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Abstract— Hand gesture recognition (HGR) based on
surface electromyogram (sEMG) and Accelerometer (ACC)
signals is increasingly attractive where fusion strategies
are crucial for performance and remain challenging. Cur-
rently, neural network-based fusion methods have gained
superior performance. Nevertheless, these methods typ-
ically fuse sEMG and ACC either in the early or late
stages, overlooking the integration of entire cross-modal
hierarchical information within each individual hidden
layer, thus inducing inefficient inter-modal fusion. To this
end, we propose a novel Alignment-Enhanced Interactive
Fusion (AiFusion) model, which achieves effective fusion
via a progressive hierarchical fusion strategy. Notably,
AiFusion can flexibly perform both complete and incom-
plete multimodal HGR. Specifically, AiFusion contains two
unimodal branches and a cascaded transformer-based mul-
timodal fusion branch. The fusion branch is first designed
to adequately characterize modality-interactive knowledge
by adaptively capturing inter-modal similarity and fus-
ing hierarchical features from all branches layer by layer.
Then, the modality-interactive knowledge is aligned with
that of unimodality using cross-modal supervised con-
trastive learning and online distillation from embedding and
probability spaces respectively. These alignments further
promote fusion quality and refine modality-specific repre-
sentations. Finally, the recognition outcomes are set to be
determined by available modalities, thus contributing to
handling the incomplete multimodal HGR problem, which
is frequently encountered in real-world scenarios. Exper-
imental results on five public datasets demonstrate that
AiFusion outperforms most state-of-the-art benchmarks in
complete multimodal HGR. Impressively, it also surpasses
the unimodal baselines in the challenging incomplete
multimodal HGR. The proposed AiFusion provides a
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promising solution to realize effective and robust multi-
modal HGR-based interfaces.

Index Terms— Multimodal fusion, hand gesture recogni-
tion, myoelectric control, accelerometer, incomplete multi-
modal, alignment.

I. INTRODUCTION

HAND gesture recognition (HGR) has become a vital role
in an intuitive and practical human-machine interface

(HMI). An increasing number of studies are focusing on pursu-
ing the high effectiveness and quite robustness of HGR-based
HMI, because these directly affect the acceptance of users
and the efficiency of collaboration with external machines [1],
[2], [3], [4], [5]. The HGR based on surface electromyogram
(sEMG) and Accelerometer (ACC) signal has expressed enor-
mous potential [6], [7], [8], [9] for two reasons. Firstly, the
excellent characteristics of sEMG and ACC signal guarantee
its feasibility as the medium of HMI [7], [8]. Specifically,
sEMG is a non-invasive electrophysiological signal containing
rich motor and physiological information [10], [11], [12], [13].
Therefore, sEMG can assist in capturing intrinsic differences
among alike gestures. Meanwhile, the inertial measurement
units (IMU) signals, represented by ACC signals [14], have
the benefit of presenting the kinematic information of gestures
and enhancing robustness [8], [15]. Furthermore, sensors’ well
wearability and low cost for collecting sEMG and ACC have
accelerated the development of downstream application tasks
[8]. Currently, the sEMG-ACC-based HGR has been applied
to prosthetic control [6], sign language interaction [16], [17],
and virtual interaction [18] and so on.

The multimodal fusion strategy significantly affects the
performance of sEMG-ACC-based HGR. Early fusion and
late fusion are two typical fusion strategies that perform
modality fusion in the early and late stages, respectively
[19]. However, these strategies are unable to sufficiently
characterize intra-modal specificity and cross-modal associ-
ation at the same time [20]. Furthermore, current methods
rarely consider the effective fusion between fused features
and unimodal features, incurring inadequate exploration of
inter-modal knowledge, such as the interaction of cross-modal
hierarchical features. It is widely reported that the correlation
of modalities can promote the performance of multimodal
methods [21]. The effectiveness of sEMG-ACC-based HGR
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may be further enhanced when the interactive relationships
are deeply explored [19], [22]. In addition, the recognition
performance of multimodal HGR is still suffering from poor
robustness, especially the problem of missing modality. The
problem of incomplete multimodal caused by sensor failures or
data corruption is likely to occur in real-world scenarios [20],
[23], especially during long periods of exercise. Neverthe-
less, most existing multimodal methods for sEMG-ACC-based
HGR assume that the two modalities are always available
during testing [6], [16], [24]. Consequently, the problem of
incomplete modality in testing samples tends to dramati-
cally degrade the performance. Therefore, it is necessary for
sEMG-ACC-based HGR to improve its robustness of missing
modality, while maintaining the satisfactory performance of
complete multimodal HGR.

In this study, aiming to simultaneously pursue the high
effectiveness and quite robustness of sEMG-ACC-based HGR,
a novel alignment-enhanced interactive fusion model is pro-
posed, termed AiFusion. It innovatively designs a cascaded
transformer-based progressive hierarchical fusion strategy
to achieve effective fusion. Specifically, AiFusion mainly
contains two unimodal branches and a multimodal fusion
branch. The transformer-based fusion branch captures intri-
cate cross-modal interactions by progressively integrating the
hierarchical features from multiple branches. In this way, the
model can not only adaptively learn the inter-modal knowledge
with the help of the multi-head attention mechanism of trans-
formers, but also explore the hierarchical relationships across
multimodal features through the progressive fusion strategy.
After that, to further improve fusion quality and modality-
specific representations, the modality-interactive knowledge
is aligned with that of the unimodality using cross-modal
supervised contrastive learning and online distillation in the
embedding and probability spaces. Based on the scalability
of the three branches, the AiFusion is extended to perform
the incomplete multimodal without additional training burden,
where the recognition outcomes are set to be determined
by available modalities. The extended experiments are com-
pleted on five public multimodal datasets of HGR. These
datasets include multimodal gesture data for healthy indi-
viduals and trans-radial amputees, with up to 50 types of
gestures.

In summary, the major contributions of this study are
concluded as follows:

• An interactive fusion model based on a progressive
hierarchical fusion strategy is proposed for sEMG-
ACC-based HGR. It utilizes cascaded transformers to
explore inter-modal knowledge by gradually fusing
cross-modal hierarchical features, facilitating effective
modality fusion.

• Cross-modal supervised contrastive learning and online
distillation are utilized to align the interactive-knowledge-
boosted integrated features and unimodal features from
embedding and probability spaces, thus further enhancing
the modality fusion and unimodal representations.

• AiFusion is further enabled to perform incomplete mul-
timodal HGR that is challenging and frequently occurs
in real-world scenarios. To the best of our knowledge,

this is the first work that investigates the complete and
incomplete multimodal HGR in a unified model.

• The extended experiments are completed on five public
multimodal datasets. The proposed AiFusion outperforms
most state-of-the-art benchmarks in complete multimodal
HGR and also surpasses unimodal baselines in the chal-
lenging area of incomplete multimodal HGR.

The rest of the paper is organized as follows. Section II
demonstrates the related work about fusion strategies and
incomplete multimodal learning. Then, the problem formu-
lation and the proposed AiFusion model are presented in
section III. The experiments and results are included in
section IV. A further discussion is exhibited in section V.
Finally, section VI concludes our work.

II. RELATED WORK

In this section, the representative fusion strategies for mul-
timodal HGR in existing works are first introduced. Then, the
incomplete multimodal learning is presented.

A. Fusion Strategy in Multimodal HGR
The classical myoelectric pattern recognition methods,

including linear discriminant analysis (LDA) [15] and sup-
port vector machine (SVM) [25] are also utilized to
perform sEMG-ACC-based HGR and obtained a better
multimodal recognition baseline than unimodal recognition.
Gijsberts et al. [26] adopted Kernel Regularized Least Squares
(KRLS) algorithm to fuse sEMG and ACC and achieved the
accuracy of 82.49% for 40-type hand gestures recognition. All
these traditional methods utilized the concatenation of hand-
crafted features derived from sEMG and ACC as the input of
the algorithm, which is a typical kind of early fusion manners.
Recently, numerous studies have endeavored to take advantage
of deep learning to complete sEMG-ACC-based HGR [6], [7],
[8], which present the more powerful ability of knowledge
learning and feature presentation. The classical multi-view
learning with convolution neural networks (MVCNN) [24] was
adopted to complete sEMG-IMU-based HGR. The MVCNN
regarded each feature set of a modal signal as a view of hand
gestures. The classification results of all views characterized
by parallel convolution networks (CNN) were handled with a
decision-level fusion approach, which is a classical manner
of late fusion. Therefore, the MVCNN made full use of
unimodal information, yet the interactive knowledge of multi-
modal signals was undervalued. Zhang et al. [16] proposed
the SeeSign network for multimodal sign language recog-
nition. The SeeSign utilized different attention mechanisms
to integrate the deep features of sEMG and IMU extracted
by CNN and long short-term memory (LSTM). Although
the correlation between sEMG and IMU is considered with
the attention mechanism in SeeSign, the hierarchical relation
in deep features was absent. The hybrid multimodal fusion
(HyFusion) [27] simultaneously acquired the intra-modal and
inter-modal knowledge with parallel branches, yielding the
state-of-the-art results on multiple public multimodal datasets
of HGR. The multiple fusion strategies were equipped in
HyFusion, but the inter-modal knowledge among unimodal
and integrated signals still can be further explored.
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Fig. 1. The proposed Alignment-enhanced interactive Fusion model (AiFusion) for complete and incomplete multimodal HGR. Transformer is
leveraged in the multimodal fusion branch and progressively fuses hierarchical multimodal features. Conv, BatchNorm, ReLU and Dropout indicate
the layer of convolution, batch normalization, rectified linear unit and dropout layer, respectively. FC Block and FC denote the full connection block
and classifier layer, respectively. The number after the Conv layer name is the number of filters. The number after @ denotes the convolution kernel
shape. Concat refers to the concatenation of hierarchical unimodal features by channel.

B. Incomplete Multimodal Learning
Incomplete multimodal learning aims to address the missing

modality problem in multimodal tasks, which is a classi-
cal problem and has attracted increasing attention recently
[20], [28], [29]. The incomplete multimodal learning methods
generally fall into two categories: generation-based methods
and non-generation-based methods. Ma et al. [28] adopted a
generation subnetwork to investigate multimodal learning with
severely missing modality (SMIL) for image-text-based clas-
sification. Although the SMIL model alleviates the problem of
incomplete modalities to some extent, the additional generative
module also adds the burden of memory and computation
for the multimodal fusion model. Recently, Ma et al. [29]
published another work based on a novel transformer-based
model with multi-task optimization, rather than generative
methods to deal with the incomplete modalities problem. This
model [29] can only guarantee that the performance was not
worse than the unimodal one, but can not achieve satisfactory
performance in complete multimodal recognition.

However, the challenging and frequent problem of incom-
plete modalities is rarely addressed in existing multimodal
HGR. The incomplete multimodal HGR will be preliminarily
explored in this study.

III. METHODOLOGY

In this section, we first present the sEMG-ACC-based
HGR problem definition from the aspect of the presence of
modality. Then, the proposed alignment-enhanced interactive
fusion (AiFusion) model is exhibited.

A. Problem Formulation
This study aims to propose an effective and robust fusion

model to accomplish sEMG-ACC-based HGR in complete and
incomplete multimodal scenarios. We investigate multimodal
HGR with two modalities, i.e., sEMG and ACC. Formally,
D f

= {x1
i , x2

i , yi } denotes the complete multimodal dataset

Fig. 2. The components of FC Block1 and Block2. The number after
FC layer name denotes the number of neurons in the hidden layer.

with full modalities, where x1
i and x2

i represent the two modal-
ities of i-th sample and yi denotes the corresponding class
label; D p

= {D1,D2
} denotes the incomplete multimodal

datasets with partial modalities, where D1
= {x1

i , yi } and
D2

= {x2
i , yi } denote the datasets of missing x2 modality

and missing x1 modality respectively. Specifically, our target
is to obtain a projection function F which is trained with
the complete dataset and can effectively and robustly classify
complete or incomplete multimodal hand gestures in the
testing phase.

B. Proposed Approach
In this work, a novel alignment-enhanced interactive fusion

model (AiFusion) is presented. Firstly, a cascaded transformer-
based progressive hierarchical fusion strategy is proposed.
Then, the alignments using cross-modal supervised contrastive
learning and online distillation are elaborated. At last, the
optimization strategy and post-processing are presented.

1) Progressive Hierarchical Fusion Strategy: To effectively
integrate the modalities and extract the interactive knowledge,
the progressive hierarchical fusion strategy using transformers
is designed. As illustrated in Fig. 1, the AiFusion model
mainly contains two unimodal convolution branches (sEMG-
CNN and ACC-CNN) and a multimodal fusion transformer
branch (fusion-Transformer).

In AiFusion, the inputs are the handcrafted feature images
of sEMG and ACC, which would be presented in IV-B.
These inputs are first expanded to 64 channels by multiscale
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Fig. 3. The overview of multimodal Transformer. Norm denotes layer
normalization. Feedforward contains the sequential layers: full connec-
tion, Gaussian Error Linear Unit, dropout, full connection and dropout.

convolution. In unimodal branches, the sEMG-CNN and
ACC-CNN utilize convolution with residual skip to extract
hierarchical features of sEMG and ACC, respectively. Then,
the three-level hierarchical unimodal features are concatenated
in channel dimension and merged by local convolutions.
The local convolution, i.e., the convolution operations with
1×1 filter, is widely adopted in the model for HGR [24]. The
local convolution contributes to extracting the cross-channel
knowledge, which consists of different hierarchical unimodal
features. The local convolution also reduces the dimension of
the feature. Finally, the unimodal hybrid hierarchical features
are put into the corresponding full connection blocks and
classifiers. The full connection blocks are shown in Fig. 2.
As a result, two unimodal branches independently represent
and classify the unimodal features images and provide the
corresponding classification scores ỹs and ỹa , respectively.

In the fusion branch, the transformer is used to progres-
sively integrate the hierarchical features across modalities,
consisting of the sEMG modal, ACC modal and hybrid modal
(sEMG-ACC). The fusion-Transformer contains a three-level
transformer, FC Blocks and a classifier, shown in Fig. 1. The
transformer of overview is presented in Fig. 3. Specifically,
the hierarchical features of unimodal (sEMG features xs and
ACC features xa) and multimodal (sEMG-ACC features x f )
are first input into the linear projection layer (E), respectively.
It is worth noting that we abandon the operation of image
segmentation like in the vision transformer (ViT) [31], which
significantly reduces the number of parameters and guarantees
the complete semantic information of hand gestures. Then, not
only the learnable parameters of class tokens (clc_token, xcls),
but also the learnable parameters of corresponding modal-
ity tokens (modal_token, xS, x A, xF ,) are experimentally
attached to improve the representation ability of embedding
features. In addition, positional sinusoidal embeddings (E pos)
are also added to the feature embedding to retain relative
positional information of various modalities, and then these
feature embeddings are concatenated in channel dimension.
The above steps provide the input (Z0) to the transformer
encoder expressed in Eq. 1.

Thereafter, the transformer encoder is utilized to fuse
cross-modal hierarchical features. Similar to ViT, a layer
normalization, multi-head self-attention units (MSA), a layer

Fig. 4. The structure of multi-head self-attention.

normalization and a feedforward module are used in sequence
in a one-layer encoder. The number of layers for a transformer
encoder is set as a hyperparameter L. The MSA is assigned for
the attention mechanism [32] while the feedforward acts as a
multilayer perception. The MSA is calculated as in Eq. 2. The
input sequence Z0 is projected Wqkv to identical-dimension
Keys (K), Queries (Q) and Values (V). In MSA block, shown
in Fig. 4, there are H number of identical heads with distinct
learnable parameters operating parallelly. Therefore, there are
H units of self-attention (SA), resulting in an attention matrix
indicating the similarity between each token. The outputs of
the scaled dot-product attention are concatenated and trans-
ferred to the linear layers Wmsa expressed in Eq. 2.

Z0 = [xcls; xS; xs E; xcls; x A; xa E; xcls; xF ; x f E]

+ E pos (1)
[Q, K , V ] = Z0Wqkv

A = so f tmax(
QK T
√

dh
)

S A(Z) = AV

M S A(Z) = [S A1(Z); S A2(Z); . . . ; S AH(Z)]Wmsa (2)

where dh is the scale coefficient. Finally, the outputs of MSA
are input into the feedforward part. The sEMG-ACC features
merged by the three-level transformer are passed to the FC
Blocks and a classifier. Consequently, the fusion-transformer
branch utilizing progressive hierarchical features provides the
corresponding classification results y f . The decision fusion
manner adopts the summation and the final classification score
equals to yout = y f + ya + ys .

2) Improvement With Alignment: Multimodal alignment is
one of the key challenges for multimodal classification tasks
[20]. In AiFusion, to further improve the fusion quality,
the alignments between modality-interactive knowledge and
unimodal modality are adopted with cross-modal supervised
contrastive learning and online distillation in embedding space
and probability space, respectively.

In embedding space, cross-modal supervised contrastive
learning is utilized to pull together the clusters of cross-modal
samples belonging to the same class, while simultaneously
pushing apart clusters of cross-modal features from differ-
ent classes. The utilized cross-modal supervised contrastive
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learning loss LC L [35] can be expressed as:

LC L =

∑
i∈I

−1
|P(i)|

∑
p∈P(i)

log
exp

(
zi · z p/τ

)∑
a∈A(i) exp (zi · za/τ)

(3)

Here, within a batch of N samples, i ∈ I ≡ {1, . . . , 2N } is
the index of an arbitrary sample. The cross-modal samples
contain N unimodal-feature (sEMG Feature or ACC Fea-
ture) samples from unimodal branches and N corresponding
hybrid-feature (sEMG-ACC Feature) samples from fusion-
transformer branch. A (i) ≡ I\{i}. P (i) ≡ {p ∈ A (i) :

y (p) = y (i)} is the set of indices of all positives in the
batch distinct from i , and |P (i) | is its cardinality. y (p) and
y (i) is the one-hot label of p-th and i-th sample respectively.
τ ∈ R+ is a scalar temperature parameter.

The cross-modal supervised contrastive learning loss LC L
makes full use of label information. The LC L regards the
samples with the same label as the positive sample and other
samples as negative samples. Therefore, the LC L not only can
preserve the ability of original contrastive learning [33], [34],
but also gain the generation ability to an arbitrary number of
positives [35]. Specifically, as seen in Fig. 1, the LC L contrasts
the view of unimodal features (sEMG or ACC) and multimodal
features (sEMG-ACC) contributing to aligning the samples
with the same label.

In probability space, online distillation based on
Kullback-Leibler Divergence Loss is used to align unimodal
and multimodal feature distribution. The Kullback-Leibler
Divergence Loss LK L evaluates the distribution difference
of unimodal classification scores ( ỹs or ỹa) and final fusion
classification score ỹout :

LK L =

N∑
i=1

L
(

ỹm (i) || ỹout (i)
)

=

N∑
i=1

C∑
j=1

ỹm (i, j) log
ỹm (i, j)
ỹout (i, j)

(4)

In Eq. 4, N is the number of samples in a batch; C is
the classes of hand gestures; ỹm ∈ { ỹa, ỹs}; ỹm (i, j) and
ỹout (i, j) represents the j-th value in the classfication score
of i-th sample for ỹm and ỹout , respectively. In AiFusion,
the richer information of multimodal distribution is dis-
tilled and transported to unimodal distribution through the
Kullback-Leibler Divergence Loss LK L . Thereby, the repre-
sentation capability of unimodal, especially the weak unimodal
(i.e., sEMG), is boosted.

3) Multitask Optimization and Post-Processing: The three
parallel branches in AiFusion consisting of sEMG-CNN,
ACC-CNN and fusion-Transformer can be seen as three tasks.
Three branches provide the results of hand gesture classifica-
tion from the corresponding modality perspective. Therefore,
the proposed AiFusion can be trained with multitask optimiza-
tion strategy. The cross-entropy loss LC E is applied to the
optimization of each branch:

LC E = −
1
N

N∑
i=1

C∑
j=1

y (i, j) log ỹ (i, j) (5)

Fig. 5. Scheme of training and testing stages for AiFusion. (a)AiFusion
is trained with complete multimodal training datasets. (b), (c) and (d) The
trained AiFusion model is tested with complete and incomplete multi-
modal testing datasets, respectively. The white feature image with a red
cross represents that with missing modality. The classification scores
corresponding to the branch of the dotted line will be discarded.

In Eq. 5, N is the size of samples in a batch and C
represents the number of categories of hand gestures. y (i, j)
is a binary label: it equals 1 when the i-th sample in the
batch truly belongs to class j , otherwise it equals 0. ỹ (i, j)
is the predicted probability that the i-th sample belongs to
class j . It is worth noting that the proposed AiFusion model
is trained with complete multimodal training datasets. As a
result, as shown in Fig. 1, the summation of all loss functions
for the AiFusion can be expressed as:

Lsum =

3∑
j=1

LC E j +

2∑
i=1

(
LC L i + LK L i

)
(6)

The parallel architecture of the AiFusion and multi-task
optimization training method provide three benefits for multi-
modal HGR. First, the ensemble results of the three branches
can provide better multimodal fusion recognition performance.
The second advantage is to improve unimodal representation
capability. At last, it provides great scalability of the model,
which facilitates the handling of missing modalities. Further-
more, a simple and effective post-processing mechanism is
utilized to perform the incomplete multimodal HGR. Specifi-
cally, as shown in Fig. 5, the post-processing mechanism can
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TABLE I
SPECIFICATIONS OF THE SELECTED DATASETS EVALUATED IN THIS RESEARCH

be expressed as:

{gs E MG , gFusion, g ACC
} =


{1, 0, 0}, x (i) = {xi

1, 0}

{0, 0, 1}, x (i) = {0, xi
2
}

{1, 1, 1}, x (i) = {xi
1, xi

2
}

.

(7)

As shown in Eq. 7, gs E MG , gFusion and g ACC repre-
sent the multiplication factors for classification score of the
corresponding sample from sEMG-CNN, fusion-Transformer
and ACC-CNN branch, respectively. xi = {xi

1, xi
2
} indi-

cates the complete multimodal sample. xi = {xi
1, 0} and

xi = {0, xi
2
} represents the incomplete multimodal sample,

missing the information of ACC and sEMG, respectively. It is
worth noting that the absent modality information is handled
by zero-padding [30]. Accordingly, when the input is the
complete multimodal sample, the final classification score is
set as the summation of three scores from three branches.
When only one modality is existing, the final score equals
the classification score of the corresponding branch with the
present modality.

IV. EXPERIMENTS AND RESULTS

In this section, the selected datasets and experimental setup
are first demonstrated. Then, the designed experiments of
complete multimodal HGR are exhibited and its results are
compared with existing advanced methods. Then, to evaluate
the capability to handle missing modality, the experiments of
incomplete multimodal HGR are conducted and the results are
compared with the unimodal baseline method.

A. Datasets
To evaluate the proposed AiFusion model, five public

datasets, namely Ninapro DB2, DB3, DB5, DB6, and DB7, are
adopted to perform the complete and incomplete multimodal
HGR experiments. The Ninapro database are publicly available
[15], [36], [37], [38] and are widely utilized to help the
research of prosthetic hand systems and validation study of
decoding algorithms. The sEMG and ACC signals are syn-
chronously collected with sparse channels. The specifications
of these datasets are presented in Table. I.

In Ninapro DB2 [36], there are 50-class hand gestures of
sEMG and ACC signals. The data were all collected from
40 healthy subjects. Six trials (repeated six times) was com-
posed of a gesture; the duration time of a trial was 5 seconds
and the rest time between adjacent trials was set to 3 seconds.
The sEMG and ACC signals were synchronously collected
with 12 Delsys Trigno Wireless electrodes.

In Ninapro DB3 [36], the number of gestures and the
paradigm of collecting data was the same with Ninapro
DB2. Notably, the 11 subjects are amputees with transradial
amputation. As same as previous studies [24], [27], the data
from three amputees with fewer gestures and two amputees
with missing electrodes are excluded.

In Ninapro DB5 [37], 10 intact subjects performed 41-class
hand gestures. The signals are collected with two Thalmic Myo
Armbands at 200Hz. Notably, there are 16-channel sEMG sig-
nals and only one-channel ACC signals. To provide sufficient
samples for deep learning training, the data are upsampled to
2000Hz in this study.

In Ninapro DB6 [38], the synchronized sEMG and ACC
signals were collected for 8-class hand gestures from 10 intact
subjects. However, the experimental paradigm is different. The
subjects were asked to repeat 7 grasps 12 times, twice a day
for 5 days.

In Ninapro DB7 [15], there are 41-type hand gestures of
sEMG and IMU (including accelerometers (ACC), magne-
tometers (MAG) and gyroscopes (GYR)) signals [27]. There
are 20 intact subjects and two amputees with transradial
amputation. In our work, the data of amputees was excluded
because of missing electrodes.

B. Experimental Setup
The experimental setup of this study follows the classical

myoelectric control paradigm [39], including signal prepro-
cessing, feature extraction and classification. Therefore, data
preprocessing and feature extraction are first demonstrated.
Then, the preparation of the training and testing datasets are
described. Finally, the training and testing paradigm and the
evaluation metric are presented. All experiments are completed
with an NVIDIA GeForce GTX 3080 GPU in Pytorch.

1) Data Preprocessing and Feature Extraction: First, the
serial signals of sEMG and ACC of each subject are prepro-
cessed respectively. To get raw data samples, the operation
of window segmentation and normalization are sequentially
carried out on sEMG and ACC signals, which is the same
as previous studies of gesture recognition [27]. The length
of each window is fixed to 200 ms and the step time is
set as 10 ms [24], [27]. The myoelectric control application
[41] requires that the length of a sliding window should be
within 300 ms. Therefore, a window length of 200 ms is
reasonable for realizing myoelectric control. The implemented
normalization of raw data samples can be expressed as:

x̃m(k, ch) =
xm(k, ch) − x̄m(ch)

σ (xm(ch))
(8)

where m = {s E MG, ACC}; k is the index for all the
samples; ch represents the number of channels. x̃m(k, ch)
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Fig. 6. The process of preparing complete and incomplete multimodal datasets. (a)The process of obtaining sEMG feature images from sEMG
signals. (b)The process of obtaining ACC feature images from ACC signals. (c)The complete and incomplete multimodal datasets. The white feature
images with red cross represent missing modality and they are handled with zero padding in this study.

TABLE II
SPECIFICATIONS OF HANDCRAFTED FEATURES FOR

SEMG AND ACC SIGNALS

is the normalized raw data sample. x̄m(ch) and σ(xm(ch))

indicate the mean value and standard deviation value for each
channel of all training data.

The utilized handcrafted features for sEMG in our study are
classical in the time domain and frequency domain, including a
part of features from [36], [39], and [40]. Specific handcrafted
features contain Marginal of Discrete Wavelet Transform
(mDWT), Slope Sign Change (SSC), Waveform Length (WL),
Mean Absolute Value (MAV), Willison Amplitude (WAMP),
Autoregressive Coefficients (ARC), Mean Frequency (MNF)
and Power Spectrum Ratio (PSR). The features for ACC are
commonly used features in the time domain, including mean
(MEAN), variance (VAR), RMS, WL, MAV, MAVS [27]. The
similar features for serial ACC signal were also used in the
previous study [22], [27]. The specifications of handcrafted
features in this research are listed in Table. II. Furthermore,
to make full use of the information of sEMG and ACC in the
time and space domain, these handcrafted features are arranged
into feature images. The process for composing handcrafted
features into feature images is shown in Fig. 6 (a) and (b).
It should be noted that since there is only one ACC sensor
in the DB5, shown in Table. I, the acceleration information
will be reused by other channels in order to align the space
information of sEMG and ACC in DB5.

2) Complete and Incomplete Multimodal Dataset: To eval-
uate the capability of the proposed AiFusion to perform

HGR in complete and incomplete multimodal conditions,
the complete and incomplete multimodal dataset is prepared.
As stated in III-A, the samples in the complete multimodal
datasets have two modalities (sEMG and ACC). The samples
in the incomplete multimodal datasets have only one modality
(sEMG or ACC). These training and test datasets are presented
in Fig. 6 (c). In this work, the AiFusion model is trained
with the complete multimodal training datasets because it can
always be achieved during the training phase. And the trained
AiFusion model is independently tested with the complete
and incomplete multimodal testing datasets. The complete
multimodal testing samples are utilized to simulate normal
testing scenarios. The incomplete multimodal testing samples
are used to simulate the unnormal signal acquisition scenarios
where one modality is missing. The part of missing modality
is dealt with zero-padding to meet the input format of the
model and simplify the detection of samples with missing
modality.

3) Evaluation Metric: The setup of training data and testing
data is shown in Table. I. The setting is the same as previous
studies [24], [27], [36]. The scheme of training and testing
stages for AiFusion is demonstrated in Fig. 5. Although the
AiFusion is trained with the complete multimodal training
datasets, the trained AiFusion model is independently tested
with the complete and incomplete multimodal testing datasets.
All experiments are completed in an intra-subject paradigm.
The recognition accuracy for a subject is calculated as the
evaluation in Eq. 9 and the average accuracy is the mean
accuracy of overall subjects [24], [27].

accuracy =
number of correct classifying samples

total number of samples
× 100%

(9)

C. Complete Multimodal HGR
In this part, the experiment for complete multimodal HGR

with the proposed AiFusion is demonstrated. Furthermore,
the performance comparison between the AiFusion model and
previous representative methods for sEMG-ACC-based HGR
is presented. The complete multimodal HGR experiments
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TABLE III
THE AVERAGE ACCURACIES OF COMPLETE MULTIMODAL HGR ACHIEVED BY THE AIFUSION MODEL AND EXISTING STUDIES ON

NINAPRO DATASETS. THE RESULTS IN BOLD TEXT REPRESENT THE BEST PERFORMANCE

are completed on Ninapro DB2, DB3, DB5, DB6, and DB7.
The AiFusion is trained with an Adam optimizer, which is
especially useful for the model to rapidly achieve convergence
state [43]. The learning rate during model training adopts
a step-down strategy. The learning rate is 0.001 for the
first three epochs during training. Then, the learning rate is
divided by 10 after the 6 epochs and 3 epochs, respectively.
There are 13 epochs in all, which is determined by empirical
experiments. The dropout rate is set to 0.65. The batch size is
512. The experimental setting and evaluation metrics utilized
for the selected datasets are detailed in the Section. IV-B.
The overview of training and testing stages for AiFusion on
complete multimodal HGR is presented in Fig. 5 (a) and (b),
respectively.

The current state-of-art work HyFusion [27] and classical
work MVCNN [24] are taken as representative works of deep
learning to be compared. Because the Ninapro DB5 and DB6
were not evaluated on the HyFusion model in [27], these two
datasets are evaluated on HyFusion model in this research,
where the experimental setup is the same as the setup in
[27]. In addition, the reported results of some traditional
methods applied to these selected datasets are also listed.
The compared traditional methods include kernel regularized
least squares (KRLS) [26], the improved KRLS [42], support
vector machine (SVM) [25] and linear discriminant analysis
(LDA) [15]. The average accuracy comparison of the proposed
AiFusion and existing studies for complete multimodal HGR
are listed in Table. III. In the complete modalities HGR
experiments, the proposed AiFusion model obtains the average
classification accuracy of 95.28%, 91.11%, 87.04%, 80.62%

TABLE IV
THE AVERAGE ACCURACIES OF INCOMPLETE MULTIMODAL HGR OF

THE AIFUSION AND CNN-BASELINE ON NINAPRO DATASETS. THE

RESULTS IN Bold TEXT REPRESENT THE BETTER PERFORMANCE

and 96.76% on Ninapro DB2, DB3, DB5, DB6 and DB7,
respectively.

In order to demonstrate the superior performance of the pro-
posed AiFusion for the complete HGR, the statistical tests are
completed between the accuracies of HyFusion and AiFusion
on the three selected datasets with SPSS R26.0.0.0 software.
The results of paired t-test demonstrate that the AiFusion
obtains significantly better performance compared to the exist-
ing studies for complete multimodal HGR.

D. Incomplete Multimodal HGR
The experiments of incomplete multimodal HGR are tested

on incomplete multimodal testing datasets, while the model
is still trained with complete multimodal training datasets.
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TABLE V
THE AVERAGE ACCURACIES OF COMPLETE AND INCOMPLETE

MULTIMODAL HGR ACHIEVED BY THE AIFUSION, AIFUSION-CNN AND

AIFSUION-NOPRO ON NINAPRO DATASETS. THE RESULTS IN Bold
TEXT REPRESENT THE BETTER PERFORMANCE

It should be noted that the testing datasets in the incom-
plete multimodal HGR contain only one modality and the
information of absent modality is replaced by zero. In this
way, extreme conditions can be simulated where one of
the two modalities is completely absent. The overview of
the testing stages of AiFusion for incomplete multimodal
HGR is demonstrated in Fig. 6 (c) and (d). Furthermore,
to present the capability of AiFusion to tackle the incomplete
multimodal HGR, a unimodal comparative method, named
CNN-baseline, is also implemented to perform hand gesture
recognition with unimodal input. To make a fair comparison,
the architecture of CNN-baseline is the same as CNN branch
of AiFusion. The CNN-baseline is trained and tested with
the datasets containing the corresponding existing modality
signal. The hyper-parameters of training and testing setup for
CNN-baseline are the same as AiFusion. The average accuracy
of the proposed AiFusion and CNN-baseline for incomplete
multimodal HGR are listed in Table. IV. The average results
of AiFusion for incomplete multimodal HGR on all selected
datasets are higher than the average results of the unimodal
CNN-baseline method on unimodal HGR. The paired t-test
between AiFusion and CNN-baseline is performed and the
results prove the significant superiority of most datasets on
incomplete multimodal HGR. We also find that the perfor-
mance of Acc is better than that of sEMG on most datasets
except for DB5. This may be because DB5 has only one 3D
acceleration channel, leading to a severe decline in feature
characterization. This also causes the performance of the mul-
timodal on DB5 to fall short of MVCNN [24], which is good
at unimodal characterization using multi-view technology.

V. DISCUSSION

To analyze the reasons for performance improvement from
the AiFusion model, the comparison experiments of the fusion
module and ablation experiments of alignment components are
conducted on all selected datasets.

A. Effectiveness of Fusion Module
To analyze the effectiveness of the transformer-based pro-

gressive hierarchical fusion module in the AiFusion model,
we conduct comparison experiments of different multimodal
fusion modules, i.e., transformer and CNN, with or without
progressive fusion. A comparison method performing mul-
timodal fusion with CNN, termed AiFusion-CNN, is imple-
mented. To make a fair comparison between the AiFusion
and AiFusion-CNN models, the architecture of AiFusion-CNN
is the same as AiFusion except that the transformer fusion
module is replaced by CNN fusion module. Specifically, the
CNN fusion module in AiFusion-CNN contains three levels
of CNN block. Each CNN block consists of 64 convolution
kernels, the Batch Normalization layer and ReLU layer. The
kernel size of convolution kernels is set to 3 × 3, 5×5 and
3 × 3, respectively. In addition, another experiment where the
unimodal hierarchical features do not participate in progressive
cross-modal fusion (AiFusion-noPro), is completed. The input
of the transformer fusion branch in AiFsuion-noPro only
contains multi-scale modal information of sEMG and ACC.
The experiments of the complete and incomplete multimodal
HGR are conducted on all selected datasets in this part.
The other experimental settings of training and testing for
AiFusion-CNN and AiFsuion-noPro remain consistent with
the AiFusion model. The average accuracy of the different
fusion modules for complete and incomplete multimodal HGR
are listed in Table. V.

The results in the first row of each dataset in Table. V, i.e.,
sEMG-ACC, is obtained in complete multimodal HGR. The
second and third rows of each dataset, i.e., sEMG and ACC,
present the results of the incomplete multimodal HGR. The
AiFusion obtains the best average accuracies compared to the
AiFusion-CNN and AiFusion-noPro for complete multimodal
HGR on all datasets. For the incomplete multimodal HGR,
the AiFusion also achieves better results on most datasets.
The paired t-test for is completed (AiFusion vs. AiFusion-
CNN and AiFusion vs. AiFusion-noPro). The statistical results
verify that the transformer fusion module plays a more vital
role than CNN in extracting interactive knowledge among var-
ious modalities. And the progressive hierarchical cross-modal
fusion strategy especially contributes to effective cross-modal
fusion. The interactive knowledge indeed contributes to the
performance of AiFusion on complete and incomplete multi-
modal HGR.

B. Ablation Experiments of Alignment Components
To explore the effectiveness of the alignments in the AiFu-

sion, we implement the ablation experiments of alignment
components, i.e., cross-modal supervised contrastive learning
loss LC L and Kullback-Leibler Divergence Loss LK L . These
ablation experiments are conducted on all the selected datasets
for complete and incomplete multimodal conditions, respec-
tively. First, the AiFusion model is trained with only the cross
entropy loss LC E and independently tested with complete
and incomplete datasets. The results of the AiFusion trained
without alignments are regarded as a baseline in the ablation
experiments. Then, the AiFusion model is respectively trained
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TABLE VI
THE AVERAGE ACCURACIES FOR ABLATION STUDY OF ALIGNMENT COMPONENT IN AIFUSION. THE RESULTS IN BOLD TEXT REPRESENT THE

BEST PERFORMANCE. ✓AND ✗DENOTE THAT THE CORRESPONDING COMPONENT IS USED AND NOT USED, RESPECTIVELY

with LC E + LC L and LC E + LK L . These AiFusion models
trained with alignments are independently tested with com-
plete and incomplete multimodal testing datasets. The other
experimental setting is the same as Section. IV-B. The average
accuracies for the ablation study of alignment components on
Ninapro datasets are presented in Table. VI.

As shown in Table. VI, almost all models with the help of
alignment operation obtain higher average accuracy compared
to the corresponding baseline, i.e., LC L or LK L , except for
the experiment of AiFusion with ACC for Ninapro DB3. The
slight decrease in average accuracy in AiFusion with ACC
may result in the individual difference and a few subjects’
performance is not improved. The outcomes of the ablation
study demonstrate that the combined LC L and LK L con-
tribute to achieving the best performance for complete and
incomplete multimodal HGR on Ninapro DB2, DB5, DB7.
It is worth noting that the alignment operations provide more
improvement on Ninapro DB2, DB3 and DB7 for incomplete
multimodal HGR, especially for the sEMG-based HGR. It may
be explained that knowledge distilled from multimodal fusion
has a bigger positive guidance for the weak modality. The
results of ablation experiments demonstrate that the alignment
in AiFusion plays a positive role in complete and incomplete
multimodal HGR.

The current research has its limitations. For example, the
information of missing modality is dealt with zero padding
in this study. In this way, it is convenient for classification
model to detect incomplete multimodal conditions during the
testing phase. In the future, it is necessary to provide a more

advanced and intelligent detector of missing modalities, such
as anomaly detection, in application scenarios. In addition,
although the AiFusion obtains state-of-the-art performance on
complete multimodal HGR, the performance for incomplete
multimodal HGR is obviously lower than that of complete
multimodal HGR. This may be due to the limited ability of
the alignment operation in reducing the gap between weak and
strong modalities. The approach of cross-modal generation can
be leveraged to further solve the problem of missing modality.

VI. CONCLUSION

This study is the first work that realizes the complete
and incomplete multimodal HGR in a unified fusion model,
termed AiFusion. AiFusion not only sufficiently explores the
multimodal interactive information with a transformer-based
progressive hierarchical fusion strategy, but also aligns the
various modalities from both embedding space and probability
space, thus promoting the effectiveness and robustness of the
sEMG-ACC-based HGR. Extensive experiments on five public
datasets corroborate that AiFusion achieves state-of-the-art
performance on complete multimodal HGR and also surpasses
unimodal baselines in the challenging area of incomplete
multimodal HGR on most datasets. This innovative AiFusion
model provides a promising solution to construct more effec-
tive and robust multimodal HGR-based HMI systems.
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