen-
tation of progressive FastICA peel-off for high density surface EMG
decomposition,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 1,
pp. 144–152, Jan. 2018.

[24] W. Wang et al., “Prediction of human voluntary torques based on
collaborative neuromusculoskeletal modeling and adaptive learning,”
IEEE Trans. Ind. Electron., vol. 68, no. 6, pp. 5217–5226, Jun. 2021.

[25] J. B. Morrison, “The mechanics of the knee joint in relation to normal
walking,” J. Biomech., vol. 3, no. 1, pp. 51–61, Jan. 1970.

[26] L. Li, D. Landin, J. Grodesky, and J. Myers, “The function of gastrocne-
mius as a knee flexor at selected knee and ankle angles,” J. Electromyogr.
Kinesiol., vol. 12, no. 5, pp. 385–390, Oct. 2002.

[27] S. Zhang, J. Zhang, and J. Han, “Continuous estimation of knee angles
from decomposition of single channel surface electromyography sig-
nals,” in Proc. 27th Int. Conf. Mechatronics Mach. Vis. Pract. (M2VIP),
Shanghai, China, Nov. 2021, pp. 446–451.

[28] K. C. McGill, K. L. Cummins, and L. J. Dorfman, “Automatic decom-
position of the clinical electromyogram,” IEEE Trans. Biomed. Eng.,
vol. BME-32, no. 7, pp. 470–477, Jul. 1985.

[29] D. W. Stashuk, “Decomposition and quantitative analysis of clinical elec-
tromyographic signals,” Med. Eng. Phys., vol. 21, nos. 6–7, pp. 389–404,
Jul. 1999.

[30] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Neuromuscu-
loskeletal modeling: Estimation of muscle forces and joint moments and
movements from measurements of neural command,” J. Appl. Biomech.,
vol. 20, no. 4, pp. 367–395, Nov. 2004.

[31] J. J. Visser, J. E. Hoogkamer, M. F. Bobbert, and P. A. Huijing, “Length
and moment arm of human leg muscles as a function of knee and
hip-joint angles,” Eur. J. Appl. Physiol. Occupational Physiol., vol. 61,
nos. 5–6, pp. 453–460, Dec. 1990.

[32] F. E. Zajac, “Muscle and tendon: Properties, models, scaling, and
application to biomechanics and motor control,” Crit. Rev. Biomed. Eng.,
vol. 17, no. 4, pp. 359–411, 1989.

[33] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441,
Jun. 1963.

[34] F. D. Farf, J. C. Politti, and C. J. Felice, “Evaluation of EMG processing
techniques using information theory,” BioMed. Eng. OnLine, vol. 9,
p. 72, Dec. 2010.

[35] R. L. Knoblauch, M. T. Pietrucha, and M. Nitzburg, “Field studies of
pedestrian walking speed and start-up time,” Transp. Res. Rec., J. Transp.
Res. Board, vol. 1538, no. 1, pp. 27–38, Jan. 1996.

[36] S. Tadano, R. Takeda, and H. Miyagawa, “Three dimensional gait
analysis using wearable acceleration and gyro sensors based on
quaternion calculations,” Sensors, vol. 13, no. 7, pp. 9321–9343,
Jul. 2013.

[37] W. van den Hoorn, P. W. Hodges, J. H. van Dieën, and F. Hug, “Effect of
acute noxious stimulation to the leg or back on muscle synergies during
walking,” J. Neurophysiol., vol. 113, no. 1, pp. 244–254, Jan. 2015.

[38] F. Hug and K. Tucker, “Muscle coordination and the development of
musculoskeletal disorders,” Exercise Sport Sci. Rev., vol. 45, no. 4,
pp. 201–208, Oct. 2017.

[39] W. Hassani, S. S. Mohammed, and Y. Y. Amirat, “Real-time EMG
driven lower limb actuated orthosis for assistance as needed movement
strategy,” in Proc. RSS, 2013, pp. 1–9.

[40] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, “Intention-
based EMG control for powered exoskeletons,” IEEE Trans. Biomed.
Eng., vol. 59, no. 8, pp. 2180–2190, Aug. 2012.

[41] G. Durandau, W. F. Rampeltshammer, H. van der Kooij, and M. Sartori,
“Neuromechanical model-based adaptive control of bilateral ankle
exoskeletons: Biological joint torque and electromyogram reduction
across walking conditions,” IEEE Trans. Robot., vol. 38, no. 3,
pp. 1380–1394, Jun. 2022.

[42] J. Taborri et al., “Feasibility of muscle synergy outcomes in clinics,
robotics, and sports: A systematic review,” Appl. Bionics Biomech.,
vol. 2018, pp. 1–19, Nov. 2018.

[43] N. A. Alibeji, V. Molazadeh, F. Moore-Clingenpeel, and N. Sharma,
“A muscle synergy-inspired control design to coordinate functional
electrical stimulation and a powered exoskeleton: Artificial generation
of synergies to reduce input dimensionality,” IEEE Control Syst. Mag.,
vol. 38, no. 6, pp. 35–60, Dec. 2018.

[44] R. A. Garnett, M. J. O’Donovan, J. A. Stephens, and A. Taylor, “Motor
unit organization of human medial gastrocnemius,” J. Physiol., vol. 287,
no. 1, pp. 33–43, Feb. 1979.

[45] N. Jiang et al., “Bio-robotics research for non-invasive myoelec-
tric neural interfaces for upper-limb prosthetic control: A 10-year
perspective review,” Nat. Sci. Rev., vol. 10, no. 5, Apr. 2023,
Art. no. nwad048.

[46] C. Wei et al., “Single-channel surface electromyography signal classi-
fication with variational mode decomposition and entropy feature for
lower limb movements recognition,” Biomed. Signal Process. Control,
vol. 74, Apr. 2022, Art. no. 103487.

[47] W. Sun, J. Zhu, Y. Jiang, H. Yokoi, and Q. Huang, “One-channel surface
electromyography decomposition for muscle force estimation,” Frontiers
Neurorobot., vol. 12, p. 20, May 2018.

[48] J. Chen, X. Zhang, Y. Cheng, and N. Xi, “Surface EMG based con-
tinuous estimation of human lower limb joint angles by using deep
belief networks,” Biomed. Signal Process. Control, vol. 40, pp. 335–342,
Feb. 2018.

[49] X. Wang et al., “SEMG-based consecutive estimation of human lower
limb movement by using multi-branch neural network,” Biomed. Signal
Process. Control, vol. 68, Jul. 2021, Art. no. 102781.

[50] D. Xiong, D. Zhang, X. Zhao, Y. Chu, and Y. Zhao, “Synergy-
based neural interface for human gait tracking with deep learning,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 2271–2280,
2021.

[51] W. Zhong, X. Fu, and M. Zhang, “A muscle synergy-driven ANFIS
approach to predict continuous knee joint movement,” IEEE Trans.
Fuzzy Syst., vol. 30, no. 6, pp. 1553–1563, Jun. 2022.

[52] C. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “Effects of walking speed
on gait biomechanics in healthy participants: A systematic review and
meta-analysis,” Syst. Rev., vol. 8, p. 153, Jan. 2019.


