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Upper Limb Cortical-Muscular Coupling Analysis
Based on Time-Delayed Back Maximum
Information Coefficient Model
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Abstract—In musculoskeletal systems, describing
accurately the coupling direction and intensity between
physiological electrical signals is crucial. The maximum
information coefficient (MIC) can effectively quantify
the coupling strength, especially for short time
series. However, it cannot identify the direction of
information transmission. This paper proposes an effective
time-delayed back maximum information coefficient
(TDBackMIC) analysis method by introducing a time delay
parameter to measure the causal coupling. Firstly, the
effectiveness of TDBackMIC is verified on simulations,
and then it is applied to the analysis of functional cortical-
muscular coupling and intermuscular coupling networks
to explore the difference of coupling characteristics
under different grip force intensities. Experimental results
show that functional cortical-muscular coupling and
intermuscular coupling are bidirectional. The average
coupling strength of EEG—EMG and EMG— EEG in beta
band is 0.86 + 0.04 and 0.81 + 0.05 at 10% maximum
voluntary contraction (MVC) condition, 0.83 + 0.05 and
0.76 + 0.04 at 20% MVC, and 0.76 + 0.03 and 0.73 +
0.04 at 30% MVC. With the increase of grip strength,
the strength of functional cortical-muscular coupling
in beta frequency band decreases, the intermuscular
coupling network exhibits enhanced connectivity, and the
information exchange is closer. The results demonstrate
that TDBackMIC can accurately judge the causal coupling
relationship, and functional cortical-muscular coupling
and intermuscular coupling network under different grip
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forces are different, which provides a certain theoretical
basis for sports rehabilitation.

Index Terms—EEG signal, EMG signal, intermuscular
coupling network, functional cortical-muscular coupling,
information flow.

. INTRODUCTION

N THE process of human autonomous movement, the

motor cortex sends control information to the effector
muscle through the motor nerve pathway, and the muscle
feedbacks the information to the motor cortex, forming a
closed loop. Functional cortical-muscular coupling (FCMC) is
the interaction or coherence between the cerebral motor cortex
and muscle tissue. It indicates how the cortex performs actions,
and the deeper meaning lies in the mode of information
processing and motion generation [1]. FCMC is believed to
be the key to direct or indirect signal transmission between
the motor cortex and the effector muscles [2]. In 1995,
Conway et al. [3] proposed the first FCMC coherence study
based on the synchronous oscillation relationship between
EEG and EMG sequences. In later studies [4], [5], FCMC,
as a neurophysiological measure, has been widely used in the
assessment of rehabilitation after disease, especially stroke.
The concept of intermuscular coupling (IMC) is similar to
FCMC. It refers to the mutual connection between muscles
with different functions under the same action, which reflects
the corticospinal drive shared by the motor neurons of related
muscles [6]. In recent years, many studies have collected
electroencephalogram (EEG) signals and surface electromyo-
gram (EMG) signals to explore the pathological mechanism
of motor dysfunction through the analysis of functional
cortical-muscular coupling and intermuscular coupling, which
evaluate the rehabilitation effect of patients with neurological
diseases such as stroke [7], [8], [9].

The relationship between neurophysiological electrical sig-
nals mainly includes two aspects: coupling strength and
coupling direction. At present, the algorithms for quantifying
the functional cortical-muscular coupling and intermuscular
coupling mainly include coherence [10], mutual information
(MI) [11], Granger causality (GC) [12], and transfer entropy
(TE) [13]. The coherence and mutual information methods
are both based on the assumption of symmetry in the rela-
tionships between variables, which hinders their ability to
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accurately identify the direction of information propagation,
limiting their practical applications. GC and TE can not only
quantify the coupling strength, but also identify the coupling
direction, and they meet the needs of detecting the relationship
between neurophysiological electrical signals. However, the
neurophysiological electrical signals have been proved to be
nonlinear [14]. The GC method is based on a linear sys-
tem [15]. The TE method used to detect nonlinear systems is
an extension of GC. Specially, for the linear Gaussian model,
TE is equivalent to GC. Therefore, TE is the most effective
method to detect the causal relationship of the neurophys-
iological electrical signals, it is also widely used in other
fields [16], [17]. However, in practical applications, when the
time series is not long enough, TE cannot accurately detect
the coupling relationship [18].

Reshef et al. [19] proposed the maximum information
coefficient (MIC) method to calculate the linear and nonlinear
correlation of two variables. MIC can capture the broad
correlation (i.e., universality) between different functions, and
has the same correlation metric (i.e., fairness) for any function
with the same noise. In recent years, MIC has been applied
to the field of neuroscience. Tian et al. [20] used MIC as a
supplementary method for PCC to reveal the mechanism of
brain network in resting state. Liang et al. [21] extended MIC
to the time-frequency domain to study the cortical-muscular
function coupling in flexion of back muscles. However, for
the relationship between two variables, MIC is represented
by a scatter plot, two sets of data form multiple coordi-
nate points, which distribute in two-dimensional space. The
two-dimensional space is divided into different grids along
the horizontal and vertical axes, and find the grid scheme
that maximizes mutual information, and its calculation is
very intensive. Therefore, there have been many studies on
the optimization of MIC algorithm. Reshef et al. [19] used
the algorithm ApproxMaxMI to calculate MIC. However, the
averaging strategy adopted by the algorithm to quickly obtain
the optimal grid is not a necessary condition to obtain MIC,
and the universality of MIC is closely related to the maxi-
mum grid limit. Zhang et al. [22] used simulated annealing
and genetic algorithm to optimize MIC. This algorithm can
obtain better MIC values, but it is more time-consuming.
Chen et al. [23] proposed ChiMIC algorithm for this problem,
this algorithm used the x? test to control the number of seg-
ments in the optimization direction, but its non-optimization
direction still adopts the averaging strategy and failed
to achieve bidirectional unequal spacing grid division.
Cao et al. [24] proposed a MIC optimization algorithm Back-
MIC which is based on ChiMIC, and this algorithm adds
the backtracking optimization process to eliminate the limit
of averaging. However, BackMIC is symmetrical and cannot
distinguish the direction between signals.

To solve the limitation of the BackMIC method in the
direction of information transmission, inspired by the idea
of TDMI [18] and TDMIC [25], this paper introduces a
time delay parameter into BackMIC and proposes the timede-
layed back maximum information coefficient (TDBackMIC)
algorithm, which infers the causal relationship by capturing
the information transmission delay between two time series.

First, the steps of this method are briefly introduced. Then,
the effectiveness of the method is verified by simulation.
Finally, the algorithm is applied to the study of functional
corticomuscular coupling and intermuscular coupling network
under different grip forces, and the differences of coupling
characteristics under different grip forces is discussed in depth,
which can provide a new method for exploring the diagnosis
and rehabilitation of neuromuscular diseases.

The main contributions of this paper are summarized as
follows:

1) We propose a TDBackMIC method to accurately deter-
mine the causal relationship between variables. This method
has strong robustness to variables.

2) The calculation steps of the causal judgment algorithm
are described in detail. The effectiveness of TDBackMIC
algorithm is verified by simulation experiments.

3) TDBackMIC algorithm was applied to the analysis
of functional cortical-muscular and intermuscular coupling
networks, demonstrating the differences in coupling charac-
teristics under different grip strength.

[I. PROPOSED METHOD
A. MIC

The MIC algorithm can measure the linear and nonlinear
correlation between two random variables. The MIC of ran-
dom variables X and Y is defined as follows:

MI%(X,Y)

MIC(X,Y) = —] (D
log, min(ny, ny)

max [
nyXny<B(n)
where n, and n, (positive integer) are the number of grids on
the x-axis and y-axis respectively, D represents the ny X n,
grid, M I;;(X , Y) is the maximum mutual information among
all grid division methods under a fixed number of grids,
log, min(ny, ny) normalizes mutual information. B(n) = n®
is a function that upper bounds the number of grids, n is the
size of data, and o (0 < « < 1) is a constant. Choosing the
appropriate size of B(n) is important, which is usually set to
B(n) = n®® (« = 0.6) by default. The value of MIC(X,Y) is
between [0,1]. The larger the value is, the stronger the coupling
between the two variables is, and vice versa.

B. TDBackMIC Algorithm

The principle of MIC algorithm is to find the grid division
method when the mutual information is the largest from two
grids of different dimensions. Finding the optimal grid division
is computationally expensive. BackMIC uses the yx? test to
terminate the grid search. The calculation description of the
x? statistic is shown in Fig. 1. The vertical axis is divided
into r segments, and the new segmentation point Py on the
horizontal axis is between P,_i and Py_p, the ¢ — 1 and ¢
columns are divided. The yellow area in the figure is defined
as the detection area of the segmentation point P for x2 test.
The x? statistic is defined as:

r c
Xh=2, 2

j=1i=c—1

(}’lj’,' — n*,,-nj!*/N)z

Ny,ij s/ N

2
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Fig. 1. The calculation description of the %2 statistic. The yellow area
is the detection area of the segmentation point Py for x2 test.

where N is the number of data points in the detection area,
ny,; is the number of data points in the column i, nj, is
the number of data points in the detection area in the row j,
and n;; is the number of data points in the row j and
column i. BackMIC uses the x test for the new segmentation
point. If the value is greater than the preset threshold, which
indicates that the segmentation point is valid, the search for
the next segmentation point is continued and the x?2 test is
used. Otherwise, the search for the axis segmentation point is
paused.

When searching the optimal grid, the BackMIC algorithm
first divides the vertical axis equally into r segments
r = 2,3,...,B(n)/2), obtains the optimal segmentation
point on the horizontal axis through the x? test, and fixes it on
the horizontal axis, and then obtains the optimal segmentation
point on the vertical axis through the x2 test. BackMIC
algorithm obtains the bidirectional unequal interval grid divi-
sion, and then calculates the corresponding normalized mutual
information under the grid division.

Because BackMIC is symmetric, the algorithm cannot rec-
ognize the coupling direction. To solve this problem, we refer
to the TDMIC algorithm, introduce a delay parameter and
propose the TDBackMIC algorithm. The direction of the
information flow is determined by calculating the BackMIC
between the variable X and the variable Y with different delays
t(BackMIC(X,Y,t)). When BackMIC(X,Y,t) reaches
peak value, the corresponding 7 value is negative which
represents X — Y, the corresponding t value is positive which
represents ¥ — X. In order to estimate the total information
flow intensity over a period of time, the following formula can
be used to calculate the cumulative information flow within a
specific delay Q:

0
Crpsackmic = Y TDBackMIC (k. i). 3)
i=1

Here, the delay Q is set to 40 data points and & is set to 1.

C. Establishment of Intermuscular Coupling Network

The intermuscular coupling network is essentially a directed
weighted complex network. V = {vy, va, ..., v,} is a collec-
tion of muscle nodes, v; € V, (i = 1,2,...,m) is a node in
the network, m is the number of nodes in the intermuscular
coupling network, and v; — v; represents a directed edge

from node v; to node v;. TDBackMICvi%Uj indicates the
connection weight on the directed edge v; — v;. Generally,
TDBackMICvl._wj and TDBackMICvj_wl. are not equal.

The network construction needs to be thresholded. If the
threshold is too small, the intermuscular coupling network
contains false connections, which will cover up important
topological relationships. If the threshold is too large, the
intermuscular coupling network is too sparse and loses a
lot of meaningful information. In this paper, according to
the threshold selection [26], the threshold is set between
0.05 ~ 0.95 *max(T DBackMIC), which is reduced by 0.05
*max(T DBackMIC) until there is no isolated node, where
max(T DBackMIC) is the maximum value in the network.
The adjacency matrix of intermuscular coupling network is
D, and the threshold value is h, then the adjacency matrix A
after thresholding is

Dij. Dj; >h
N P )
0, Dij > h.

D. Parameters of Intermuscular Coupling Network

In this paper, node strength and clustering coefficient [27]
are used to analyze the characteristics of intermuscular cou-
pling network in different frequency bands under different grip
forces from the overall perspective.

1) Node Strength: The node strength in a directed network
can be divided into entry degree and exit degree. The higher
the node strength is, the more important the node is in the
network. The entry degree and exit degree of each node v;
are H;,(v;) and H,,:(v;) respectively. The larger the value of
H;, (v;) is, it indicates that there are more nodes that can affect
this node. The larger the value of H,,;(v;) is, the greater the
contribution of this node is, the more important its position in
the network is. The average degree of intermuscular coupling
network H N is defined as

1 m
HN = — Z;(Hi,,(vi) + Hour (v))). ®)

The higher the average degree of the network is, the stronger
the correlation between the channels is.

2) Clustering Coefficient: The clustering coefficient of node
C(v;) measures the degree of network community structure.
The larger the node clustering coefficient is, the higher the
degree of interconnection between this node and other nodes.
The clustering coefficient of intermuscular coupling network
CN is defined as

1 m
CN = Z;cw,»). (6)

Here, CN € [0, 1]. When CN = 0, it means that all nodes in
the network are isolated nodes. When CN = 1, it means that
every node in the network is fully connected to others.

[1l. EXPERIMENTAL DATA ACQUISITION
AND PREPROCESSING

A. Data Acquisition

The data was collected from 10 healthy adults (21~25 years
old). All subjects were right-handed, and had no upper
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(b) Experimental flow chart. One trial lasted 25 seconds, including 5s of grip
test and 20s of post-rest time.

20 seconds P

Fig. 2. Experimental setup.

limb motor dysfunction or history of joint injury. All the
subjects were in good mental condition, were informed of
the details of the experiment, signed the informed consent
form and volunteered to participate in the data collection
experiment. The EEG signals and the EMG signals of right
hand, including brachioradialis (B), biceps brachii (BB), flexor
carpi ulnaris (FCU), flexor digitorum superficialis (FDS),
flexor carpi radialis (FCR) and extensor digitorum (ED) were
collected synchronously. Before the experiment, the skin of
the collection site was cleaned with 75% medical alcohol. The
maximum voluntary contraction (MVC) of each subject was
then tested. Sensors were placed on the muscles corresponding
to the movement according to the anatomical knowledge. The
upper limb grasping experimental environment is shown in
Fig. 2(a). The subjects’ grasping action continued to sample
for 5 seconds, and then rested for 20 seconds. The sampling
frequency was 1000Hz. Each subject carried out three experi-
ments, and the subjects completed 10%, 20%, and 30% MVC
grasp respectively. The whole experimental process is shown
in Fig. 2(b). Based on preliminary data reported in previous
studies [25], [28] that reported corticomuscular coupling under
varying MVC levels, we estimated that ten subjects would be
sufficient for the intended analysis.

B. Data Preprocessing

EMG signals underwent a 50Hz notch filter and a
0.5~200Hz bandpass filter. EEG signals underwent a 50Hz
notch filter and a 0.5~75Hz bandpass filter. The Chebyshev II
bandpass filter was then used to extract the EEG and EMG
signals in the beta band (15Hz~30Hz) and gamma band
(31Hz~60Hz) for further analysis.

TDBackMIC

-40 =20 0 20 40 -40 =20 0 20 40

(@) (b)

Fig. 3. Comparison between TDMIC and TDBackMIC (Model 1).
(a) shows the TDMIC curve of the time series X and Y generated by
Model 1. (b) shows the TDBackMIC curve of the time series X and Y
generated by Model 1.

IV. SIMULATIONS

To verify the effectiveness of the TDBackMIC method, the
following three simulation models are constructed for test and
analysis.

A. Model 1

A directed linear system, there is information flow from
time series X to Y.
X = —0.3x,,1 + &
(7
yr =03y,1 — 0.9x -1 + ;.
where &; and 7, are Gaussian noises with mean value of 0 and
variance of 1, the same below.

B. Model 2

A directed nonlinear system, there is information flow from
time series X to time series Y.
[ Xy = 0.6Xt71 + &

()]
v = 0.6y;,—1 + 0.5x12_1 + ;.

C. Model 3

A directed nonlinear system, compared with Model 2, the
relationship between time series X and Y is more complex, and
there is information flow from time series X to time series Y.

Xy = 0.4x,_1 + &
2 ©)
H ye = 1.5 % [2x;—1 + cos”(x;—1)] + ns.

The above three models use TDMIC and TDBackMIC
methods respectively for analysis and comparison.

Model 1 and Model 2 are randomly generated for 10 times.
Fig. 3 and Fig. 4 show the comparison of the TDMIC and
TDBackMIC curves of the time series X and Y generated by
Model 1 and Model 2. The value of « is set to 0.6 to limit the
number of grids searched. It can be seen that whether a linear
system or a nonlinear system, both TDMIC and TDBackMIC
reach a significant peak when the time delay is negative, which
indicates that the identified information flow direction is X
to Y, this is consistent with the predetermined direction of
the model. TDMIC and TDBackMIC can accurately judge the
direction of the 10 times time series randomly generated by
Model 1 and Model 2, which shows that both methods can
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Fig. 4. Comparison between TDMIC and TDBackMIC (Model 2).

(a) shows the TDMIC curve of the time series X and Y generated by
Model 2. (b) shows the TDBackMIC curve of the time series X and Y
generated by Model 2.
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Fig. 5. Comparison of TDMIC and TDBackMIC of time series X to Y
under different c.

accurately identify the direction of information flow of linear
and nonlinear systems.

Fig. 5 shows the comparison of TDMIC and TDBackMIC
of the time series X and Y randomly generated by Model 3 for
10 times in different «. TDMIC increases with the value of
o increases, while TDBackMIC remains almost unchanged.
Therefore, the TDBackMIC method is more robust than
TDMIC in terms of variable «, which further proves that the
TDBackMIC proposed in this paper is an excellent measure
of causal coupling.

V. EXPERIMENTAL RESULTS

This paper analyzes the characteristics of functional
cortical-muscular coupling and intermuscular coupling net-
work in different frequency bands and different grip strength
levels in the upper limb grasping experiment. It provides a
good basis for evaluating the grip strength and the rehabilita-
tion of stroke patients.

A. Cortical-Muscular Function Coupling

In this paper, the EEG signal of C3 channel in the motor
cortex and the EMG signal of FDS are selected for the func-
tional cortical-muscular coupling analysis. The bidirectional
coupling intensity of EEG and EMG was calculated using

beta EMG->EEG
M@ gamma EMG->EEG

1.5 B3R beta EEG-=EMG
B gamma EEG->EMG

1.0F

Coupling strength

0%
strength

Fig. 6. Cortical-muscular coupling strength between different frequency
bands under different forces. The significance level is 0.05, where
represents p<0.05, * *’ represents p<0.01, * * * represents p<0.001,
and "™ * * * represents p<0.0001.

the TDBackMIC algorithm. Fig. 6 shows the mean value and
standard deviation of functional cortical-muscular coupling
strength in different frequency bands under different grip
strength levels of all subjects. Independent sample T test is
conducted for the coupling strength of each frequency band
under different grip strength levels. It can be seen from Fig. 6
that regardless of the grip strength, the coupling strength of
EEG - EMG and EMG — EEG of the beta frequency
band are significantly greater than that of the gamma frequency
band, and the coupling strength of EEG — EM G on the beta
frequency band is greater than that of EM G — EEG, which
indicates that the transmission of information from the cerebral
motor cortex is dominant. With the increase of grip strength,
the bidirectional coupling strength on the beta frequency band
decreases significantly, while the coupling strength on the
gamma frequency band has no significant difference.

B. Intermuscular Coupling Network

According to the coupling calculated by TDBackMIC, the
thresholded adjacency matrices of all subjects in each fre-
quency band are averaged, and the directed intermuscular
coupling network is established and analyzed. Taking the
average coupling strength of subjects at 30% MVC as an
example, the muscle functional network diagrams of two
main frequency bands (beta and gamma) are established. The
direction of the arrow indicates the direction of information
transmission. The thickness of the edge reflects the strength
of intermuscular coupling. The thicker the line is, the greater
the coupling strength between the two nodes connected by
the line is. The size of a node represents the average value
of its entry degree and exit degree. The larger the node
is, the more important this node is in the network. It can
be seen from Fig. 7, the information transmission between
muscle nodes is bidirectional. Table I shows the entry degree
of nodes, it can be seen that the entry degree of FCU, FDS,
and FCR are relatively high, this indicates that the information
flow mainly flows to FCU, FDS, and FCR. In both beta and
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. ) . ®6p

N

(a) beta band

&b

P
(b) gamma band

Fig. 7. Intermuscular coupling network of different frequency bands
at 30% MVC. The direction of the arrow represents the direction of
information transmission, the size of the node represents the average
value of its entry degree and exit degree, and the line between the nodes
represents the size of the coupling strength.

TABLE |
THE ENTRY DEGREE OF NODES IN INTERMUSCULAR COUPLING
NETWORKS OF DIFFERENT FREQUENCY BANDS AT 30% MVC

FCU FDS FCR B ED BB
beta 0.0612 |0.0539 |0.0571 |0.0443 |0.0247 |0.0309
gamma 0.0609 |0.0544 |0.0477 |0.0322 |0.0296 |0.0115

gamma frequency bands, the coupling strength between FDS
and FCU, between FCU and FCR, and between FDS and FCR
is significantly greater than that between other muscle nodes.
FDS, FCU and FCR have a greater degree of exit and entry.
BB and ED have smaller exit degree and entry degree than
other nodes. When the network threshold increases, they are
more likely to become isolated nodes of the network. This
shows that FDS, FCR and FCU cooperate with each other in

o

=

0
1

=

[—]

=)
T

Average degree
(=]
&
£
T

=

=

)
T

e e

0.00
gamma
Frequency band
(@)
0.05
=
2 0.04f -1
=
g
= 0.03F
- Pt
g o
E 0.02F o e e e e " ]
E SRR e
CRAIG: o
@) o e
0.00 | S |
beta gamma
Frequency band

(b)

Fig. 8. Comparison of parameters of intermuscular coupling network in
different frequency bands at 30% MVC.

grasping action, and play a leading role in network information
interaction.

In order to better quantify the characteristics of the inter-
muscular coupling network, the average degree and clustering
coefficient of the intermuscular coupling network in each
frequency band were calculated, and the independent sample T
tests were conducted. The comparison of the characteristic
parameters of the muscle functional network is shown in
Fig. 8. The result shows that the average degree and clustering
coefficient in the beta frequency band are greater than those
in the gamma frequency band and there is no significant
difference.

Because the intermuscular coupling strength is greater in
the beta frequency band [25], we analyze the differences of
intermuscular coupling network in the beta frequency band
under different grip forces. The intermuscular coupling net-
work diagram of all subjects in beta frequency band under
different grip forces is shown in Fig. 9. The entry degree of
nodes in intermuscular coupling networks under different grip
forces is shown in Table II. It can be seen from the figure
and table that the entry degree of FCU, FDS, and FCR are
relatively high, with the increase of grip force, the coupling
strength between muscles slightly increases, and the degree of
exit and entry of muscle node also increase, which indicates
that for the completion of different grip forces movement, the
contribution of muscles increases. At 10% MVC, there are
mainly three muscles to maintain grip force, and BB has small
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Fig. 9. Intermuscular coupling network under different grip forces.

exit degree and entry degree. At 20% MVC, the entry degree
of FDS and ED increased greatly, while the entry degree of
BB decreased. But at 30% MVC, more muscles participate in
the action, and the information interaction between muscles
increases, which is more conducive to maintain a higher grip
strength level.

TABLE Il
THE ENTRY DEGREE OF NODES IN INTERMUSCULAR COUPLING
NETWORKS UNDER DIFFERENT GRIP FORCES

FCU FDS FCR B ED BB

10% MVC 0.0505 |0.0422 |0.0388 [0.0204 |0.0261 |0.0136
20% MVC 0.0615 |0.0555 |0.0485 [0.0278 |0.0368 |0.0126
30% MVC 0.0612 |0.0539 [0.0571 |0.0443 |0.0247 |0.0309
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Fig. 10. Parameter comparisons of intermuscular coupling network

under different grip forces. ™’ Indicates that the p-value is less than 0.05.

In order to analyze the difference of intermuscular coupling
network under different grip forces, we calculate two impor-
tant parameters of network characteristic. The mean value and
standard deviation of all subjects are calculated and shown
in Fig. 10. The experimental result shows that in the beta
frequency band, with the increase of grip force, the average
degree and clustering coefficient also increase and there are
significant differences. The intermuscular coupling network
is different in different grip forces, which indicates that the
central nervous system works in a specific way to cope with
the changes in grip strength.

VI. DISCUSSION

In the process of human motion, the central nervous sys-
tem transmits the motion control information to the relevant
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muscles through neural oscillation, which causes the oscil-
lation of the motor unit, and then reveals the interaction
between the cerebral cortex and the muscle. Under the con-
trol of the central nervous system, the coupling relationship
between muscles at different time and space levels reflects
the interaction between related muscles in the process of
exercise. In this paper, TDBackMIC method is proposed
to analyze the characteristics of functional cortical-muscular
coupling and intermuscular coupling network in different
frequency bands of EEG and EMG signals under different grip
forces.

Firstly, the proposed TDBackMIC method is simulated.
The simulation result shows that TDBackMIC can effectively
identify the direction of information flow, and TDBackMIC
has stronger robustness on variable o« than the previous
TDMIC method. It provides a new causal measurable method
for understanding the characteristics of complex functional
cortical-muscular coupling and intermuscular coupling net-
work.

When the subject grasps, the cerebral motor cortex transmits
command information to the muscle, which reflects in the
coupling direction EEG — EMG. At the same time, the
muscle also feedback the information to the cerebral cortex,
which corresponds to the coupling direction EMG — EEG,
and the coupling strength of EEG — EMG in the beta
frequency band is greater than EM G — EEG, which fully
indicates that the EEG and EMG are in the same closed
loop, and their coupling is bidirectional. It is consistent with
the existing research conclusions [29]. Liu et al. [30] points
out that few studies have observed strong coupling in the
low gamma band in stability-output tasks. The coupling of
gamma bands in this study may be related to the setting and
execution level of the motion plan. Fine force tracking tasks,
which require high attention resources and require complex
fusion of visual and somatosensory information [30], may
also lead to this condition. Extensive studies have shown that
[31], [32] the functional cortical-muscular coupling in beta
frequency band is related to the output of steady-state force,
and functional cortical-muscular coupling in gamma frequency
band is related to the output of dynamic force. The coupling
strength of beta frequency band is significantly greater than
that of gamma frequency band during grip movement, which
is consistent with the existing research [33]. With the increase
of grip force, the coupling strength of beta frequency band
decreases significantly, which may be because the subjects
need to consume more energy to maintain the output of larger
constant force, making the EEG and EMG coupling system in
an unstable state. It is confirmed that the coupling in the beta
frequency band reflects in the control function of the cortex
to stable states [34].

The development of complex networks makes it possible to
analyze the intermuscular motion mechanism from a holistic
perspective. It can not only analyze the coupling between a
pair of muscles, but also analyze the characteristics of the
intermuscular coupling network from a global perspective.
In order to deeply study the differences of the intermuscular
coupling network of the subjects under different grip forces
and different characteristic frequency bands, this paper divides

the signals of the six EMG channels collected by the sub-
jects at 10%, 20% and 30% MVC into two characteristic
frequency bands, beta and gamma, and then uses TDBackMIC
to calculate the intermuscular coupling strength and builds
the intermuscular coupling network. The experimental result
shows that FCU and FDS are the key muscles, and the cou-
pling strength between FCU and FDS is larger under different
grip forces and different frequency bands, FCU and FDS can
be regarded as a pair of cooperative muscles of grip movement,
which is consistent with the results obtained in existing
study [25]. The intermuscular coupling is bidirectional, which
is similar to the cortical-muscular function coupling. The
stronger information flow mainly flows to the synergistic
muscles (i.e., FDS, FCU, and FCR), this is consistent with the
results obtained in existing study [25]. The correlation between
muscles in beta frequency band is stronger, and the network
connectivity is greater. This may be because the intermuscular
coupling in beta frequency band has been proved to be related
to the output of steady-state force [35]. In addition, with the
increase of grip force, more muscles participate in the move-
ment of constant grip force, and the information interaction
between non-key muscle BB and other muscles increases,
which reflects in the increase of the degree of exit and entry
of BB node. The node degree and clustering coefficient also
increase with the increase of grip force, which indicates that
the greater the grip force is, the closer the information inter-
action is. To some extent, it reflects that the adjustment of the
control strategy of the neural control system to cope with the
output of greater and constant grip force. There are differences
in the coupling strength between muscles, which may be
related to the different functions of muscles. It reflects different
motion control mechanisms, which is consistent with previous
studies [36].

The proposed TDBackMIC method provides an effective
practice for analyzing the direction and strength of cortical-
muscular coupling. However, in cortical-muscular coupling,
only a single EEG channel was analyzed, and the recorded
signals represented a large number of superimposed signals
from multiple oscillating sources. To address this limitation,
TDBackMIC analysis of multi-channel EEG and EMG signals
will be considered in future work. In addition, the sample size
of this study was relatively small. Only N=10 subjects were
recruited. However, based on a power analysis using published
reports [25], [28], we estimated that a number of 10 subjects
would be sufficient to detect the significance for the intended
research. Future studies of larger samples are required to verify
the findings of our preliminary findings.

VIlI. CONCLUSION

The TDBackMIC method proposed in this paper can accu-
rately judge the causal relationship between variables and has
stronger robustness on variable « than the TDMIC method.
Further, the TDBackMIC method is applied to the analysis
of functional cortical-muscular coupling and intermuscular
coupling network under different grip forces. The experimental
results show that with the increase of grip force, the strength of
functional cortical-muscular coupling in beta frequency band
decreases, the coupling relationship between muscles is closer
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and the connectivity is better. TDBackMIC method provides
an effective means for causal coupling analysis, and creates
favorable conditions for in-depth study of motion control
mechanism.
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