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Abstract— The assessment of speech in Cerebellar
Ataxia (CA) is time-consuming and requires clinical inter-
pretation. In this study, we introduce a fully automated
objective algorithm that uses significant acoustic fea-
tures from time, spectral, cepstral, and non-linear dynam-
ics present in microphone data obtained from different
repeated Consonant-Vowel (C-V) syllable paradigms. The
algorithm builds machine-learning models to support a
3-tier diagnostic categorisation for distinguishing Ataxic
Speech from healthy speech, rating the severity of Ataxic
Speech, and nomogram-based supporting scoring charts
for Ataxic Speech diagnosis and severity prediction. The
selection of features was accomplished using a combina-
tion of mass univariate analysis and elastic net regulariza-
tion for the binary outcome, while for the ordinal outcome,
Spearman’s rank-order correlation criterion was employed.
The algorithm was developed and evaluated using record-
ings from 126 participants: 65 individuals with CA and
61 controls (i.e., individuals without ataxia or neurotypi-
cal). For Ataxic Speech diagnosis, the reduced feature set
yielded an area under the curve (AUC) of 0.97 (95% CI
0.90-1), the sensitivity of 97.43%, specificity of 85.29%, and
balanced accuracy of 91.2% in the test dataset. The mean
AUC for severity estimation was 0.74 for the test set. The
high C-indexes of the prediction nomograms for identifying

Manuscript received 28 August 2022; revised 27 February 2023,
16 July 2023, and 7 November 2023; accepted 8 November 2023. Date
of publication 20 November 2023; date of current version 13 December
2023. This work was supported by the National Health and Medical
Research Council (NHMRC) under Grant GNT1101304. (Corresponding
author: Bipasha Kashyap.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Human Research and Ethics Committee, Royal Victorian Eye and
Ear Hospital, Australia, under HREC Reference No. 11/994H/16.

Bipasha Kashyap and Pubudu N. Pathirana are with the Net-
worked and Sensing Control (NSC) Laboratory, School of Engineer-
ing, Deakin University, Waurn Ponds, VIC 3216, Australia (e-mail:
bkashy@deakin.edu.au; pubudu.pathirana@deakin.edu.au).

Malcolm Horne is with the Florey Institute of Neuroscience and
Mental Health, Parkville, VIC 3052, Australia (e-mail: malcolm.
horne@florey.edu.au).

Laura Power is with the Balance Disorders & Ataxia Service, Royal
Victorian Eye and Ear Hospital (RVEEH), East Melbourne, VIC 3002,
Australia (e-mail: laura_power@live.com.au).

David J. Szmulewicz is with the Florey Institute of Neuroscience and
Mental Health, Parkville, VIC 3052, Australia, also with the Balance
Disorders & Ataxia Service, Royal Victorian Eye and Ear Hospital
(RVEEH), East Melbourne, VIC 3002, Australia, and also with Cerebellar
Ataxia Clinic, Alfred Hospital, Prahran, VIC 3004, Australia (e-mail:
dsz@me.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2023.3334718, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2023.3334718

the presence of Ataxic Speech (0.96) and estimating its
severity (0.81) in the test set indicates the efficacy of this
algorithm. Decision curve analysis demonstrated the value
of incorporating acoustic features from two repeated C-V
syllable paradigms. The strong classification ability of the
specified speech features supports the framework’s useful-
ness for identifying and monitoring Ataxic Speech.

Index Terms— Cerebellar ataxia, speech processing,
cerebellar dysarthria.

I. INTRODUCTION

THE cerebellum integrates information from a range of
sensory inputs with the aim of aiding the production of

coordinated movement. Cerebellar Ataxia (CA) refers to the
uncoordinated movement resulting from dysfunction of the
cerebellum; it is caused by many processes, including neu-
rodegeneration, multiple sclerosis, stroke and trauma. As the
cerebellum regulates many aspects of movements, CA results
in uncoordinated movements of the limbs, trunk, gait and eyes.
Speech is also regulated by the cerebellum and dysfunction in
relevant cerebellar regions [1] can result in cerebellar ataxia
of speech, sometimes referred to as Ataxic Dysarthria but
referred to here as ‘Ataxic Speech’. Clinically Ataxic Speech is
recognised as increased variability of impaired timing, highly
variable syllables (large variation in the duration of syllables
and interval between syllables and loudness of individual
syllables), articulatory imprecision [2], variations in pause
durations [3], [4] and peak amplitude [5].

An important tool for emphasising these features of Ataxic
Speech is to ask the subject to repeat a pair of syllables
consisting of a Consonant followed by a Vowel (C-V) [6].
Interestingly, at the bedside, the distinction between the speech
of individuals with ataxia and controls (i.e., individuals with-
out ataxia or neurotypical) is more readily achieved using
C-V repetition than sentence utterances [7], [8]. Most of
the studies in the literature used time-based measurements
(perturbation measures, jitter, shimmer), frequency features
(fundamental frequency, low-to-high frequency components
ratio, harmonics-to-noise ratio (HNR) and pitch) and level
of sound pressure to distinguish Ataxic Speech from healthy
speech [9], [10]. A few studies considered cepstral-spectral
measurements [11], [12], which included signal measurements
such as the prominence of the cepstral peak (CPP) and
smoothed CPP (CPPs). These methods were examined in rela-
tively small cohorts and scored using perceptual assessments:
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TABLE I
DEMOGRAPHICS OF THE ENROLLED PARTICIPANTS

TABLE II
COMPARATIVE OVERVIEW OF RECENT LITERATURE IN OBJECTIVE ATAXIC SPEECH ASSESSMENT

where human tags or labels features in the recorded speech
signal in the time or frequency domain to aid in the analyses
of speech.

This clinical evaluation of Ataxic Speech consists of a qual-
itative assessment of the individual’s performance on various
phonetic tasks [16], [17] and has remained largely unchanged
since the early 1900s. To enhance repeatability and reduce
variability caused by individual differences in interpretation,
it is necessary to establish an objective measurement method
for Ataxic Speech rather than relying solely on subjective or
perceptual assessments. Although the state-of-the-art research
on ataxia indicates varying diagnoses for speech ataxia, such
as Spinocerebellar and Friedreich ataxia [3], [18], Multiple
system atrophy [19], and Multiple sclerosis [20], [21]), our
study specifically investigated Pure (central) CA [22], CA with
Bilateral Vestibulopathy (CABV) [23], [24], and CABV with
Somatosensory impairment [25]. Additionally, all patients
in our study exhibited pure CA without any co-occurring
dysarthria (Table I). The literature review in Table II shows
that there is currently no fully automated system for identify-
ing Ataxic Speech and estimating its severity with probability

scoring charts. In our previous studies, we have explored the
effectiveness of time-based [10] and cepstral-based measure-
ments [13] in two separate repeated C-V syllable paradigm
tasks and designed models for identifying Ataxic Speech
and estimating its severity. Based on this previous work, the
development of interpretive visual scoring charts for estimating
the probability of Ataxic Speech risk and Ataxic Speech
severity is now required.

In this study, we developed a fully automated speech
monitoring and scoring system for identifying Ataxic Speech
and estimating its severity with probability scoring charts.
Time-domain, spectral-domain, and cepstral domain features
were used, along with non-linear features; however, as linear
features are obtained from the traditional linear source-filter
speech production system model, they do not take into account
the nonlinear phenomena of 3D fluid dynamics produced
during speech. While non-linear dynamic descriptions have
been used to analyse other pathological speech [26], [27],
there is no evidence of its use in Ataxic Speech. The study
employed two distinct C-V syllable paradigm tasks, with the
assumption that incorporating multiple speech tasks would
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illuminate unique features of Ataxic Speech that may not be
as readily discernible through a single speech task. By com-
bining the outcomes of these two tasks, the identification of
Ataxic Speech and its severity assessment was expected to
be enhanced. The features were then used in nomograms to
generate interpretive visual scores, that would indicate the
likelihood of Ataxic Speech being present or absent in a
particular individual and their severity.

To summarise, in this study, four speech domains (time,
spectral and cepstral domains along with non-linear dynamics)
were quantitatively assessed by objective acoustic analyses
to determine specific dysarthric features and estimate their
reliability in separating Ataxic Speech from control subjects’
speech and estimating the severity of Ataxic Speech, express-
ing both in terms of probability. The aims of this study can
be summarised as follows:

1) Examine speech features in the temporal, spectral, cep-
stral and non-linear dynamics domains to extract a
complementary dataset that effectively captures different
signalling attributes of Ataxic Speech.

2) Assess whether the combined use of linear and
non-linear speech measures improves the distinction of
Ataxic Speech from control subjects’ speech and its
severity.

3) Investigate the potential effectiveness of two separate
speech tasks in the assessment of Ataxic Speech, with
the objective of describing variations in Ataxic Speech
features across tasks.

4) Design a fully automated quantitative system based on
machine learning to separate Ataxic Speech from control
speech and develop interpretive visual scoring charts
(using nomograms) for estimating the probability of
Ataxic Speech risk and Ataxic Speech severity. The
nomograms are designed based on the binary and ordinal
logistic regression models.

II. MATERIALS AND METHODS

A. Participants and Speech Corpus
Speech data from 126 Australian native English speakers

were collected. The patients were 65 individuals previously
diagnosed with ataxia. Our study specifically investigated
Pure (central) CA [22], CA with Bilateral Vestibulopathy
(CABV) [23], [24], and CABV with Somatosensory impair-
ment [25]. Additionally, all patients in our study exhibited
pure CA without any co-occurring dysarthria. The controls
were 61 volunteers with no history of speech difficulties or
neurological disease. The demographics of the participants are
summarised in Table I. None of the participants (with ataxia
or without ataxia/neurotypical) had undergone speech therapy
prior to the study.

B. Ethics Approval and Informed Consent
This study was approved by the Human Research and Ethics

Committee, Royal Victorian Eye and Ear Hospital, Australia
(HREC Reference Number: 11/994H/16) and funded by the
National Health and Medical Research Council (NHMRC)
Grant: GNT1101304. The study was conducted according to

the NHMRC’s “Australian Code for the Responsible Conduct
of Research, 2018” [28] and written consent was sought
from all the participants prior to their enrolment. The subject
shown in Figure 1 provided informed consent to publish their
image.

C. Comprehensive Objective Speech
Assessment System

The Ataxic Speech assessment was performed using the
following steps:

1) Speech Inputs Participants performed the following two
speech tasks:

a) Speech Task 1: Participants were instructed to
recite the phrase British Constitution (BC) three
times. This phrase is a well-established benchmark
for assessing the characteristics of Ataxic Speech.
The acoustic measurements were obtained by tak-
ing the average of the three recorded instances for
each individual.

b) Speech Task 2: Participants repeated the syllable
/ta/ continuously for five seconds, producing a
syllabic sequence of /ta/-/ta/-/ta/. This task will be
referred to as the Repeated Ta (RT) task.

Speech intelligibility in the individuals with ataxia was
perceptually scored by an experienced clinician in accor-
dance with the Scale for Assessment and Rating of
Ataxia (SARA) [29] from the subject’s performance of
the above two tasks. The SARA speech item ranges
from 0 to 6 indicating the severity of Ataxic Speech
where “0” is normal speech, “1” is disturbed speech,
“2” is distorted speech, but simple to comprehend, “3”
is where it is sometimes difficult to understand words,
“4” is where it is difficult to understand several words,
“5” represents only single words being comprehensible
and “6” represents unintelligible speech. The evaluation
of the SARA speech item was performed by the same
clinician for all patients. The evaluator was blinded to
other patients’ conditions and was not informed about
the specific diagnosis or treatment status of the patients
to reduce the risk of bias and ensure that the evaluations
were as objective as possible.

2) The speech recordings were captured by a condenser
microphone clipped at an average distance of 10 cm
from the subject’s lips, in a quiet room with low
ambient noise. The recording was conducted using the
BioKinMobiT M [30] application on an Android phone,
under the supervision of a trained investigator. These
speech tasks resulted in 252 speech recordings, with
126 recordings corresponding to each speech task.

3) Wireless transmission occurred to a blockchain based
distributed cloud network [31] where the proposed
machine learning scoring framework (Section II-D) was
applied.

4) Data analysis results are transformed into a clinically
relevant format.

A pictorial representation of the assessment platform is
illustrated in Figure 1(A).
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Fig. 1. A. Comprehensive Objective Speech Assessment System, B. Workflow of the machine learning scoring algorithm.

D. Machine Learning Scoring Framework
In this study, a fully automated framework (Figure 1(B))

for the scoring system was developed through the following
stages.

1) Data Representation: Let M(M = 126) be the total num-
ber of individuals enrolled in this study. The kth individual,
where 1 ≤ k ≤ M , is instructed to perform T (T = 2) speech
tasks in a day. Distinctive acoustic features are extracted
from each speech task. Further, the j th speech task, where
1 ≤ j ≤ T , consists of N j acoustic features, where N j varies
between 24(RT) and 77(BC). Let

∑T
j=1 N j = F such that

F = 101, that is the total number of features extracted in this
study. For each individual k, the feature set consisting of all
the features extracted from j speech tasks can be represented
through the row matrix,

Xk =
[
xk11xk12 . . . xk1N1 xk21xk22 . . . xk2N2

]
(1)

where XkϵR1×(N1+N2+...+NT ). If the i th feature of the j th

speech task is measured for the kth individual, then his every
feature can be statistically represented as xk ji , where 1 ≤ k ≤

N , 1 ≤ j ≤ T and 1 ≤ i ≤ NT . Therefore, the total feature
vector X for M individuals in this study has a size of M × F .
A model consisting of M individuals, the input matrix feature
set X , and the output response level set Y can be denoted as
column matrices,

X =
[
X1 X2 . . . Xk . . . X M

]T
, Y =

[
Y1Y2 . . . Yk . . . YM

]T
.

(2)

The dimensions of X are M × (N1 + N2 + . . . + NT ), the
dimensions of responses Y are M × 1 and the dimensions
of the obtained dataset combining features and responses are
M × ((N1 + N2 + . . . + NT ) + 1).

The algorithm’s output, Yk , can be either binary or dichoto-
mous, used for Ataxia-Control classification, or ordinal for
determining the severity of Ataxic Speech, based on SARA
speech scores. In the upcoming section, a machine-learning
algorithm using the framework illustrated in Figure 1 (B)) is
presented.

2) Feature Set Construction: In this study, the time-based
features were extracted from speech task 1 [10]; the spectral
and cepstral [13] features were extracted from speech task
2; and the traditional and non-linear features were extracted
from both speech tasks (1 & 2). Supporting Document Table I
presents a brief description of all 101 acoustic features
extracted in this study.

a) Time-based features: Let Sk be of the set of (RT )

syllables for an individual k, where Sk = [Sk1, Sk2, ..

., Skn]. Similarly, their corresponding measures of full promi-
nence, widths/ time-duration at half prominence, and position
of peaks are denoted by Pk, W hk, Pkk respectively, where
Pk = [Pk1, Pk2, . . . , Pkn], W h = [W hk1, W hk2, . . . , W hkn],
Pkk = [(Pkk1, T pk1), (Pkk2, T pk2), . . . , (Pkkn, T pkn)], Pkk
represents the elevation and T pk represents the time-point. The
variable n varies from one RT recording of an individual to
another.

Six acoustic measures, namely, RT Duration Regularity
(RT_Dr50), RT Gap Regularity (RT_Gr), Average RT Peak
Prominence (RT_PPa), Average RT Compensation (RT_Ca),
RT Damping Ratio (RT_DR75) and RT Resonant Frequency
(RT_RF50) were extracted from the Repeated Ta (RT ) data
for an individual k according to the Topographic Prominence
based algorithm of our previous study [10].

b) Cepstral features: The cepstral features included in
this study were those that proved pivotal in the diagnosis
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of ataxic speech in a related study [13]; they included
12 magnitude cepstrum features from mel-frequency
cepstral coefficients (MFCCs) [32] (here referred as
BC_M FCC1, BC_M FCC2,. . .,BC_M FCC12) and
11 phase cepstrum features from modified group delay
cepstral coefficients (MGDCCs) (here referred to as
BC_MG DCC1, BC_MG DCC2,. . .,BC_M FCC12) [13].

c) Spectral features: Spectral descriptors [14], [15] have
been widely used for the perceptual analysis of audio signals
in machine learning applications. The spectral features used
in this study to extract features for an individual k are
summarised in Supporting Document Table I along with their
brief mathematical description. For each of these features
extracted from the RT and BC data, we further calculated the
descriptive statistics (mean (M), standard deviation (SD) and
interquartile range (IQR)).

d) Classical features: Fundamental frequency and param-
eters describing the variability of frequency in time (jitter)
[33], [34], amplitude disruptions (shimmer) [35] and pitch
perturbations [36] are the most common features describing
disturbances in the vibratory characteristic of the vocal folds.
These classical characteristics are good candidates, for speech
tremor quantification [37]. We included harmonic ratio, shim-
mer, jitter and their variants [9], [38] in this study.

e) Non-linear dynamic features: Abnormal speech patterns
can lead to significant variations in vocal fold tension, resulting
in irregular, aperiodic, and noisy-like voices. This deviation
may involve sub-harmonics and chaos, which can obstruct the
analysis of conventional speech signal processing techniques.
Nevertheless, recent studies have indicated that nonlin-
ear dynamical analysis can adequately explain these signal
patterns [26], [27].

• Largest Lyapunov Exponent (LLE): In accordance with
the Rosenstein equation, L L E is calculated as the aver-
age divergence rate of neighbouring trajectories in the
attractor. For this algorithm, it is appropriate to estimate
the closest neighbours to each point in the trajectories; a
neighbour must complete a temporal separation greater
than the “period” of the time series to be known as
the nearest neighbour [27]. It is possible to say that the
point separation in a trajectory is in accordance with the
following expression.

d(t)k = Ceλ1t , (3)

where λ1 is the maximum Lyapunov exponent, d(t) is
the average divergence taken at the time t , and C is
a normalization constant. The following expression can
be obtained by assuming that the j th pair of nearest
neighbours roughly diverge at a rate of λ1

ln(d j (i))k = ln(C j ) + λ1(i1t)), (4)

where λ1 is the average line slope that occurs on the
logarithmic plane when such an expression is drawn.
Based on the Rosenstein equation adopted in our study,
we also incorporated Liu et al.’s [39] first-order correction
method of the exponential divergence of trajectories in
state space of the original noisy speech signal to improve
the signal-noise ratio while estimating LLE. The largest

Lyapunov exponent could be estimated using nonlinear
least squares fitting based on the correction.

• Detrended Fluctuation Analysis (DFA): For the estima-
tion of the scaling exponent α in non-stationary time
series, the stochastic portion of the voice signals can
be analysed using DFA. Any number on the real line
may be inferred by the scaling exponent; however, the
representation of this scaling exponent on a finite sliding
scale from zero to one will be more convenient; thus we
need g : R → (0, 1), a mapping function. The logistic
function g(x) = (1 + exp(−x))−1 is one such function
that finds common use in statistical and pattern recogni-
tion applications, so the normalised scaling exponent is,

(αnorm)k =
1

1 + exp(−αk))
. (5)

On this scale, each sound will lie somewhere between the
extremes of zero and one, according to the self-similarity
properties of the stochastic part of the dynamics. When
speech sounds have αnorm closer to one, this characterises
speech disorders.

3) Feature Selection: In order to select features for
large-scale data in a study on Ataxic Speech classifica-
tion, we employed a two-stage feature selection process
(Figure 1 (B)).

a) Stage 1 (for binary outcome): We used a mass univariate
approach to eliminate features that were not significantly
related to the binary outcome of ataxia or control, as deter-
mined in the development dataset. To do this, we conducted a
feature-wise KS test to examine whether each feature varied
significantly across the two groups. The resulting features were
then further pruned using regularisation, with the elastic net
method [40], [41] being selected due to its balance between
interpretability and parsimony.

b) Stage 2 (for ordinal outcome): To achieve an ordinal
outcome in the study, we assessed the correlation between each
selected feature and the SARA speech score using Spearman’s
rank correlation test. We found that the selected features were
significantly correlated with the outcome, but not necessarily
with each other. This suggests that the heterogeneous groups
of features from the two speech tests may each represent a
proportion of the outcome’s variability.

4) Handling Multicollinearity: We also incorporated the Cor-
relation matrix/ Correlation plot and Variation Inflation Factor
(VIF) to detect the multicollinearity. An optimal value of
VIF <10 is selected in our experiment. The application of the
elastic net regularization method in the selection of features for
the binary outcome (as discussed in Section II-D.3.a) effec-
tively addressed the issue of multicollinearity in our highly
dimensional dataset. This was accomplished by removing
highly correlated predictors from the data [42].

5) Model Building and Ataxic Speech Assessment: This
section involved designing a 3-Tier Ataxic Speech automated
assessment architecture as depicted in Figure 1 (B): (i) classify
speech as ataxic or control, (ii) estimate the severity of Ataxic
Speech, and then (iii) use a nomogram based scoring chart to
predict Ataxic Speech risk and probability of Ataxic Speech
severity.
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To construct models for (i) and (ii), we employed binary
and ordinal logistic regression, respectively. Subsequently,
nomograms were developed for (iii) utilizing the binary and
ordinal logistic regression models. Nomograms have been
widely used in different clinical settings [43], [44], to indicate
the probability of an event, such as death or the presence of a
disease, primarily by reducing statistical predictive models to
a single numerical estimate tailored to the individual patient
profile.

6) Regression Models and Nomogram Construction (Scoring
Chart): Let Yk denote the response of an individual k belong-
ing to an outcome category J .

a) Construction of nomogram (binary responses): When esti-
mating the probability of Ataxic Speech over control speech,
the outcome categories, J (J = 2), have the responses 1
(ataxic) or 0 (control). The odds of Yk being equal to either
1 or 0 are denoted, respectively, by,

P(Yk = 1) =
exp(α + β Xk)

1 + exp(α + β Xk)
, and

P(Yk = 0) =
1

1 + exp(α + β Xk)
(6)

b) Construction of nomogram (ordinal responses): In our
study, the outcome categories, J (J = 4) are assumed to have
a natural order and takes four levels, namely, Severi t yLevel
(SL) 0 (nil), 1 (mild), 2 (moderate), 3 (severe).

Therefore, the ordinal logistic regression models take the
forms,

ln
P(Yk ≤ 1)

P(Yk > 1)

= ln(
π1

π2 + π3
) = α1 + β1 Xk1 + β2 Xk2, . . . , βp Xkp

= α1 + β Xk, (7)

ln
P(Yk ≤ 2)

P(Yk > 2)

= ln(
π1 + π2

π3
) = α2 + β1 Xk1 + β2 Xk2, . . . , βp Xkp5

= α2 + β Xk, (8)

where π j , j = 1, 2, 3 are the category probabilities, he
covariate Xk = [Xk1, . . . , Xkp] consists of the selected p
features from the speech recordings of the individual k, the
slope, β = [β1, . . . , βp] is a vector of regression coefficients
and α j is an intercept, depending on j .

Equations (7)-(8) share the same coefficient β for covariate
Xk . However, the intercept α varies and is denoted by different
annotations(α1 to α3). The intercepts can be used to calculate
the predicted probability of patients with a given set of
characteristics being in a specific category.

The probability of a patient to be in a category j , where
j = 1, 2, 3 can be computed as,

P(Yk ≤ j) = P(Yk < j) − P(Yk < ( j − 1)),

P(Yk = 1) = P(Yk ≤ 1), (9)

where P(Yk ≤ j) is the cumulative probability of Yk less than
or equal to a particular category, j = 1, . . . , J − 1.

E. Data Distribution, Statistics and Model
Performance Metrics

To evaluate the generalization performance of the proposed
framework on previously unseen data, the study utilized a
randomly selected 20% (26 participants) holdout subset of the
dataset for testing the trained models, while the remaining 80%
(100 participants) of the observations were used for develop-
ment and validation of the models (Table I). All statistical tests
were two-tailed, and a p-value<0.01 was considered statisti-
cally significant. To tune the hyperparameters (α and λ) during
the elastic net regularization (Section II-D.3.a), a nested cross-
validation scheme was applied in the development-validation
dataset and the number of folds (k) varied from 2 to 100.
The process was iterated 100 times for each fold where
the development-validation dataset was randomly permuted in
each iteration. All data management and statistical analyses
were carried out using the software, MATLAB and R-version
4.1 (R Foundation for Statistical Computing, Vienna, Austria).

The prediction performance of the Ataxic Speech assess-
ment models was evaluated using the concordance index
(C-index) value on a scale from 0 to 1 with a 95% con-
fidence interval (CI), as well as the area under the curve
(AUC) for the receiver operator characteristic (ROC) plot [45].
Generally, a value of C-index> 0.70 and AUC>0.80 indicates
that the model is good for discrimination. The nomogram
was validated by measuring calibration curves both internally
(validation set) and externally (test set). The calibration was
analysed using the Hosmer-Lemeshow goodness-of-fit test
(HL test), which assesses how well the speech pattern in
the data under analysis is described; non-significant p-values
indicated that the fit of the model was good [46]. For the
calibration curves, the results in the development dataset
were validated using the bootstrap method (bootstrap = 500).
Discrimination between observed and predicted outcomes was
also assessed using the Mean Absolute Error (MAE), Mean
Squared Error (MSE), Somers’ Dxy (Dxy), and Nagelkerke
R2 index (R2). A good discriminative model has a high value
of R2 (>0.7) and low values of MSE and MAE. Large values
(tending towards −1 or 1) for Somers’ Dxy indicate the model
has good predictive capacity. Goodness-of-fit tests, such as
the likelihood ratio test, show model suitability, and the Wald
statistics evaluate the significance of individual independent
variables. The Brier score was calculated; complete precision
[47] is indicated by a Brier score of 0. Discrimination and
calibration [48] does not measure clinical effectiveness, or the
potential to make better decisions with a model than without;
therefore, we used an alternate method [48] to perform a
decision-curve analysis in our study.

III. EXPERIMENTAL RESULTS
This section describes the results of implementing our

machine learning framework for Ataxic Speech assessment.
Recently published epidemiological data indicated

26/100, 000 children and 2.7/100, 000 adults diagnosed with
a dominantly inherited cerebellar ataxia [49], [50]. These
studies also report the prevalence of recessively inherited
cerebellar ataxias as 3.3/100, 000. Hence, for a given large
effect size (AUC = 0.97 and Cohen’s d of 2.7), a minimum
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sample size of 50 (for each group) was calculated by power
analysis, with the error probability set at 0.05 and a false
negative rate set at 0 (that is a power of 1).

To retain more response information while ensuring each
response category has a relatively large number of respon-
dents, an ordinal scaled version (four groups) of the original
SARA-rated version (five groups), was analysed. The four
category ordinal version is grouped as: Group 1(SARA‘0’),
Group 2(SARA‘1’), Group 3(SARA‘2’), Group 4(SARA‘3’ &
‘4’) with 17, 17, 16 and 15(10 & 5) ataxic speakers respec-
tively. Our results revealed that there was no significant
difference in age between control and ataxia speaker groups
in both the development-validation dataset (t(98) = 1.25,
p = 0.215) and the test dataset (t(24) = 0.87, p = 0.393).
Therefore, we concluded that age was not a confounding
variable in our study.

A. Feature Extraction and Selection
A total of 101 spectral, cepstral, time-domain, non-linear

and traditional features were initially extracted from speech
recordings of the two speech tasks. A Correlation heatmap for
the original feature set (101 features) and reduced feature sets
are provided in Supporting Document Figure 1. Further, a box
plot distribution of 101 features is presented in Supporting
Document Figure 2, where the blue shaded plots represent the
features that were statistically significantly different for ataxic
and control (KS test, p≤0.01) in elastic net regularisation
(α = 0.2).

This initial feature set when subjected to the two-stage
feature selection approach (Section II-D.3) resulted in the
following two reduced feature subsets (FS).

1) For Ataxia-Control Categorisation (8 features),
FS 1 = RT _P Pa,RT _J i t ter SD,BC_MG DCC1,
BC_J i t ter R AP_SD, BC_H R_M , BC_SpecRoP_
SD, BC_SpecFlux_I Q R, BC_SpecK urt_I Q R,

2) For Ataxic Speech Severity Estimation (4 features),
FS 2 = RT _P Pa, RT _Gr , BC_SpecK urt_M ,
BC_SpecSkew_M .

The feature selection process for Ataxia-Control clas-
sification using the elastic net regularisation technique is
demonstrated in Figure 2. Figures 2(A) and 2(B) show the
trace plots and corresponding cross-validated deviance of the
elastic net fit. Figure 2(C) indicates the performance of the α

(elastic-net mixing parameter) when varied from 0 to 1. When
α increases, the number of selected features reduces. By the
principle of parsimony [51], eight features were selected in
this step at k = 10, α = 0.9, λ (regularization penalty) =

0.0609 (Accuracy = 93%, Sensitivity = 94%, Specificity =

91.8%) as indicated by the red dotted line in Figure 2(C, D).

B. Diagnostic Categorisation
1) Experiment 1 - Ataxia-Control Classification: The bino-

mial logistic regression ascertained the effects of the feature
set FS 1 on the likelihood that participants have Ataxic
Speech. The logistic regression model was statistically sig-
nificant, χ2(18) = 100.77, p<0.001. The model explained
73% (Nagelkerke R2) of the variance in Ataxic Speech and

Fig. 2. Elastic net fit plots A. Trace plots of coefficient fit by elastic net B.
Cross-validated Deviance of Elastic net fit C. Accuracy estimation and
a number of characteristics selected when the alpha elastic-net mixing
parameter takes values from 0 to 1 D. Eight features were selected in
this step with α = 0.9 (Accuracy = 93%, Sensitivity = 94%, Specificity =

91.8%) as indicated by the red dotted line.

correctly classified 90% of cases. In the validation subset, the
AUC(ROC) was 0.98 (95% CI 0.89-1), sensitivity was 90%,
specificity was 84%, positive predictive value was 89.9%,
negative predictive value was 83.3%, and balanced accuracy
was 87.1%; in the test set, the model showed similar results
(0.97 (95% CI 0.90-1), 97.43%, 85.29%, 84.2%, 96%, and
91.2% respectively). Of the 8 predictor variables, all were
statistically significant (as shown in Table III).

2) Decision Curve Analysis: The standardised net benefit for
Model 1 (all features from FS 1), Model 2 (RT features from
FS 1), and Model 3 (BC features from FS 1) were plotted
against the threshold probability for categorising a subject’s
speech as Ataxic Speech (Figure 3(B)). The “all” line shows
the net benefit of detecting all subjects with ataxia, and the
“none” line is the net benefit of detecting controls. The plot
demonstrates that Model 1 is superior to Models 2 and 3 across
almost all threshold probabilities (0.1-0.85), with the highest
difference at a threshold probability of around 0.6; at that
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Fig. 3. A. Area under the curve (AUC) for the receiver operator characteristic (ROC) plot of Ataxic Speech diagnosis for the validation and test
datasets are 0.98 and 0.97 respectively B. Decision curve analysis for Model 1 (All features from FS 1), Model 2 (RT features from FS 1), and Model 3
(BC features from FS 1) for diagnosing CA. The three curves were compared to the curves of detecting none (black) and all (grey) individuals with
ataxia. The Calibration Curves for Ataxic Speech risk prediction nomogram for C. validation dataset D. and test dataset. Performance statistics,
namely, Mean Absolute Error (MAE) and Mean Squared Error (MSE), are indicated for both the plots (C. and D.). The x-axis showed the predicted
probability of Ataxic Speech severity. The y-axis showed the actual probability of Ataxic Speech severity. The solid line showed the efficiency of the
nomogram. An almost close to the diagonal dotted line indicates a good predicted capability.

TABLE III
MODEL STATISTICS FOR ATAXIC SPEECH DIAGNOSTIC

threshold, the net benefit (for ataxia speech) is 0.70, 0.20 and
0.80 for Models 2, 3 and 1 respectively. At that threshold,
according to the net benefit concept [48], one can administer
about 80-70 = 10 and 80-20 = 60 more profitable treatments
(in every 100 subjects with ataxia) when using Model 1 rather
than Model, 2 and Model 3 respectively; to those who would
otherwise be left untreated (i.e., net of false positive). Hence,
Model 1 had superior performance compared to Models 2 and
3 as its net benefit surpassed the net benefit of the other two
models across the threshold probability range (0.1-0.85). This
result indicates the effectiveness of using both speech tasks
over only using one for detecting subjects with ataxia.

3) Experiment 2 -Ataxic Speech Severity Estimation: The
four acoustic features in FS 2, namely, RT _P Pa, RT _Gr ,
BC_SpecK urt_M , and BC_SpecSkew_M . were signifi-
cantly correlated (p<0.01) with the SARA Speech scores
and were included in the severity estimation model design.
An increase in the time domain feature (RT_GR) extracted
from RT was associated with an increase in the odds of
considering a high Ataxic Speech severity, with an odds ratio
of 1.46, Wald z = 2.46, p=0.01 (Table IV).

4) Experiment 3: This experiment sought to explore the
effectiveness of a combined feature set, integrating features
from our original Ataxic-Control Classification (Experiment 1)
and Ataxic Speech Severity Estimation (Experiment 2). This
experiment aimed to determine if features selected for severity
estimation could also accurately classify ataxic and control
speakers. Results from the validation phase showed that the
combined features achieved an AUC(ROC) of 0.98 (95% CI
0.88-1), with sensitivity and specificity rates of 88% and
86%, respectively. These rates were comparable to those
observed in Experiment 1, which achieved an AUC(ROC) of
0.98 (95% CI 0.89-1), alongside a sensitivity of 90% and
a specificity of 84%. However, performance on the test sets
revealed a slightly reduced accuracy for Experiment 3, with an
AUC(ROC) of 0.95 (95% CI 0.90-1), sensitivity of 92%, and
specificity of 83%, compared to an AUC(ROC) of 0.97 (95%
CI 0.90-1), a sensitivity of 97.43%, and specificity of 85.29%
in Experiment 1. Notably, the sensitivity was consistently
higher in Experiment 1 across both sets. Considering the
critical balance between sensitivity and specificity in medical
diagnostics, where high sensitivity is paramount for effective
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TABLE IV
MODEL STATISTICS FOR ATAXIC SPEECH SEVERITY PREDICTION

Fig. 4. Nomogram scoring charts for predicting the probability of A. Ataxic Speech risk and B. Ataxic Speech Severity. To use the nomogram
scoring chart, an individual subject’s value from the test dataset was presented on each variable axis, and a vertical line (in red) is plotted upward
to calculate the number of “Points” received corresponding to each variable value. The sum of these scores is located on the total points axis and
draws a line vertically down (in blue) to find the probability of Ataxic Speech risk or Ataxic Speech severity greater than or equal to a specific
category. We demonstrate the use of the chart with an empirical example. A. A subject from the validation cohort with speech features located on
the variable axes of the chart corresponds to the following values on axis Points, as such (a)RT_PPa = 15,RT_JitterSD = 20,BC_MGDCC1 = 30,
BC_JitterRAP_SD = 50, BC_HR_M = 60, BC_SpecRoP_SD = 10, BC_SpecFlux_IQR = 5, BC_SpecKurt_IQR = 20, which adds up Total Points
(250) and their Ataxic Speech risk probability is more than 0.63; indeed the subject is with ataxia as confirmed by medical diagnosis. B. A subject
from the validation cohort with speech features located on the variable axes, RT_PPa, RT_Gr, BC_SpecKurt_M, BC_SpecSkew_M; will sum up to
Points (5+10+15+20+35) and Total Points (80), and their probability scores to be in CA Severity ≥1, ≥2, ≥3 are 0.78, 0.50, 0.23 respectively; their
SARA score is 2 as confirmed by clinician’s assessment. The higher colour intensity bar in the CA severity score plot indicates a higher severity of
Ataxic Speech.

screening [52], the results suggest that the feature set from
Experiment 1 is preferable, particularly given its greater
parsimony and efficiency in classification. These findings cor-
roborate the necessity for task-specific optimized feature sets,
reinforcing our assertion that separate models are warranted
for diagnosis versus severity prediction of ataxic speech. This
result aligns with similar observations from previous studies
in other domains of Cerebellar ataxia [53], [54], and Friedrich

ataxia [55], where diagnostic and severity prediction tasks have
yielded different sets of optimal features.

C. Nomogram Scoring Charts
The nomogram scoring charts for predicting the probability

of Ataxic Speech risk and Ataxic Speech Severity for an
individual subject from the test dataset were presented in
Figure 4.
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Fig. 5. A. The Calibration Curves for the probability of Ataxic Speech Severity prediction nomogram for the validation dataset. The x-axis showed
the predicted probability of Ataxic Speech severity. The y-axis showed the actual probability of Ataxic Speech severity. The solid line showed the
efficiency of the nomogram. A line close to the diagonal dotted line indicates good predictive capability. B. The area under the curve (AUC) for the
receiver operator characteristic (ROC) plot of Ataxic Speech Severity prediction for the validation and test datasets are 0.84 and 0.74 respectively.

1) To Stratify Ataxic Speech Risk: In the test dataset, the
nomogram was used to evaluate the risk of Ataxic Speech for
all subjects; the probability indicated by the nomogram was
then compared with the probability of the regression model.
For the test set, the AUC for the nomogram was 0.95 (95%
CI, 0.88-1, P<0.0001) and the AUC for the model was 0.97
(95% CI, 0.90-1,P<0.0001; Figure 3(A)), indicating that the
logistic regression model and nomogram performed very well
in predicting the risk of Ataxic Speech.

a) Calibration curves: Evaluation of the nomogram model
on the validation set yielded a C-index value 0.98 (95% CI,
0.89-1, P<0.0001, which was identical to the AUC of the
regression model (Figure 3(A)). The calibration curve for the
validation dataset showed a strong agreement with a predictive
probability ranging from 0 to 0.7 between nomogram pre-
dictions and actual observations (Figure 3(C)). Data for the
test group yielded a C-index value of 0.96 (95% CI, 0.89-1,
P<0.0001), approximately similar to its AUC (Figure 3(A).
The MAE and MSE values for the validation dataset and
test dataset were (0.092, 0,03) and (0.12, 0.01), respectively.
Further, the HL test demonstrated no significant statistical
difference between the calibration curves and the ideal curves
in both the validation and testing cohorts (Figure 3(C, D))).

2) To Predict the Probability of Ataxic Speech Severity:
Following the regression analysis in Section III-B.3, the same
four acoustic features were incorporated into the nomogram
scoring chart to predict the ordinal probabilities. Only Ataxic
Speech data were used to construct and calibrate the nomo-
gram. On the basis of the individual scores of these four
variables, a user may calculate the total score and obtain a
particular probability of Ataxic Speech severity. We illustrate
the use of the ordinal nomogram scoring chart, detailed scores
of all variables and their interpretation using a participant
from the test dataset in Figure 4. According to the nomogram,
BC_SpecSkewM had the greatest influence on estimating the
probability of the severity of Ataxic Speech, followed by the
features BC_SpecK urtM , RT _Gr and RT _P Pa. The mean
areas ROC curve of the regression models resulting in the
Multiclass ROCs in the validation and testing groups were
0.84 and 0.74, respectively (Figure 5(B)).

a) Calibration curves: The C-index of the nomogram
model in the validation group was 0.81 (Table IV). In the
validation dataset, calibration plots showed better consistency
between the nomogram projections and the actual observations
for Ataxic Speech Severity ≥2, = 3 than Ataxic Speech
Severity ≥ 1 (Figure 5(A)).

IV. DISCUSSION

Ataxic Speech is a crucial aspect of the clinical mani-
festation of CA, yet automated methods for Ataxic Speech
evaluation are currently lacking. Thus, this study aimed to
establish a comprehensive and objective evaluation of Ataxic
Speech, providing a probability of its presence and severity
using a nomogram connected to the SARA. A total of 126 par-
ticipants, including 65 with CA and 61 controls, were recruited
to obtain speech samples. The algorithm utilized feature
selection and elastic-net regularization to develop regression
models that distinguish Ataxic Speech from controls and
detect severity, followed by nomogram-based reports to predict
Ataxic Speech probability and severity. It is important to note
that identifying the presence of speech ataxia in individuals
with CA and categorizing it from controls does not constitute
a clinical diagnosis. Instead, it enables discrimination between
controls and those with Ataxic Speech with a wide range of
severity levels. Diagnosis of ataxia usually occurs early in
the disease when symptoms are mild, and the current tool
is not intended for clinical diagnosis. Instead, it could provide
insights into developing tools that can differentiate early or
emerging Ataxic Speech from unaffected individuals’ speech.

In this implementation, we extensively investigated a
variety of speech features that have been previously reported
as relevant to Ataxic Speech, including time, spectral and
cepstral measurements, to extract 101 acoustic features.
This allowed us to explore a wide range of acoustic and
phonetic characteristics that may be related to Ataxic Speech
and select the most informative features. This study also
investigated non-linear speech features to determine their
relevance to Ataxic Speech specifically. While the non-linear
acoustic features have been used previously in the analysis of
pathological speech [26], [27], their capability to characterise
Ataxic Speech has not been explored. Their effectiveness
and complementary behaviour in differentiating individuals
with ataxia from controls and objectively estimating
Ataxic Speech severity were studied here. While the
feature sets FS1 (RT_PPa, RT_JitterSD, BC_MGDCC1,
BC_JitterRAP_SD, BC_HR_M, BC_SpecRoP_SD,
BC_SpecFlux_IQR, BC_SpecKurt_IQR) and FS2 (RT_PPa,
RT_Gr, BC_SpecKurt_M, BC_SpecSkew_M) for diagnosing
and predicting the severity of speech ataxia, are indeed
distinctive for Ataxic Speech, some of them, such as the
spectral and classical features, has also been found to
be altered in other types of dysarthria, such as hypokinetic
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dysarthria in Parkinson’s disease [56]. However, it is important
to note that the combination of these features, rather than
any individual feature, provides the best separation accuracy
between ataxia and controls, suggesting that these features are
uniquely informative for Ataxic Speech and capture specific
acoustic and phonetic properties that are characteristic of
Ataxic Speech, such as changes in pitch, timing, and spectral
properties.

Also, the fact that the features leading to the best separation
between ataxia and controls are completely different from
those selected for the prediction of Ataxic Speech severity
may seem counterintuitive. However, this can be explained
by the fact that the two tasks have different goals. The goal
of the first task (separation between ataxia and controls) was
to identify the most distinctive features that can differentiate
Ataxic Speech from normal speech. The goal of the second
task (prediction of Ataxic Speech severity) was to identify the
features that are most strongly associated with the severity of
Ataxic Speech, regardless of whether they are also altered in
other types of dysarthria. Therefore, it is possible that some
of the features that are distinctive for Ataxic Speech do not
necessarily correlate with the severity of the disorder, and vice
versa.

Two separate repeated C-V syllable paradigms were
assessed with the expectation that variations in Ataxic Speech
features might be found in the two tasks. The rationale was
that in each speech task, different features of Ataxic Speech
may be more pronounced and a cross-task comparison may be
helpful in isolating and documenting aspects of abnormalities.
The comparative plots for Model 1 (All features from FS 1),
Model 2 (RT features from FS 1), Model 3 (BC features from
FS 1) demonstrated in the decision curve analysis confirmed
this rationale. The Model 1 performance was superior to
Models 2 and 3 as its net benefit surpassed the net benefit
of the other two models across the threshold probability range
(0.1-0.85). This decision curve analysis affirmed the clinical
usefulness of our selected model.

In regression models, the actual ‘effect’ determines the value
of the outcome and more specifically, with logistic regression,
it is the ‘log-odds ratio’. We introduced nomogram-based
scoring models and charts in our study to accentuate this
idea and translate it to an easily interpretive visual score. Two
predictive nomograms were developed using the independent
factors from feature sets FS 1 and FS 2 to generate indicators
for estimating the risk of Ataxic Speech and its severity,
respectively. In order to predict disease severity, as well as
repeatability and reliability in different populations, severity
scoring systems should be valid, calibrated and discriminated
against. The supporting predictive scoring chart in our study
will provide a combined quantitative tool for clinicians to
assess the risk of Ataxic Speech and the individual probability
of its severity. Further, to test and validate the prognostic
accuracy of the nomogram model, adequate discrimination and
calibration were performed. Our assessment models performed
better than the objective assessments of Ataxic Speech from
previous literature as depicted in Table II.

In conclusion, this study demonstrates the effectiveness
of incorporating the complementary behaviour of objective

speech measures extracted from the four domains (time,
spectral, cepstral and non-linear dynamics) in differentiating
individuals with ataxia from controls and objectively esti-
mating Ataxic Speech severity. Additionally, the use of a
combination of speech features from different speech tasks
highlighted specific aspects of Ataxic Speech less easily
identified by a single task; and improved the identification of
Ataxic Speech and the estimation of its severity. The findings
show that the automated analysis of meaningful acoustic
features from recordings of the two repeated C-V syllable
paradigms selected (RT and BC) can be a reliable tool for
monitoring CA-associated vocalisation deficits. Furthermore,
nomogram based scoring charts assist in offering an accurate
individualized prediction of the presence of Ataxic Speech
and its severity while highlighting the important prognostic
information that can be gleaned from simple speech tests.
We believe that this technique can be further developed and
translated for other motor evaluations as well as into the
entire spectrum of motor speech disorders manifested by other
neurodegenerative disorders. The presented pilot study results
offer new possibilities for future research on motor speech
disorders, ranging from conventional laboratory-based analy-
ses; and monitoring the impact of therapy and progression of
longitudinal disease to high-throughput screening possibilities.
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