
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023 4601

Alzheimer’s Disease Prediction via Brain
Structural-Functional Deep Fusing Network

Qiankun Zuo, Yanyan Shen , Member, IEEE, Ning Zhong, C. L. Philip Chen,
Baiying Lei , Senior Member, IEEE, and Shuqiang Wang , Senior Member, IEEE

Abstract— Fusing structural-functional images of the
brain has shown great potential to analyze the deterio-
ration of Alzheimer’s disease (AD). However, it is a big
challenge to effectively fuse the correlated and comple-
mentary information from multimodal neuroimages. In this
work, a novel model termed cross-modal transformer
generative adversarial network (CT-GAN) is proposed to
effectively fuse the functional and structural information
contained in functional magnetic resonance imaging (fMRI)
and diffusion tensor imaging (DTI). The CT-GAN can learn
topological features and generate multimodal connectivity
from multimodal imaging data in an efficient end-to-end
manner. Moreover, the swapping bi-attention mechanism
is designed to gradually align common features and
effectively enhance the complementary features between
modalities. By analyzing the generated connectivity fea-
tures, the proposed model can identify AD-related brain
connections. Evaluations on the public ADNI dataset show
that the proposed CT-GAN can dramatically improve pre-
diction performance and detect AD-related brain regions
effectively. The proposed model also provides new insights
into detecting AD-related abnormal neural circuits.

Index Terms— Multimodal fusion, brain network comput-
ing, swapping bi-attention mechanism, generative adver-
sarial strategy.
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I. INTRODUCTION

ALZHEIMER’S disease (AD) is a progressive and irre-
versible neurodegenerative disease that has become the

primary cause of dementia among the elderly [1]. According to
statistics [2], there are more than fifty million AD sufferers all
around the world. As the patients progress towards AD, they
will lose cognitive abilities, including the ability to remember
or think, and finally the ability to care for themselves [3], [4].
The high prevalence of AD creates a heavy financial strain on
governments as well as the patients’ families. Thanks to the
development of artificial intelligence, researchers are studying
and analyzing AD by using machine learning-based tools [5],
[6], [7]. Yet, the exact cause of AD is still unknown. One of
the primary causes of the aforementioned challenges is that the
brain is a highly complex system, and carrying out cognitive
tasks requires topological communications between regions
of interest (ROIs). Therefore, the study of brain network
computation is beneficial to the diagnosis and analysis of
cognitive brain diseases, as well as to exploring potential
biomarkers.

The graph is usually used to define the brain network. The
ROIs of the whole brain network represent the graph’s nodes.
The relationships between the ROIs in a brain network repre-
sent their edges [8], [9]. In the brain network, there are two
main types of connectivities, including functional connectivity
(FC) and structural connectivity (SC). FC refers to the statis-
tical correlation between the functional characteristics of two
brain regions and can be measured using various neuroimag-
ing techniques. It describes the activity correlation between
one brain region and another, providing key information for
communication between brain areas.Based on functional mag-
netic resonance imaging (fMRI) technology, we can determine
functional connectivity by calculating the temporal correlation
of blood-oxygen-level-dependent (BOLD) signals between
different brain regions. The pearson correlation coefficient
(PCC) is the most commonly used method to define functional
connectivity. The neural fiber connection strength between
brain regions is defined as SC. It makes use of diffusion
tensor imaging (DTI) to measure water molecular dispersion
motion.

The structural and functional connectivity can describe
AD patients’ pathological features from different perspec-
tives. AD patients exhibit damage to their structural con-
nections [10], which affects information transmission and
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processing and results in cognitive dysfunction. Besides, early-
stage AD patients show weakened and enhanced changes in
the functional connectivity strength [11]. Many studies have
employed either FC or SC to discover certain AD-related
characteristics that are not detectable using traditional imaging
techniques [12], [13]. They demonstrate that brain network
approaches in AD studies have more benefits than the tradi-
tional imaging approach. Colclough et al. [14] presented a
hierarchical inverse covariance algorithm to simultaneously
infer connectivity strength at both subject and population
levels. To preserve the brain’s local geometry or manifold
structure, Yu et al. [15] applied a weighted graph regularized
sparse representation (WGraphSR) method to obtain brain
connectivity. It can not only boost mild cognitive impairment
(MCI) prediction performance but also reveal more valuable
connections associated with MCI. To explore the causal rela-
tions between ROIs and lower individual differences, Li et al.
[16] proposed a sparse constrained connectivity inference
model to construct a functional network from functional
time series and then built a multilayer perceptron classifier
for MCI detection. Besides, the high-order features can be
represented by a hypergraph, where multiple ROIs share the
same edge. They [17] proposed a hypergraph learning-based
method to construct brain functional connectivity for a better
understanding of the brain’s overall structure. To fully make
use of the dynamic interactions among brain regions, [18] first
derived multiple low-order functional connectivity networks
(FCNs) from a series of sliding windows and then constructed
a high-order FCN by measuring the topographical similarity
between FCNs. The disease-related biomarkers can be suc-
cessfully recognized. However, most existing investigations of
brain networks concentrate on single-modal imaging, which
makes it impossible to focus on the integration of structural
and functional connectivity information.

Neuroscientific research indicates that AD patients exhibit
damage to both structural and functional brain connections,
which can lead to cognitive impairment [19]. Single-modal
imaging would disregard the opportunity to use complemen-
tary information to more deeply understand AD since it
might only partially contain AD-related information. Integrat-
ing structural and functional connectivity to analyze brain
disorders is not only beneficial to model the general rela-
tionship between brain structure and function, but also to
provide complementary information for exploring and identi-
fying potential abnormalities in brain cognitive disorders [20].
Compared with analyzing AD using single modality (structural
connectivity or functional connectivity), fusing structural and
functional connectivity to analyze AD can explore pathogen-
esis and provide potential biomarkers for early AD diagnosis.
Structure-function fusion has become a hot topic in the current
AD studies [9], [21], [22]. As multimodal brain networks are
heterogeneous and concealed in various types of neuroimaging
data, knowing how to properly exploit complementary infor-
mation between modalities is crucial for structural-functional
deep fusion. The majority of current methods only employ
linear interactions to fuse structural and functional informa-
tion [23]. For example, [24] proposed a novel deep neural
network-based model to effectively fuse structural MRI and

functional MRI by finding linkages between bimodal images.
It reveals a significant correlation between the impairments
in schizophrenia and the function/structure alignment score.
The work in [25] developed a computer-aided detection
system to combine structural and functional abnormalities
for autism prediction, which discovered autism-related areas
affected by impairment loss. Similarly, they [26] utilized
multimodal magnetic resonance imaging to study the abnor-
mal structure-function patterns in catatonia. The co-altered
interactions in the brain are founded to facilitate visuospatial
functions and motor behavior. Due to the fact that changes in
brain structure and functional connectivity cannot be entirely
explored by linear correlations [20], we applied a graph
convolutional network (GCN)-based network to deeply fuse
structural and functional connectivity information for mild
cognitive impairment diagnosis. The topological properties are
fully explored by iteratively updating the fused deep connec-
tome. However, previous studies [27], [28], [29] showed that
strong FC typically follows strong SC but rarely the other
way around. Clinical research [30], [31], [32] demonstrates
that certain regions can compensate for a lowered SC when it
happens by increasing functional activity between ROIs.

Deep learning has achieved remarkable success in the field
of medical image analysis [33], [34], [35]. As a branch of
deep learning, generative adversarial networks (GANs) are
widely used to learn complex distributions for medical image
computing [36], [37], [38], [39]. Besides, transformers [40]
have demonstrated their strong capacity for sequential analysis
and successful applications in natural language processing
(NLP). Transformers have recently been used for image tasks
as a result of their successful NLP applications [41], [42].
Inspired by the above observations, in this paper, the CT-GAN
is proposed to combine structural and functional connectivities
for AD analysis. Using a swapping bi-attention mechanism,
the proposed cross-modal transformer-based network gener-
ates multimodal connectivity (MC). A dual-channel separator
and a generative adversarial strategy are used to optimize
the training of the CT-GAN to maintain the learned MC’s
robustness. The main contributions to this work are as follows:

• The proposed CT-GAN is proposed to transform the fMRI
and DTI into multimodal connectivity for AD analysis by
combining the generative adversarial strategy. It not only
learns the topological characteristics of non-Euclidean
space but also deeply fuses complementary information
in an efficient end-to-end manner.

• The swapping bi-attention mechanism (SBM) is devel-
oped to effectively align functional information with
microstructural information and enhance the complemen-
tary information between bimodal images.

• The dual-channel separator with cross-weighting scheme
is devised to decompose multimodal connectivity into
functional and structural connectivities, which preserve
global topological information and ensure the high quality
and diversity of the generated connectivities.

The remaining sections of this paper are divided into the
following sections: Section II presents the overall design of the
proposed CT-GAN. The experimental results, including gener-
ation evaluation and classification performance, are presented
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Fig. 1. The framework of the proposed CT-GAN, including four parts: the cross-modal transformer generator, the dual-channel separator, the
SFC discriminator, and the predictor. S represents the structural embedding, and F represents the functional embedding. The framework aims to
generate multimodal connectivity from DTI and fMRI.

in Section III. The effectiveness of our model is discussed in
Section IV. The primary remarks of this study are presented
in Section V.

II. METHOD
The architecture of the proposed CT-GAN is shown in

Figure 1. Given bimodal images (i.e., fMRI and DTI), the
proposed model can learn a non-linear learning network that
transforms imaging space into topological connectivity space.
To obtain multimodal connectivity, we desinged the CT-GAN
with four components: 1) the cross-modal transformer gener-
ator (G) that is used for inference and generates multimodal
connectivity; 2) the dual-channel separator (DS) that decom-
poses the multimodal connectivity into SC and FC; 3) the
structural-functional consistency (SFC) discriminator, which
contains two sub-discriminators (i.e., Ds and D f ). Each of
them discriminates whether an SC or FC comes from the
proposed generator or the software toolboxes; 4) the predictor
that assigns AD stages based on the generated multimodal
connectivity.

A. Cross-Modal Transformer Generator
1) Embedding Extractor: To embed ROI-based features into

the transformer-based network, a routine convolutional neural
network is adopted to extract ROI-based features from brain
imaging. We design two extractors, including a structural
embedding (SE) extractor and a functional embedding (FE)

extractor. As shown in the upper left of Figure 1, the embed-
ding S is computed by successive convolutional filters on
the DTI. Specifically, we first design four down-sampling
convolutional operations with a kernel size of 3 × 3 × 3 and a
stride of 2 to extract local feature maps. The extracted feature
maps are then passed through 1×1×1 filters to fix the channel
at N . Finally, each channel map is combined with the brain
anatomical information (x, y, z, v) to align the features for
each brain region [43]. Similar operations are conducted on
the fMRI. The output embeddings S and F are given below:

S = SE(DT I, x, y, z, v), F = F E( f M RI, x, y, z, v) (1)

where S ∈ RN×q , F ∈ RN×q .
2) Swapping Bi-Attention Mechanism: The proposed model

aims to leverage the transformer’s bi-attention mechanism to
explore complementary information between structural and
functional images. Traditional transformers haven’t been thor-
oughly studied in the context of brain network computing, and
they just model relationships between brain regions within
a single modality, which fails to effectively explore the
complementary information between modalities. To mine the
complementary information between fMRI and DTI, we devise
the swapping bi-attention mechanism (SBM) to proficiently
align functional features with microstructural information.
It can facilitate the synergistic exchange of information
between bimodal images. In this section, we first introduce
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the traditional transformer and then detail the proposed SBM
module. The traditional transformer gradually projects an input
embedding as S ∈ RN×q to a target feature embedding as F ∈

RN×q , where N represents the overall number of ROIs. The
following is a description of the traditional attention learning
process: (1) computing query matrices Q, key matrices K , and
value matrices V through a linear projection.

Q = X W q , K = X W k, V = X W v (2)

where, X represents the S or F. W q
∈ Rq×q , W k

∈ Rq×q ,
and W v

∈ Rq×q are weight parameters. (2) computing the
attention of X by the softmax function:

Att(Q, K , V ) = softmax
( QK T

√
q

)
V . (3)

In the SBM module, we first design H heads for each
modality to focus on different parts of the learned embedding.
The tokens can be computed by

QS
h = SW qs

h , K S
h = SW ks

h , V S
h = SW vs

h (4)

QF
h = FW q f

h , K F
h = FW k f

h , V S
h = FW v f

h (5)

where, h is the index of all H heads. Each head has the
dimension q/H . Each token (i.e., QS

h , K S
h , V S

h ) has the same
size, N × q/H . Then, we exchange the tokens between the
two modalities and fuse the intermediate features adaptively.
For structural modality, the token QS

h is combined with the
other two tokens (K F

h and V F
h ) to adaptively bring additional

functional information into the structural features. And vice
versa for functional modality. The structural and functional
swapping bi-attention can be defined as

S Att
h = F2SAtt(QS

h , K F
h , V F

h ) = softmax
( QS

h (K F
h )T

√
q/H

)
V F

h .

(6)

F Att
h = S2FAtt(QF

h , K S
h , V S

h ) = softmax
( QF

h (K S
h )T

√
q/H

)
V S

h .

(7)

Finally, we can obtain the cross-modal bi-attention features
S Att and F Att with the following formula:

S Att
= [S Att

1 , S Att
2 , . . . , S Att

H ] (8)

F Att
= [F Att

1 , F Att
2 , . . . , F Att

H ] (9)

where, [, ] denotes the concatenation along the ROI feature
direction. The cross-modal attention mechanism allows for
more transparent feature alignment and fusion, making it easier
to understand how different modalities contribute to feature
extraction and ultimately impact multimodal fusion effects.

3) Feed Forward Mapping: After the bi-attention mecha-
nism, the cross-modal bi-attention features F Att and S Att

represent the mixed functional feature sequence and mixed
structural feature sequence, respectively. We apply linear map-
ping to them for effective information adjustment. Where,
we denote the updated ROI-based features as F′

∈ RN×q and
S′

∈ RN×q , respectively. N is the number of all the ROIs.

The computing processes of the feed-forward mapping (FFM)
layer are defined as

Snorm
= Norm(S + S Att ) (10)

Fnorm
= Norm(F + F Att ) (11)

S′
= Norm(Snorm

+ F F M(Snorm)) (12)
F′

= Norm(Fnorm
+ F F M(Fnorm)) (13)

4) Connectivity Computation: After L layers of transformer,
we obtained the updated mixed structural and functional
features S′ and F′. These mixed features contain common and
unique information for both modalities. Where, we utilize the
PCC to define multimodal connectivity. We first project one
modal feature onto the other modal feature, then compute the
relationship of paired ROIs with the following formula:

MC = S′F′F′T S′T . (14)

where, MC means the final multimodal connectivity (MC)
with the size N × N . In the experiment, we follow the fourth
method of FC definition in [44] to recompute the multimodal
connectivity for AD analysis. The elements in the MC matrix
below the threshold are represented by 0, and those above the
threshold remain unchanged.

B. Dual-Channel Separator
The MC contains both structural and functional connectivity

information. To stabilize the learning process, we design the
dual-channel separator to recover the SC and FC from the MC.
As shown in Figure 2, the dual-channel separator projects the
MC back to two modality-specific connectivities. Considering
the topological properties of the human brain, we adopt the
cross-weighting scheme to extract global connectivity informa-
tion for better detachment between structural and functional
connectivity. It consists of two branches, which share the
first layer and have different weighting parameters in the
second and third layers, respectively. The filter is a cross-shape
parameter with step size 1. The input and the output for each
layer have the same size, except for different channels. Finally,
the third layer outputs the reconstructed SC and FC.

C. Structural-Functional Consistency Discriminator
To make the reconstructed SC and FC have the same dis-

tribution as the empirical SC and FC, the structural-functional
consistency (SFC) discriminator is designed to distinguish
empirical SC and FC from the reconstructed SC and FC
and provide feedback loss on the generator. It not only
makes the dual-channel separator robust but also improves the
generator’s learning abilities. The SFC discriminator contains
two sub-discriminators (i.e., Ds and D f ). Both discriminators
share the same network structure. For the sake of narration,
we take Ds as an example to describe the detailed computing
process. As shown in Figure 3, the input SC is passed through
two branches, including local convolution (top) and global
convolution (bottom). The top branch contains four 3 × 3
convolution operations, one average pooling operation, and
one flattened layer. The bottom branch contains two kinds of
convolution filters (1×90 and 90×1) and one flattened layer.
The final output is a value ranging from 0 ∼ 1, which indicates
whether the input is a reconstructed or empirical SC.



ZUO et al.: AD PREDICTION VIA BRAIN STRUCTURAL-FUNCTIONAL DEEP FUSING NETWORK 4605

Fig. 2. The network architecture of the dual-channel separator. Given the multimodal connectivity, it outputs the structural connectivity and
functional connectivity.

Fig. 3. The network architecture of one sub-discriminator in the SFC
discriminator.

D. Loss Function
To effectively fuse the functional and structural information

contained in fMR and DTI, the proposed CT-GAN model is
optimized using a hybrid loss function that incorporates three
types of objective losses: adversarial loss, classification loss,
and pair-wise connectivity reconstruction loss. These three loss
functions can ensure the quality of multimodal connectivity
generation. The loss functions are as follows:

Adversarial Loss. To make the FC’ matrix and SC’ matrix
decoded from the multimodal connectivity matrix as similar
to empirical FC matrices and SC matrices as possible, the
adversarial losses are defined as follows:

LSC
adv = Ex∼PSC [log Ds(x)] + Ey∼PSC ′ [log(1 − Ds(y))],

(15)

LFC
adv = Ex∼PFC [log D f (x)] + Ey∼PFC ′ [log(1 − D f (y))],

(16)
SC ′, FC ′

= DS(G(DT I, f M RI )) (17)

where G is the cross-modal transformer generator. The distri-
bution of empirical SC matrix is represented by PSC and the
distribution of empirical FC matrix is represented by PFC .

Classification Loss. Since MC matrices are usually used
to predict the stages of AD, generating discriminative MC
matrices can be an indicator of cross-modal fusion quality. The

TABLE I
DATA INFORMATION IN THIS STUDY

classification loss can guide the generator to learn AD-related
MC matrices. They are defined by the following formula:

Lcls = Ex∼PDT I ,y∼P f M RI [− log p(Y |C(G(x, y)))], (18)

where G(x, y) is the output MC of the generator. C means
the predictor. Y is the disease stage, including the normal
control (NC), early mild cognitive impairment (EMCI), late
mild cognitive impairment (LMCI), and AD. p(Y |C(G(x, y)))

is the probability that the subject is predicted to be stage Y .
Pair-wise Connectivity Reconstruction Loss. To impose

an additional topological constraint on the cross-modal trans-
former generator, we add the L1 pair-wise connectivity
reconstruction loss in the model’s optimization process. The
overall pair-wise connection gap between empirical FC/SC
matrices and FC/SC matrices are minimized by the following
formula:

LFC
pcr = ∥FC − FC′

∥1, (19)

LSC
pcr = ∥SC − SC′

∥1. (20)

III. EXPERIMENTS

A. Preprocessing and Settings
The ADNI (Alzheimer’s Disease Neuroimaging Initiative)

public dataset is used to test our CT-GAN model. Table I
contains full information about the 268 patients whose data
we used in this study. Each patient was scanned with both
DTI and fMRI. The preprocessing procedure makes use of the
AAL 90 atlas. Using the DPARSF toolkit, the top 20 volumes
are eliminated, followed by head motion correction, band-
pass filtering, Gaussian smoothing, and extracting the time
series of all voxels. By following fiber bundles between ROIs,
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Fig. 4. Examples of two multimodal connectivity matrices at different
stages of cognitive disease (a) NC; (b) AD.

Fig. 5. The ten most important brain regions between NC and EMCI
groups.

the structural connection is computed. The requirements are
configured in PANDA as the fiber tracking halting conditions:
a crossing angle of greater than 45 degrees between two
traveling directions.

The predictor is implemented by the row-based filters in the
work [47]. The embedding dimension in the generator G is
set at 128. L = 5 layers of transformer are utilized to fuse
structural and functional embeddings. The heads in the trans-
former block are 8. The model’s parameters will be updated
during the training process using the Adam algorithm. The
learning rate is set to 0.001. The weight decay is set to 0.01.
The four widely used metrics − accuracy (ACC), sensitivity
(SEN), specificity (SPE), and area under the receiver operating
characteristic curve (AUC) − make up the evaluation criteria.

B. Prediction Results
To demonstrate the generation effect of the proposed model,

Figure 4 qualitatively depicts four examples of the generated
MC at different stages. Even though the four MCs show
the same global connectivity patterns, different connectivity
characteristics can be seen in the local area. The MC at the
AD stage has the sparsest connectivity features.

To conduct a quantitative analysis of the proposed model’s
classification, we conducted three binary classification tasks
(i.e., NC vs. EMCI, EMCI vs. LMCI, and LMCI vs. AD).
Each classification task is operated with a five-fold cross-
validation strategy. To evaluate how well various fMRI-DTI

Fig. 6. The ten most important brain regions between EMCI and LMCI
groups.

Fig. 7. The ten most important brain regions between LMCI and AD.

fusion models can capture characteristics associated with AD,
two competing models and two classifiers are introduced in
our experiments for comparison. Specifically, the multi-modal
enhanced graph convolutional network (MMEGCN) [45] and
the graph-based deep model (GBDM) [20] output a combined
brain network by inputting fMRI and DTI. After the combined
brain network has been generated, we adopt two classifiers
(GCN [46] and Brainnetcnn [47]) to evaluate the classification
performance of the generated brain networks. Table II shows
the detailed prediction performance between different com-
peting models. Under different classification tasks, our model
achieves superior results to others in terms of different classi-
fiers. Both classifiers have similar classification performances.
The best classification results for NC vs. EMCI are ACC value
of 90.24%, SEN value of 90.00%, SPE value of 90.48%, and
AUC value of 93.26%; the EMCI vs. LMCI task achieves
the best ACC value of 93.39%, SEN value of 92.68%, SPE
value of 93.75%, and AUC value of 94.51%; the best results
for LMCI vs. AD are ACC value of 95.19%, SEN value of
95.24%, SPE value of 95.12%, and AUC value of 94.27%.
Overall, the results of the experiments demonstrate that the
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Fig. 8. The altered connectivity between two MC groups. The first and third columns are the decreased connectivity matrices, with the threshold
values set at 50% and 75% respectively. The second and fourth columns are the increased connectivity matrices with the threshold values at 50%
and 75% respectively.

TABLE II
PREDICTION OF PERFORMANCE UNDER DIFFERENT MODELS AND CLASSIFIERS BY FUSING FMRI AND DTI(%)

proposed CT-GAN has the benefit of being more accurate than
previous multimodal fusion models in predicting the phases
of AD.

To evaluate the AD-related ROIs in the classification tasks,
we utilized the LOOCV method [6] to compute the impor-
tant score for each ROI. To calculate the importance score
for each ROI, we first began to remove one row and one
column corresponding to one particular ROI in the generated
multimodal connectivity matrix. We then computed the mean
classification accuracy of the removed connectivity matrices.
Subsequently, we derived the ROI’s importance score by
subtracting this mean accuracy from one. This computation
process was repeated for all the ROIs. The scores were then
arranged in descending order, and the top 10 ROIs represent
the important brain regions. The important ROIs are displayed

by the BrainNetviewer tool [48]. As shown in Figure 5, the ten
important ROIs for NC vs. EMCI are the left lenticular nucleus
putamen, left thalamus, right inferior frontal gyrus orbital part,
left temporal pole superior temporal gyrus, left precuneus, left
hippocampus, right thalamus, right parahippocampal gyrus,
right median cingulate and paracingulate gyri, and left middle
frontal gyrus orbital part. For EMCI vs. LMCI, the identified
10 important ROIs in Figure 6 are the right lenticular nucleus
putamen, the right calcarine fissure and surrounding cortex,
the left precuneus, the left gyrus rectus, the left thalamus, the
left superior frontal gyrus orbital part, the right superior tem-
poral gyrus, the right hippocampus, the left superior occipital
gyrus, and the left calcarine fissure and surrounding cortex.
In Figure 7, the important ROIs between the LMCI and AD
groups are the following: right lenticular nucleus putamen,
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Fig. 9. The altered connectivities with the threshold value at 75% quantile for the three scenarios.

right superior frontal gyrus medial, left precuneus, left middle
occipital gyrus, right calcarine fissure and surrounding cortex,
left hippocampus, left inferior temporal gyrus, right lenticular
nucleus pallidum, right caudate nucleus, left superior frontal
gyrus orbital part. The identified important ROIs are found to
be related to Alzheimer’s disease and are partly overlapped
with previous studies [49], [50], [51].

C. Connectivity Analysis
To analyze the important connections associated with AD,

we first compute the averaged MC matrix for each disease
group (i.e., NC, EMCI, LMCI, and AD) and then evaluate the
difference matrix between adjacent groups. The positive value
in the difference matrix means increased connections, and the
negative value represents decreased connections. The averaged
multimodal connectivity matrices at different stages of AD
disease can be obtained by applying the trained generator
to DTI and fMRI. The visualization of averaged multimodal
connectivity matrices and the change in connectivity with
various thresholds are shown in Figure 8. The three rows
correspond to the altered connections from NC to EMCI, from
EMCI to LMCI, and from LMCI to AD, respectively. The
values between −0.1 ∼ 0.1 are ignored during the analysis.
Two threshold values are set for viewing the important con-
nections. The first threshold is 50% quantile values, which are
estimated from the positive and negative connectivities. The
same operation is implemented on the second 75% threshold
value. The more important connections with the 75% threshold
value are shown in Figure 9. It can be seen that the decreased
connections are greater than the increased connections at the
stages of EMCI and AD, while the phenomenon is reversed
at the LMCI stage.

To evaluate the most important connections for different
stages of AD, we sort the altered connection strength and

Fig. 10. The spatial view of the top 10 decreased and increased
connections for the three scenarios.

find the top 10 connections for both increased and decreased
situations. The results are shown in Figure 10 and Figure 11.
For the NC vs. EMCI, the increased connections are SMA.R -
THA.R, TPOmid.L - ITG.L, DCG.R - THA.R, OLF.R -
ACG.R, INS.L - MTG.L, DCG.R - PUT.L, ACG.R - DCG.L,
PUT.L - THA.R, PHG.R - MOG.R, HIP.L - CAL.R; the
decreased connections are PCG.L - HIP.L, IFGoperc.L - IFG-
triang.L, ORBsup.L - LING.L, CUN.R - SPG.R, ORBinf.L -
LING.L, AMYG.L - FFG.L, MFG.R - ANG.R, ORBmid.
L - LING.L, HIP.L - IOG.L, CUN.L - CUN.R. As the stage
changes from EMCI to LMCI, the increased connectivities
are the following: AMYG.L - MOG.L, ORBsup.L - REC.R,
CAL.R - PCUN.L, MOG.L - TPOsup.L, MOG.L - TPOmid.L,
PHG.R - TPOmid.R, ORBsup.L - ORBsup.R, ORBsup.L -
IOG.L, SFGdor.R - ORBmid.R, AMYG.L - CAU.L; and the
decreased connectivities are the following: PCG.R - SOG.L,
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Fig. 11. A view of the circos plot for the corresponding top 10 decreased and increased connections.

PreCG.R - MTG.R, AMYG.R - PUT.R, SFGdor.L - SMA.R,
PCG.R - SOG.R, ACG.R - DCG.L, ORBinf.L - SOG.L,
HIP.L - CAL.R, HIP.R - MTG.R, ANG.L - PCUN.L. The top
10 connections from LMCI to AD are increased at PCG.L -
SPG.R, HIP.L - THA.R, CAU.R - PUT.L, PoCG.L - MTG.L,
PCUN.L - PUT.L, SMA.L - PAL.L, AMYG.R - PUT.R,
PUT.L - STG.R, PCUN.R - STG.R, HIP.L - AMYG.R; and
decreased at ORBsupmed. R - REC.L, ORBsup.L - REC.R,
ORBsup.L - ORBsupmed.R, PHG.R - TPOmid.R, AMYG.L -
MOG.L, ORBsupmed.L - CAU.R, OLF.L - PUT.L, SFGmed.
R - ACG.L, MOG.L - PUT.L, MOG.L - TPOsup.L.

To show the important ROI-related connections, we counted
the overlapping brain regions of the three top 10 ROIs in
the prediction results and found six frequent ROIs. These
ROIs include the following: left superior frontal gyrus orbital
part, left hippocampus, right calcarine fissure and surrounding
cortex, left precuneus, right lenticular nucleus putamen, left
thalamus Based on the increased and decreased connectivities,
the important ROI-related connections are shown in Figure 12.
Even though these connections are not listed in the top
10 altered connections, they reflect the changing characteristics
at the different stages of AD. For example, the connection
ORBsup.L-HIP.L first drops in strength at EMCI, then gains
some strength at LMCI, and finally loses strength again at
the AD stage. These findings can be explained by the com-
pensation mechanism [11], [52]. The six identified important
ROIs have AD-related biological meaning. For example, the

PCUN.L, situated within the parietal lobes on the medial
surface of the left cerebral hemisphere, is involved in func-
tions such as visuospatial imagery, episodic memory retrieval,
and self-processing operations. It achieves these functions by
integrating sensory information from various sources. Damage
to the precuneal region could potentially result in disorders
related to consciousness, impairment in self-processing, visu-
ospatial challenges, as well as deficits in both episodic and
semantic memory. The CAL.R region is primarily responsible
for visual processing tasks, encompassing the interpretation of
color and motion in the visual field. Injury to CAL.R can lead
to specific visual field defects. The patient may experience
various forms of visual hallucinations and color agnosias.

D. Ablation Studies
The proposed CT-GAN can generate discriminative MCs

for early AD analysis. The prediction precision and altered
connectivity evaluation proved the effectiveness of the model.
To study the impact of different modules in the model
on the prediction results, we (1) replace the SBM module
with a traditional multi-head self-attention mechanism; and
(2) remove the SFC discriminator. As shown in Figure 13,
the removal of the SBM mechanism significantly lowers the
prediction performance. As well, the SFC discriminator affects
the classification accuracy to some extent.

In order to quantitatively evaluate the effect of structural-
functional fusion, we conducted multiple sets of classification



4610 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 12. The altered multimodal connectivities associated with the overlapping six ROIs in the prediction results. The index indicates the
corresponding ROI in the AAL90 atlas. The red color represents decreased connections; the blue color represents increased connections. The
gray dotted lines divide the six ROIs into five brain lobes.

Fig. 13. Influence of different modules in CT-GAN on the prediction
performance.

experiments. First, we individually computed the classifica-
tion performance using functional brain imaging (fMRI) (as
shown by the red color in Figure 14). Then, we individually
computed the classification performance using structural brain
imaging (DTI) (as shown by the blue color in Figure 14).
Finally, we fused functional and structural brain imaging and
presented the classification results in green color in Figure 14.
The experimental results indicates that adding structural brain
imaging to functional brain imaging can improve classification
accuracy by 7% ∼ 9%. The results also indicate that inte-
grating functional and structural brain imaging to analyze AD
can better improve the AD prediction performance than using
single modality (either structural or functional brain imaging).

IV. DISCUSSION
Fusing structural and functional brain images to analyze

AD can establish complex nonlinear relationships and fully
mine complementary information between structure and func-
tional connectivity. It can improve the performance of AD
diagnosis and helps explore the pathogenesis of AD. The

results in Table I shows that our model achieves a maximum
improvement of 4.96% in accuracy compared to other models
for EMCI vs. LMCI. At each stage of AD, our model has
high resolution in detecting patients. The highest classification
accuracy in NC vs. EMCI, EMCI vs. LMCI, and LMCI vs.
AD are 90.24%, 93.39%, and 95.19%, respectively. Com-
pared with other models, our model demonstrates noticeable
improvements in classification performance as follows: from
NC to EMCI, the classification accuracy has increased by up
to 2.43%; from EMCI to LMCI, the classification accuracy
has increased by up to 4.96%; and from LMCI to AD, the
classification accuracy increased by up to 3.84%.

It should be stressed that an improvement of 2 percentage
points is good work in the field of AD diagnosis [53],
[54], [55]. Furthermore, our model improves the classifi-
cation accuracy by at least 8 percentage points compared
with single-modality-based methods [56]. For example, in the
NC vs. EMCI classification, the classification accuracy of the
fMRI-based method is 75%, and the classification accuracy
of the DTI-based method is 81.81%. Our model achieved an
accuracy of 90.24%, which improves the classification accu-
racy by 15.24 and 8.43 percentage points over the fMRI-based
and DTI-based method, respectively. The 4-5 percentage point
improvement in classification performance by our model has
important clinical significance in AD diagnosis. AD is a
multi-stage progressive neurodegenerative disorder, and accu-
rately identifying different stages of AD enables clinicians to
provide more personalized treatment plans for patients. Our
model exhibits high discriminative accuracy (above 90%) in
four stages of AD. The patients can be accurately identified
and receive specific treatment plans according to the charac-
teristics of the identified AD stage, which is more effective to
slow down the AD progression.

More importantly, the improvement in classification accu-
racy is just one of our contributions, and another more
important contribution of our work is that we design a unified
framework to fuse structural modality and functional modality
for AD analysis. The current methods of fusing structural and
functional brain images are based on two steps: the first step
is to preprocess the brain structural and functional images
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Fig. 14. Comparison of classification performance using single-modal and bimodal images.

to obtain structural and functional features by the software
toolbox; the second step is to use the preprocessed structural
and functional features to build deep learning models for
fusion. The novelty of our model is constructing an end-to-
end framework to fuse structural brain imaging (DTI) and
functional brain imaging (fMRI) for AD analysis. By gradually
aligning functional and structural information, the proposed
framework can mine complementary information between
modalities and identify AD-related abnormal connection fea-
tures, which is beneficial to reveal the AD pathogenesis and
provide potential biomarkers for early AD diagnosis. The
proposed model can perform end-to-end automatic analysis
of multi-modal brain images to assist the clinicians in AD
diagnosis. It has potential clinical applications in terms of
efficiency.

AD is a chronic neurodegenerative disease, and data collec-
tion is time-consuming and economically costly. Among the
publicly available datasets, the representative dataset contain-
ing brain imaging data for all stages of AD is the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Since the sample
size of the ADNI dataset is not large, we have applied for the
UK biobank dataset (https://www.ukbiobank.ac.uk/) to study
AD. This dataset is a large biomedical research repository
containing magnetic resonance imaging (MRI) brain scan data
from more than 500,000 UK participants. This large sample
data can be suitable to study neurodegenerative diseases (e.g.,
Alzheimer’s disease). Due to the huge size of the dataset,
downloading and preprocessing of brain imaging data is very
time-consuming, and we are still in the collection stage of the
brain imaging data set. We will validate our model on the UK
biobank data in future work.

V. CONCLUSION

In this paper, we propose a novel CT-GAN model to fuse
fMRI and DTI and generate multimodal connectivity from
fMRI and DTI in an efficient end-to-end manner. The key idea
of this work is that mutual conversion between structural and
functional information is accomplished using a cross-modal
swapping bi-attention mechanism. Therefore, the proposed
model can gradually and effectively extract complementary
information between modalities. The results of the experiments
demonstrated that the multimodal connectivity generated by

our model is more accurate than other multimodal fusion
models in terms of classification performance. Furthermore,
some AD-related connectomes and brain regions are identified
by analyzing the generated multimodal connectivity matrices.
These connectomes partially agree with the clinical inves-
tigations on AD, which indicates that the proposed model
can provide new insights for detecting AD-related abnormal
connectivities. In the future, we will extend the CT-GAN
to other neurodegenerative diseases for evaluation and
analysis.
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