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Abstract— One of the main technological barriers hin-
dering the development of active industrial exoskeleton
is today represented by the lack of suitable payload
estimation algorithms characterized by high accuracy
and low calibration time. The knowledge of the pay-
load enables exoskeletons to dynamically provide the
required assistance to the user. This work proposes a
payload estimation methodology based on personalized
Electromyography-driven musculoskeletal models (pEMS)
combined with a payload estimation method we called
“delta torque” that allows the decoupling of payload
dynamical properties from human dynamical properties.
The contribution of this work lies in the conceptualization
of such methodology and its validation considering human
operators during industrial lifting tasks. With respect to
existing solutions often based on machine learning, our
methodology requires smaller training datasets and can
better generalize across different payloads and tasks. The
proposed payload estimation methodology has been val-
idated on lifting tasks with 0kg, 5kg, 10kg and 15kg,
resulting in an average MAE of about 1.4 Kg. Even if 5kg
and 10Kg lifting tasks were out of the training set, the MAE
related to these tasks are 1.6 kg and 1.1 kg, respectively,
demonstrating the generalizing property of the proposed
methodology. To the best of the authors’ knowledge, this
is the first time that an EMG-driven model-based approach
is proposed for human payload estimation.

Index Terms— Payload estimation, electromyography,
EMG-based control, industrial exoskeletons, upper-limb
exoskeletons, trunk exoskeletons, EMG-driven muscu-
loskeletal modeling.
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I. INTRODUCTION

REGULARLY lifting heavy loads is considered one of the
main factors contributing to work-related musculoskele-

tal disorders [1]. The weight being lifted and the frequency
of lifting are associated with the development of chronic low
back pain (LBP), due to high mechanical loads resulting in
high lumbar joint moments and compression forces [2], [3].

Robotic exoskeletons have the potential to protect muscu-
loskeletal tissues from injury and to reduce the occurrence
of chronic musculoskeletal disorders. Industrial exoskeletons
are designed with the aim of supporting workers in load-lifting
and load-carrying tasks, as well as during quasi static overhead
tasks [4].

Industrial exoskeletons can be categorized as either passive,
active or semi-active [4], [5]. Passive devices are not powered
and rely on elastic components only, while active devices
are powered using electric or pneumatic actuators [6], [7],
[8]. If passive exoskeletons are characterized by simplicity
of design, high wearability and lightweight form factors,
active exoskeletons can provide a more versatile physical
assistance by modulating the assistive torque. Combining
passive and active elements, semi-active exoskeletons [9] can
preserve lightweight form factors, while providing highly
adaptive solutions. Unfortunately, only a few semi-active or
active market-ready devices can be found and they seem
to be still under development [7], [8], [10], [11], [12],
[13].

One of the main challenges related to the development of
such active exoskeletons is providing the appropriate assistive
forces when needed [14].

Existing control strategies provide assistance based on the
operator’s kinematics [15], [16], gravity compensation algo-
rithms [14], [17], [18], [19] but without considering any
external payload, proportional myoelectric control [14], [17],
[20], or a combination of them [14], [17]. Most of these
control strategies are based on manual parameter selection,
which usually are payload-dependent and subject-dependent.
This involves the operator manually setting the assistance
level with a user interface any time the payload and/or the
task changes [10], [11], [12], [13]. Surprisingly, although
assistive forces should be delivered exactly to compensate
for payload-induced forces, none of existing control strategies
are based on knowledge or estimation of payload properties,
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TABLE I
SUMMARY OF PAYLOAD ESTIMATION/CLASSIFICATION STUDIES. EXISTING PAYLOAD ESTIMATION SOLUTIONS ARE MODEL-BASED AND USE

DIRECT FORCE MEASUREMENTS (FORCE PLATES, FORCE SHOES, FORCE/TORQUE SENSORS) AND DO NOT REQUIRE A TRAINING DATASET.
INSTEAD, OUR SOLUTION USES AN INDIRECT FORCE MEASUREMENT BASED ON EMG SENSORS

such as mass and inertia matrix. This paper exactly addresses
this challenge: estimating payload properties to adaptively
compensate for payload-induced gravity and inertial forces.
A main issue is that the payload is usually not directly attached
to the exoskeleton: it is lifted by the operator who is in turn
supported by the exoskeleton. Such human inter mediation
prevents distinguishing payload-induced forces from human
forces. Measuring interaction forces between the human and
the exoskeleton does not solve the problem since without
knowledge or assumption on human internal forces the iden-
tification of payload properties represents a mathematically
undetermined problem. Thus, the estimation of human inter-
nal forces due to muscular activations becomes of critical
importance.

Several studies investigated payload classification through
surface electromyography (sEMG) signals [21], [22], [23],
[24]. A feasibility study described in [21] considers two
armbands with 8 sEMG channels each and an Inertial Mea-
surement Unit. Payload classification during a bicep curling
task (2, 4, 6 and 8kg) is proposed using an Artificial Neural
Network (ANN). Another study using sEMG and IMU is
described in [24]. Authors propose a supervised machine
learning classifier to distinguish different payload configura-
tions during gait. Considering a limited sample size, Support
Vector Machine is used in [23] to classify 1kg, 3kg and 7kg
payloads during an arm flexion task using sEMG. Another
study [22] investigated real-time payload classification (0, 4.5,
10.8kg) using multi-nomial logistic regression trained with
sEMG during lifting tasks before the time of full payload
support by the participant. Other approaches are able to
classificate the payload mass without using sEMG. In [25]
authors propose a deep-learning network to perform payload
classification (5, 10, 15 kg) based on IMU kinematic data
only. In [26] authors propose a payload estimation method
using IMUs in combination with force plates or sensorized
shoes. In [27] authors consider the special case of exoskeletons
that directly interact with the payload: force/torque sensors are
installed at the payload-exoskeleton interfaces and the payload
mass is then easily estimated. Unfortunately, this solution is
not adequate for most of industrial exoskeletons where the
exoskeleton is not directly attached to the payload and the
interaction is mediated by the human.

Table I summarizes the described approaches, which can
be categorized as “payload classification” and “payload esti-
mation” approaches. A main difference is that payload
classification approaches are limited to the weight instances
appearing in the training dataset. This implies that a large
training dataset is necessary in the case of several payloads.
It can be observed from Table I that all existing payload
estimation approaches are not based on sEMG. They use
direct force measurements, e.g. force plates, sensorized shoes
or force/torque sensors at the robot-payload interfaces, which
make the estimation much simpler. Unfortunately, such sensors
are not usually available in industrial settings because of costs
or feasibility issues.

One of the main issues of estimating human internal forces
is the highly non-linear relationship between the measured
sEMG and the exerted muscular force [28], [29]. EMG-
driven musculoskeletal models inherently account for this
non-linearity [30] and represents an alternative to machine
learning for estimating muscular forces [29], [30], [31], [32].
Their use in real-time applications have been demonstrated in
[32], [33], and [34].

For the first time this work proposes a methodology to
estimate payload using an EMG-driven model. The approach
is based on the combination of personalized EMG-driven
musculoskeletal (pEMS) models and an estimation method
we called “delta torque” (1τ ) that allows decoupling payload
dynamical properties from human dynamical properties. The
“delta torque” method is a key building block of our method-
ology as it does not require the human rigid-body model
expressed in closed-form, which is not available in state-
of-the-art musculoskeletal modeling tools. As highlighted in
Table I, our approach is the only existing EMG-based solution
falling in the payload estimation category, and thus able to
deal with payload instances not included in the training set.
In this study, payload estimation is demonstrated considering
sEMG recorded on the back muscles, which poses harder
challenges compared to the upper arm muscles considered in
other studies [21], [23]. These challenges are due to the com-
plexity of the dynamics between back muscle activations and
payload motion. Similarly to existing literature, the payload is
regarded as a point mass and the considered lifting tasks are
symmetric.
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TABLE II
GLOSSARY

The paper is organized as follows. Section II outlines the
proposed payload mass estimation methodology, which is
divided into three distinct steps. Section III describes the
performed experimental trials and how the data have been
collected and processed. Section IV describes the achieved
results. Section V discusses the study results, limitations and
future works. Conclusions are reported in Section VI.

II. PROPOSED METHODOLOGY

Let us consider the following equations for a human seen
as a multi-body dynamical system

B(q)q̈ + C(q, q̇)q̇ + g(q) = τ − J T
R (q)FR − J T

L (q)FL
(1)

where q ∈ Rn represents the generalized coordinates, B(q) ∈

Rn×n is the human inertia matrix, C(q, q̇) ∈ Rn×n is the
apparent forces matrix, g(q) ∈ Rn is the vector of gravity
torques, τ ∈ Rn represents the generalized torques due to
human muscles, FR ∈ R6 and FL ∈ R6 represent the
Cartesian forces and torques applied at the end-effector of
the right and left arms (due to the payload), JR(q) ∈ R6×n

and JL(q) ∈ R6×n represent the right hand and left hand
Jacobians. Since we only considers symmetric lifting tasks we
assume that external forces are perfectly balanced between the
right and left sides, i.e. FR = FL . Hence, equation (1) can be
simplified to

B(q)q̈ + C(q, q̇)q̇ + g(q) = τ − J T (q)Fext (2)

where we have the same Jacobian for both upper arms, i.e.
J(q) = JR(q) = JL(q) and Fext = FR + FL .

The proposed payload mass estimation approach involves
the following steps: Step 1:

Step 1: Estimating joint torques τ due to muscle activity using
state-of-the-art pEMS models;

Step 2: Using the 1τ approach to estimate the external force
Fext , which is based on the difference in torque between
loaded and unloaded conditions of the same kinematic
task;

Step 3: Using estimated external forces F̂ext to compute the
payload properties

The main advantage of steps 2 and 3 is that to estimate
the payload mass we do not need to explicitly compute the
matrices B(q), C(q, q̇) and g(q) appearing in equation (1).
In particular, if we consider a human task characterized by the
coordinates q̄(t) such that

B(q̄) ¨̄q + C(q̄, ˙̄q) ˙̄q + g(q̄) = τ̄ − J T (q̄)Fext , (3)

and we define τ̄ N P as the joint torque corresponding to the
same task, i.e. characterized by the same coordinates q̄(t), and
hypothetically carried out without any payload, such that

B(q̄) ¨̄q + C(q̄, ˙̄q) ˙̄q + g(q̄) = τ̄ N P , (4)

then, we easily have

1τ̄ = τ̄ − τ̄ N P
= J T (q̄)Fext (5)

This reveals that by using an estimate of joint torque τ̄ from
step 1 and by using inverse dynamics (ID) solvers to compute
τ̄ N P it is possible to compute 1τ̄ which is directly related
to external forces. Then, payload inertial properties can be
easily inferred from estimated external forces, as described
below. We highlight that describing the payload as external
torques and not as within the system is the fundamental
point making our approach practically viable. Otherwise, if the
payload effects were included in matrices B(q) and C(q, q̇)

the estimation process would need explicit knowledge of those
matrices and would lead to higher complexity, see for instance
the load identification approaches proposed in [35] and [36].

Finally, the last step of the proposed approach considers the
following relation between external forces Fext and payload
mass

Fext = m P (a(t) + g) =

 ax (t)m P
m P (g + ay(t))

az(t)m P

 (6)

where m P represents the payload mass, a = [ax , ay, az]
T

represents the acceleration of the payload and g = [0, g, 0]
T

is the gravity acceleration vector. Here we assume that the
payload is held near its barycenter and that it is not rotating
during motion, which are reasonable assumptions for a wide
spectrum of industrial tasks. However, the approach can be
extended to payload rotation, to asymmetric tasks and identi-
fication of the inertia matrix.
Considering equation (5) the payload mass m P can be related
to the delta torque using the following expression:

1τ̄i (t) = m P J i (q)T

 ax (t)
ay(t) + g

az(t)

 (7)

where 1τ̄i is the delta torque element referring to the i-th
human joint and J i (q) is the i-th column of the Jacobian
matrix, mapping the velocity of the joint i to the end-effector
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Fig. 1. Calibration pipeline: the blue block represents the calibration process, its inputs are the joint angles, the EMG linear envelopes and the
torques computed via inverse dynamics. The output of the calibration process is a calibrated person-specific pEMS model, where MTU parameters
are optimized.

velocity. Since we assume the task kinematics is recorded,
everything is known except the payload mass m P and a
standard linear regression method can be used to estimate it.

One of the advantages of the proposed approach lies in its
versatility: it can be applied to any human joint i by measuring
related muscular activations and by selecting different columns
of the Jacobian matrix J(q). If sEMG are available from
several muscles related to different human joints, then a more
robust mass estimation can be performed by combining infor-
mation from multiple joints. This can be done by considering
more instances of equation (7) within the same linear regressor.
An example is given in section II-C.

A. Step 1: Estimation of Joint Torques Using a pEMS
Model

Joint torque estimation is performed using a pEMS model
that requires sEMG and joint angles. The pEMS model is
built using OpenSim [37], which relies on the multi-body
simulator Simbody, and the Calibrated EMG-informed Neuro-
musculoskeletal (CEINMS) toolbox [29], [38]. The estimation
includes three sub-steps.

1) Musculoskeletal Model Design and Scaling: The Lifting
Full-Body (LFB) model [39] is used. The LFB model is
scaled to the anthropometric measures of the participants
using 3D marker data collected during static trials where
the participants stood still without movement. As a result
of this process, a person-specific skeletal model is produced.
In addition to a complete skeletal structure, the LFB model
consists of 238 Hill-type muscle-tendon units (MTU) includ-
ing muscles on the back and on the abdomen. The model
was designed for lifting movements with the net trunk motion
distributed across six intervertebral joints (S1 until T12) using
coupling constraints.

2) Calibration of MTU Parameters: The calibration proce-
dure is required to extract person-specific MTU parameters,
which include the tendon slack length, the pennation angle
of the muscle fibre at its optimal length, the optimal fibre
length at maximum activation, the maximum isometric muscle
force, the normalised maximum contraction velocity of the
fibre. Calibration is performed once per participant using the
CEINMS toolbox, which optimizes the MTU parameters to
minimize an objective function based on the error between
the joint torque computed using inverse dynamics and EMG-
driven estimation. In our case, the calibration set includes
the two lifting tasks with 0 kg and 15 kg described in

Section III-A. The calibration set comprises only the first half
of the tasks. The calibration pipeline is represented in Figure 1.

3) Joint Torque Estimation: The scaled and calibrated pEMS
model is used to estimate torque τ̄

pE M S
i at any joint i given

the related muscle activity measured using sEMG. In particu-
lar, the pEMS model is used to compute forward dynamics
(FD) occurring from the onset of muscle activation to the
development of muscle forces and joint torque. In our study,
the process is driven by muscle activations measured on the
lumbar muscles and the output is τ̄

pE M S
L5S1 , i.e. the torque related

to the L5S1 flexion-extension human joint.

B. Step 2: Delta Torque Estimation
Once the torque τ̄

pE M S
i is estimated at any joint of interest,

the inverse dynamics of the pEMS model is used to compute
the human joint torques τ̄ N P

i in unloaded configurations,
i.e. as if the payload was not there. Such a hypothetical
condition is considered to compute the delta torque as defined
in equation (5)

1τ̄ (t)pE M S
=


1τ̄1(t)pE M S

1τ̄2(t)pE M S

...

1τ̄n(t)pE M S



=


τ̄1(t)pE M S

− τ̄1(t)N P

τ̄2(t)pE M S
− τ̄2(t)N P

...

τ̄n(t)pE M S
− τ̄n(t)N P


(8)

where 1τ̄i is the i-th component of 1τ̄ in equation (5) related
to the joint i . The quantity τ̄i is estimated using a pEMS model
and leading to τ̄

pE M S
i , as explained in the previous section.

The bar symbol in equation (8) just indicates that 1τ̄ refers
to the specific task whose generalized coordinates are q̄.

Finally, in order to compute equation (7) one can use the
OpenSim’s API to retrieve the Jacobian column J i . Even if
the generality of the approach allows estimating the payload
properties starting from sEMG measures related to any human
joint, we demonstrate the approach considering the L5S1
joint. In this case one needs to consider the specific Jacobian
column related to the L5S1 joint which maps the L5S1
joint velocity to the end-effector Cartesian velocity. When the
sEMG information is available on multiple muscles related to
multiple joints, then multiple columns of the Jacobian can be
used to perform a more robust mass estimation. For instance,
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Fig. 2. Delta torque and payload mass estimation pipeline: the calibrated personalized model (pEMS) uses joint angles and EMG data to estimate
τ̄

pEMS
i , computed using Forward Dynamics. 1τ̄pEMS

i is computed as the difference between the output of the pEMS model τ̄pEMS
i and the torque of

the same task assumed without external forces, i.e. τ̄NP
i , computed using Inverse Dynamics. Then, the inertial properties of the load are estimated

using a least square approach.

if the sEMG information is available on both the elbow and
L5S1 joints, the two Jacobian columns can be used.

C. Step 3: Payload Mass Estimation
In this step equation (7) needs to be specialised for this

specific case study. Since in our case the sEMG information
is available on the muscles related to the L5S1 joint, equation
(7) becomes

1τ̄ (t)pE M S
L5S1 = m P J L5S1(q)T (a(t) + g) (9)

where J L5S1(q)T
=

(
∂x

∂L5S1
∂y

∂L5S1
∂z

∂L5S1

)
represents the

first three elements of the column of the Jacobian associated
with the L5S1 joint. If we consider the time series of 1τ̄

pE M S
L5S1 ,

this leads to a regression model in the form

Y = Xm P

where, m P is the parameter we want to estimate, and Y , X
are defined as follows:

Y =


1τ

pE M S
L5S1 (q1)

...

1τ
pE M S
L5S1 (qn)

 , X =

 JL5S1(q1)(a1 + g)
...

JL5S1(qn)(an + g)

 .

The regression model can be solved using the standard least
square solution:

m̂ P = (XT X)−1 XT Y (10)

In the case where sEMG information is available on both
the elbow and L5S1 joints, then Y and X can be defined as
follows:

Y =



1τ
pE M S
L5S1 (q1)

1τ
pE M S

elbow (q1)

...

1τ
pE M S
L5S1 (qn)

1τ
pE M S

elbow (qn)


X =



JL5S1(q1)(a1 + g)

Jelbow(q1)(a1 + g)

...

JL5S1(qn)(an + g)

Jelbow(qn)(an + g)


with q1 = q(t1) and a1 = a(t1). The mass estimated by the
least squares solution, denoted as m̂ P , is hereon referred to as
m pE M S

P .
An overall graphical representation of all estimation steps is
proposed in Figure 2.

III. EXPERIMENTAL TRIALS

A. Experimental Setup
Experimental procedures were approved by the Natural

Sciences and Engineering Sciences Ethics committee of the
University of Twente (reference number: 2022.168) and all
participants gave written informed consent. Nine healthy male
participants (average body mass: 67 ± 8 kg; height: 171 ±

8 cm; and age: 28 ± 3 years old) were asked to pick up a
box (40 × 30x22 cm) positioned on the ground in front of
them, to execute a squat movement and put the box down
on the ground. Once the squat task was over and the box
was released on the ground, the participants returned to the
initial standing position. The squat task is represented in
Figure 3. The participants were instructed not to rotate the
box while in motion. The participants completed 5 repetitions
per weight condition (0, 5, 10 and 15 kg) resulting in the
execution of 4 different trials and a total of 20 repetitions.
The participants rested for about 1 minute between each trial.
During lifting tasks with 0kg, participants lifted a box of
negligible weight (about 100 grams), allowing them to perform
the task making the same movement as the tasks with a
weighted box. We selected a maximum weight of 15kg to
prevent participants from experiencing musculoskeletal fatigue
with weights higher than 15kg. This would have led to longer
experimental trials, providing participants with sufficient time
for rest and recovery. Before the actual trial experiments, both
an MVC (Maximum Voluntary Contraction) trial and a static
trial were recorded. During the MVC trial the participants
were instructed to bend their trunk forward and then attempt
to return to an upright position while an external force was
manually applied to their shoulders. The purpose of this force
is to maximally activate the lower back muscles. During the
static trial the participant was asked to stay still for about
30 seconds.

B. Data Collection and Processing
A total of 69 markers were placed both on the participant

(61) and on the weighted box (8), and their 3D trajectories
were recorded at 128 Hz using a twelve-camera motion capture
system (Qualisys Medical AB, Sweden). A total of 6 bipolar
sEMG sensors were placed bilaterally following SENIAM
(Surface ElectroMyoGraphy for the Non-Invasive Assessment
of Muscles) [40] guidelines on the following back muscles:
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Fig. 3. Squat task: starting from an upright posture, squatting down to
pick up the box, lifting the box until upright posture, standing still while
holding the box, squatting down to release the box, returning to initial
position. Once the sequence is over the participant is back to the starting
point.

Fig. 4. sEMG sensors are placed bilaterally on the participant’s back,
targeting the following muscles: Longissimus Thoracis located at 4 cm
lateral to T10 (blue sensor), Longissimus Lumborum located at 3 cm
lateral to L1 (green sensor), and Iliocostalis Lumborum located at 6 cm
lateral to L2 (orange sensor).

Iliocostalis Lumborum, Longissimus Lumborum, Longissimus
Thoracis. Figure 4 shows the location of sEMG sensors on the
back of a participant. EMG signals were recorded at 2048 Hz
using Delsys Bagnoli system (Delsys, Boston, MA). Marker
trajectories were low-pass filtered with a second-order zero-
phase Butterworth filter (6 Hz). Raw sEMG were bandpass
filtered (25-250 Hz), full-wave rectified and low-pass filtered
(6 Hz) to obtain EMG linear envelopes. EMG linear envelopes
were then normalized using the recorded MVC trials data.

C. Data Analysis
Out of the 9 recorded participants, 7 were analyzed while

the remaining 2 were excluded due to problems with sEMG
sensor data recording. The recorded marker trajectories are
used to perform inverse kinematics analysis allowing the
computation of joint angles q̄(t) for each of the lifting tasks.

TABLE III
QUANTIFICATION OF ESTIMATION ERRORS PER WEIGHT CLASS

CONSIDERING mpEMS
P PERFORMED BY ALL PARTICIPANTS

The inverse kinematics analysis is performed using Open-
Sim’s Inverse Kinematics Tool. The computed q̄(t) and the
recorded sEMG are used to estimate the joint torque τ̄

pE M S
L5S1

as described in Section II-A and to compute 1τ̄
pE M S
L5S1 as

described in Section II-B. The least-square approach described
in Section II-C is then used to compute a unique value m pE M S

P
for each lifting time window (LTW), i.e. the set of time instants
during which the payload is being lifted by the participant. The
time instants when the payload is being lifted and released on
the ground are assumed known. Since each lifting trial consists
of 5 repetitions, 5 different estimated mass values per trial are
calculated. Considering all the participants and all the trials,
the mean LTW length is 4.5 ±1 seconds. The LTW length is
not constant among participants since each one of them held
the box for an arbitrary amount of time.

IV. EXPERIMENTAL RESULTS

Figures 5 and 6 show the distribution of the estimated
payload mass m pE M S

P for the lifting tasks with 5, 10, 15 kg
payloads using blue boxplots. Figures 5 and 6 refers to intra
and inter participant data, respectively. Intra-participant anal-
ysis evaluates payload estimation results for each participant
independently, while inter-participant analysis aggregates pay-
load estimation results from all participants. RM SE (Root
Mean Squared Error), M AE (Mean Absolute Error) and
R2 are computed considering the difference between the real
and estimated mass values for all the performed tasks and
are reported in Figure 5, Figure 6 and Table III. Table III
provides an overview of the mass estimation results grouped
by payloads showing estimation errors per weight class.
In addition to RM SE and M AE , the relative estimation
error e% related to each weight class is also reported. It is
computed as 100 ∗

M AE
m P

. For analysis purposes we reported
in Figures 5 and 6 additional gray boxplots which exclude
intrinsic noise in sEMG acquisition, modeling and calibration
errors. An overview of the different sources of errors possibly
affecting the estimation process is reported in Table IV, where
“violation of assumptions on the task” regards the modelling
assumptions reported in Section V, i.e. left/right symmetry
and payload non-rotation, while “computation errors” regards
numerical errors in the Jacobian and Inverse Dynamics com-
putation. In Section V, a detailed explanation will be provided
on how to isolate individual sources of error from one another.

Finally, we analyzed the baseline noise of sEMG signals in
all the performed experiments. We collected the first and last
few seconds of each sEMG signal (all 6 recorded channels)
when the participants are at rest, i.e. they are standing still and
not lifting the box. We computed the variance of these signals
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Fig. 5. Analysis of intra-participant results: evaluation of the estimated mass mpEMS
P for each participant. For error analysis purposes, the results of

each one of the participants are represented by two boxplots for each squat lifting task with 5, 10 and 15 kg payloads. The blue boxplots represent
the mass estimation results mpEMS

P , while the gray boxplots represent the mass estimation results mID
P that are computed excluding the sources of

errors described in Table IV. For each participant, RMSE, MAE, R2 are computed considering mpEMS
P of all the tasks performed by that particular

participant.

Fig. 6. Analysis of inter-participant results: evaluation of the esti-
mated mass mpEMS

P for each task considering mpEMS
P performed by all

participants. The blue boxplots represent the mass estimation results
mpEMS

P , while the gray boxplots represent the mass estimation results
mID

P that are computed excluding certain sources of errors, as reported
in Table IV. For each lifting task, RMSE, MAE, R2 are computed consid-
ering mpEMS

P .

and performed paired t-tests to see if there is any statistically
significant difference in the variance of the baseline noise of
different tasks. We found no statistically significant difference,
since all 6 p-values are larger than 0.05.

V. DISCUSSION

We developed and validated a novel payload estimation
methodology based on pEMS models and on the “delta
torque” approach. Such methodology is driven by sEMG and

TABLE IV
PAYLOAD MASS ESTIMATION SOURCES OF ERROR. THE ASSUMPTIONS

ON THE TASK ARE: TASK SYMMETRY AND PAYLOAD NON-ROTATION

joint angle information and is able to estimate payload mass
instances that are not present in the pEMS calibration set. Our
calibration set only include two lifting tasks with 0 and 15kg
payloads while the proposed approach was able to accurately
estimate any payload instance including 5 kg and 10 kg.

Figure 6 and Table III summarize the overall result of this
work: the proposed payload estimation methodology has an
average MAE of about 1.4 Kg. Even if 5kg and 10Kg lifting
tasks were out of the training set, the MAE related to these
tasks are 1.6 kg and 1.1 kg, respectively, demonstrating the
generalizing property of the proposed methodology. Even
if the achieved accuracy seems suitable for the considered
application, a comparison with other existing EMG-based
approaches is not immediate because estimation and clas-
sification results are characterized by different performance
indicators: false positive/negative for classification and abso-
lute or relative errors for estimation.

The following paragraph reports an analysis related to the
sources of errors that can affect the payload mass estimation.
As reported in Table IV, we could separate errors due to EMG
acquisition and pEMS modeling from other sources of error.
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To achieve this separation, we compute the payload mass by
replacing τ̄

pE M S
L5S1 with τ̄ I D

L5S1 in equation (8). The quantity
τ̄ I D

L5S1 is computed with OpenSim’s Inverse Dynamics Tool
assuming knowledge of the payload, and without considering
EMG data. Since our goal is to estimate the payload, this
assumption is not meaningful in practice, but is useful to
distinguish sources of error. The payload mass estimated
considering this assumption is called m I D

P and is reported
in the gray boxplots of Figures 5 and 6. Since m I D

P does
not rely on sEMG, it is not affected by sEMG noise and
pEMS modeling errors. The reader can observe the great
accuracy of m I D

P , meaning that estimation errors are mainly
due to sEMG acquisition and pEMS modeling, and not to
computation errors and violation of assumptions on the task.
Therefore we can conclude that the estimation process is
robust to slight asymmetries.

Another point worthy of discussion is that the results
indicate a more accurate estimation of heavier weights com-
pared to lighter ones, as evidenced by a larger relative error
associated with lighter weights in Table III. This can be due to
the following two reasons. First, the sEMG signals recorded in
tasks with heavier payloads are characterized by a higher Sig-
nal to Noise Ratio (SNR). This is because while baseline noise
is the same among different experiments, the sEMG signal
amplitude is higher for tasks carried out with heavier payloads.
Second, the CEINMS calibration procedure minimizes the
error between estimated and measured joint torques, a metric
that tends to be larger for tasks involving heavy payloads.
This implicitly gives more importance to tasks with heavier
payloads. This aspect will be addressed in our future work
by revising the CEINMS calibration procedure. Also, future
works will include approaches to improve estimation accuracy
and robustness to sEMG noise and to modeling errors, includ-
ing more advanced mass estimation algorithms to solve for
m P in equation (9). Furthermore, measuring multiple muscular
activations, related to multiple joints allows to introduce some
level of redundancy and therefore to increase robustness. This
may be particularly useful in case of singular configurations
or when a joint is close to articular limits.

Estimation latency is usually not considered in existing
studies. However, in real-world applications the payload mass
needs to be computed as quickly as possible. Even if in our
work the payload mass estimation is performed considering the
entire LTW, whose length is 4.5 seconds, theoretically, a single
estimation could be based on a single sample. However,
using more samples is essential to filter noise and artefacts.
By performing an inter-subject analysis with reduced LTW
size, we indeed recorded a slight loss of estimation accuracy.
If the LTW size is set to 2 seconds, then RM SE = 2.1kg,
M AE = 1.6kg and R2

= 0.73, if the LTW size is set to
1 second RM SE = 2.3kg, M AE = 1.8kg and R2

= 0.66.
Estimation latency minimization will be addressed in our
future work.

Furthermore, asymmetric tasks represent a natural extension
of our approach and will be considered in future studies.
Finally, our future work will entail implementation and test-
ing of payload-adaptive strategies on a real-world assistive
exoskeleton. Since exoskeleton assistive torque alters the

wearer’s muscular activity, this will be modeled in the multi-
body dynamic model (1) by adding the exoskeleton dynamics
and torque contribution.

The implementation on a real-world exoskeleton will
also require the real time computation of pEMS model’s
direct kinematics, inverse and forward dynamics, and
Jacobian matrix, which has been demonstrated to be
feasible [32], [33], [34].

A. Study Limitations
One of the limitation of this study lies in the type of per-

formed tasks, since only symmetric tasks have been performed.
Asymmetric tasks should also be taken in consideration.
During an asymmetric task JR(q) is different from JL(q) in
equation (1), and likewise, the external forces FR and FL are
not the same since the forces due to the payload are not evenly
distributed between left and right sides. Another limiting
factor of our validation regards the missing information about
abdominal muscles that could have degraded the calibration
of the pEMS model and the joint torque estimation. Indeed,
we did not measure muscle activity on the abdominal muscles
including the Rectus Abdominus, Internal Obliques, External
Obliques, which are used to drive the trunk pEMS model
[30]. Although these muscles do not have shown significant
variations during lifting [30], [41], their absence influences the
accuracy in estimating the joint moments at the lower back.
As a consequence, measuring abdominal activations may lead
to improve our estimation results.

Another limitation is represented by the lifting detection
strategy, since the time instants when the payload is being
lifted and released on the ground are assumed known. Such
assumption can be addressed in real-life scenarios by develop-
ing a muscle activity onset detection algorithm. Furthermore,
the sample population in this study was limited to male
participants, which is another limitation. Additionally, the
human-exoskeleton interaction is not yet modeled in the pro-
posed methodology.

VI. CONCLUSION

For the first time this paper proposes an EMG-driven model-
based approach for human payload estimation. The proposed
methodology includes the exploitation of pEMS models within
a so-called “delta torque” approach.

The proposed methodology has been validated on lifting
tasks with 0kg, 5kg, 10kg and 15kg, resulting in an average
MAE of about 1.4 Kg. Even if 5kg and 10Kg lifting tasks
were out of the training set, the MAE related to these tasks are
1.6 kg and 1.1 kg, respectively, demonstrating its generalizing
property. Differently from other works, the proposed method-
ology is able to estimate weight instances not included in the
calibration set, thus reducing the time needed for calibration.
Also, the method is not based on recognizing task-specific
motion patterns and - once calibrated on the subject - can
easily generalize over a wide repertoire of activities. Finally,
the proposed solution does not rely on external expensive
sensors (e.g. force plates) and the input data may be acquired
from wearable sensors fostering applicability of the approach
to real-world scenarios.
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