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Abstract— Accurate hand motion intention recognition is
essential for the intuitive control of intelligent prosthetic
hands and other human-machine interaction systems.
Sonomyography, which can detect the changes in muscle
morphology and structure precisely, is a promising sig-
nal source for fine hand movement recognition. However,
sonomyography measured by traditional rigid ultrasound
probes may suffer from poor acoustic coupling because
the rigid probe surfaces cannot accommodate the curvi-
linear shape of the human body, particularly in the
case of small and irregular residual limbs in amputees.
In this study, we used a self-designed lightweight, flexi-
ble, and wearable ultrasound transducer to acquire muscle
ultrasound images, and proposed a sonomyography trans-
former (SMGT) model for simultaneous recognition of hand
movements and force levels. The performance of SMGT was
systematically compared to two commonly used image pro-
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cessing methods, HOG and Gray Gradient, as well as a deep
CNN model, in simultaneously recognizing ten classes of
hand/finger movements and three force levels. Addition-
ally, ten subjects including seven non-disabled subjects
and three trans-radial amputees who are the end users of
prosthetic hands were recruited to evaluate the effective-
ness of SMGT. Results showed that our proposed method
achieved average classification accuracies of 98.4% ± 0.6%
and 96.2% ± 3.0% in non-disabled subjects and amputee
subjects, respectively, which are much higher than those
of other methods. This study provided a valuable approach
for ultrasound-based hand motion recognition that may
promote the applications of intelligent prosthetic hands.

Index Terms— Sonomyography, wearable muscle ultra-
sound, hand motion intention recognition, transformer,
trans-radial amputees.

I. INTRODUCTION

IN THE last few decades, hand movement recognition has
become one of the most important technologies in the fields

of human-machine interaction and rehabilitation engineering.
Decoding hand motion intentions from human physiological
signals, such as surface electromyography (sEMG) and elec-
troencephalography (EEG), can provide intuitive control for
prosthetic hands and other assistive rehabilitation devices [1].
Since the sEMG signal is simple to collect and has the
properties of non-invasiveness and high temporal resolution,
it has gained widespread use for hand movement recognition.
However, sEMG still has some inherent limitations that greatly
hindered its clinical application. One of the major drawbacks
is its low spatial resolution, as sEMG collected at the surface
of the skin are a combination of electrical signals generated
by different muscle fibers. This makes it difficult to detect
the activities of small and deep muscles from sEMG, and
thus leads to a poor performance in recognizing fine hand
movements [2]. Therefore, it is necessary to find a more
reliable and precise signal source for fine hand movement
recognition.

Sonomyography is an effective approach to detect the
changes in muscle morphology and structure precisely, and
therefore can be considered as a promising complement or
alternative to sEMG for fine hand movement recognition.
Recently, some researchers have worked on the studies of
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sonomyography based hand motion recognition since the
significant developments were achieved in flexible ultrasonic
sensing technology [3]. As of now, three ultrasound modes,
namely A-mode, B-mode, and M-mode, have been explored
for hand movement recognition [4].

A-mode ultrasound, a kind of one-dimensional sonomyo-
graphy that can reflect structural information in a single
direction, was first introduced as a novel human machine
interface method by Guo et al. in 2008 [5]. Subsequently,
Yang et al. [6], [7] developed a wearable A-mode ultrasound
acquisition device and reach a real-time recognition accuracy
of 95.4% ± 8.7% for 12 movements. Zhou et al. [8], [9]
combined sEMG features and A-mode ultrasound features,
achieving 4% and 20% improvement in recognition accuracy
compared to using the separate sEMG features and A-mode
ultrasound features, respectively. M-mode ultrasound is a
technique that captures a series of A-mode scans over time to
visualize the dynamic motion of the one-dimensional structure.
Li et al. [10] using M-mode ultrasound and a linear fitting
method, achieved a recognition accuracy of 98.70% ± 0.99%
for 13 wrist and finger movements.

Different from A-mode and M-mode ultrasounds which
only provide one-dimensional structural information, B-mode
ultrasound is a two-dimensional imaging technique that offers
a more intuitive and interpretable visualization of anatom-
ical structures. The changes in muscle morphology and
structure caused by muscle contraction during hand move-
ment can be clearly observed in B-mode ultrasound images.
Zheng et al. [11] were the first to utilize B-mode ultrasound
for prosthetic control and achieved an average correct rate
of 94.05% for five finger movements [12]. Huang et al. [13],
[14], [15] compared the effectiveness of sEMG and B-mode
ultrasound for gesture recognition and discovered that B-mode
ultrasound achieved better performance and long-term effec-
tiveness. Furthermore, Fernandes et al. [16], [17], [18] utilized
B-mode ultrasound and proposed a gray gradient feature
to predict finger movements and various flexion angles.
McIntosh et al. [19] investigated the impact of data acqui-
sition location on classification accuracy and found that the
wrist region was most effective for hand motion recognition.
Akhlaghi et al. [20] investigated the robustness of B-mode
ultrasound-based gesture recognition against different arm
positions and found that the effect of arm position on clas-
sification was not significant.

Although B-mode ultrasound technology has made some
achievements in human motion recognition, it is still not
widely used in the applications of human machine interaction.
Two major reasons are the bulky ultrasound transducers and
the insufficiently developed recognition algorithms. For the
transducer, the conventional medical ultrasound transducers
are hard, bulky and rely on mechanical fixation, which are
prone to displacement during data acquisition. Furthermore,
these transducers may not be suitable for small and irreg-
ular residual limbs amputees. These probe defects usually
cause location changes during use, which seriously affect
the recognition accuracy and the application scenarios of
ultrasound-based human machine interaction. For the recogni-
tion algorithms, most of previous studies only focused on the
movement recognition, and there is a lack of studies focusing
on the recognition of force levels [21]. However, accurate

Fig. 1. (a) The flexible ultrasound transducer can be bent into specific
shapes and angles to accommodate the curvilinear shape of the human
body. (b) Despite the small size and irregular surface of amputees’ resid-
ual limb, the flexible ultrasound transducer allows for a seamless and
conforming fit. (c) The architecture of our flexible ultrasound transducer.

force recognition is essential in various clinical applications,
particularly in controlling prosthetic hands to achieve precise
manipulations such as grasping objects of different weights
and levels of strength. Importantly, the methods based on
B-mode ultrasound proposed in previous studies were primar-
ily tested on non-disabled subjects, and there is few research
that specifically involves trans-radial amputees, who are the
intended end users of intelligent prosthetic hands. To solve
the issues mentioned above, we used a lightweight, flexible,
and wearable B-mode ultrasound transducer to acquire data
from both non-disabled subjects and amputees, and pro-
posed a Transformer-based approach, called Sonomyography
Transformer (SMGT), for simultaneous recognition of hand
movements and force levels.

The main contributions of this paper are as follows:(1) We
utilized a self-developed lightweight, flexible, and wearable
B-mode ultrasound transducer for data acquisition; (2) We
developed the SMGT model for simultaneous recognition of
hand movements and force levels, achieving an average accu-
racy of 98.4% ± 0.6% in seven non-disabled subjects; (3) The
proposed method was validated in three trans-radial amputee
subjects, with an average accuracy of 96.2% ± 3.0% achieved;
and (4) A systematic comparison was conducted between our
SMGT and three commonly used methods, demonstrating the
superior of our method.

II. METHODOLOGY

A. Wearable Ultrasound Transducer
To accommodate the small size and irregular surface of

amputees’ residual limb, as well as to avoid the impact of
probe displacement on recognition performance, we utilized
a lightweight, flexible, and wearable ultrasound transducer
developed by our institute to acquire data. As shown in
Fig. 1(a), a 128-element flexible linear array ultrasound trans-
ducer was bent into curved shape. The transducer has an
average center frequency of 6.35 MHz, an average −6-dB
bandwidth of 69.2%, and can achieve a minimum concave
bend diameter of 20 mm and a minimum convex bend diam-
eter of 25 mm. Detailed beamforming process and elements
positioning method can be found in [22].

The size of the ultrasound array is only about 40 mm ×

5 mm, and it is placed on a flexible backing layer to support
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TABLE I
SUBJECTS INFORMATION

the circuitry and interfaces, thus making the total size of the
flexible transducer to be 177 mm × 26 mm. The weight of
the whole transducer is 12.2 grams, so wearing it will not
cause any discomfort to the user, and the maximum average
power consumption for conventional imaging pulses is 10W.
Through a wired connection to the ultrasound system, the
flexible transducer allows for long term functional imaging
without additional mechanical clamping, and it can be bent
to any shape to fit the body perfectly, as shown in Fig. 1(b).
It should be noted that it is still necessary to apply ultrasound
gel to achieve high-quality imaging, and we used double-sided
adhesive and medical elastic bandage to fix the probe on
the arm and prevent probe dislocations during motions. The
lightweight, flexible and wearable properties of the transducer
prevent interference with movement and effectively eliminate
transducer displacement, which significantly affects recogni-
tion accuracy.

B. Experiment Setup and Protocol

1) Subjects and IRB Approval: Ten subjects including
seven non-disabled subjects (Abs 1-7) and three trans-radial
amputees (Amp 1-3) with ages between 23-38 years old were
recruited for this study. Their specific individual informa-
tion is shown in Table I. Prior to the experiment, subjects
were informed about the experiment protocol and signed
an informed consent form. The experimental protocol was
approved by the ethics committee of the Shenzhen Institute of
Advanced Technology, Chinese Academy of Sciences and in
accordance with the declaration of Helsinki, and the approval
number is SIAT-IRB-221115-H0626.

2) Experiment Setup: In the experiment, we used a research
ultrasound system (Vantage 256, Verasonics Inc., Kirkland,
Washington, USA) to acquire ultrasound images, which was
used in conjunction with the flexible ultrasound transducer
mentioned in part A. The ultrasound images were displayed
and saved on a computer. The imaging depth was set to
30 mm, and the received frame rate is resulted in 10 Hz within
the constraints of ultrasound frequency, imaging depth, image
quality, and transmission speed. The probe is placed one-half
of the way up the forearm (for the amputees, the probe location
is one half of the stump to elbow) and covered the flexor
digitorum superficialis and the flexor digitorum profundus of
the forearm, as shown in Fig. 2.

Fig. 2. The transducer location on the forearm.

Fig. 3. (a). 10 movements including five functional grasp movements:
pinch (PH), cylindrical grasp (CG), key pinch (KP), fist (FS), five finger
pinch (FP) and five finger press movements: thumb press (TP), index
finger press (IP), middle finger press (MP), ring finger presa (RP),
and little finger press (LP). (b). The force sensor FSR402 used in our
self-developed finger force platform.

3) Experiment Protocol: In the experiment, each subject was
asked to performance 10 classes of movements at three force
levels respectively, according to the guidance on the computer
screen. The 10 classes of movements are shown in Fig. 3(a),
including five functional grasp movements that are commonly
used in daily life: pinch (PH), cylindrical grasp (CG), key
pinch (KP), fist (FS), five finger pinch (FP), and five fine finger
movements that can helps with fine manipulation: thumb press
(TP), index finger press (IP), middle finger press (MP), ring
finger press (RP), and little finger press (LP). In the experiment
every movement at each force level will be repeated eight
times. In each repetition, the subject was instructed to perform
and hold the movements at the corresponding force level for
seven seconds. To avoid potential muscle fatigue, a 60 second
rest was taken between two consecutive movements.

According to subjects’ feedback, all subjects can perceive
and execute the functional grasp movements at three different
force levels (low, medium, and high). The medium force
level is the moderate effort that is naturally produced by the
subjects; the high force level is higher than the moderate
level and almost equal to the maximum voluntary contraction
(MVC); the low force level is lower than the moderate level
exerted by the subjects. To ensure the stability and reliability
of the data collected from the residual limbs of amputees,
a mirrored bilateral training strategy [23] was employed during
the data acquisition process. In this training strategy, amputees
were instructed to exert the same movement and force simul-
taneously using both their intact hand and their phantom hand,
as shown in Fig. 4(a).

But some subjects reported that they have difficulty in per-
ceiving and executing accurate and stable force levels for the
fine finger movements. Therefore, we used a self-developed
force feedback system to help the subjects to execute different
force levels. As shown in Fig. 4(b), amputee subjects perform
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Fig. 4. Experimental scene.

each fine finger movement with both intact hand and ampu-
tated hand. The pressure data recorded by the force sensor
(FSR402, Interlink Electronics Inc, Irvine, California, USA)
of each fingertip of intact hand was transmitted through a
microcontroller board (Arduino UNO, Arduino LLC, Boston,
Massachusetts, USA) and displayed on the computer screen in
front of the subject. By using the mirrored bilateral training
strategy coupled with real-time force feedback, subjects said
that they were able to produce the stable force levels. The
three force levels were set to 15%∼25%, 45%∼55%, and
75%∼85% of the maximum voluntary contraction (MVC),
in which the MVC was pre-measured prior to data collection.

C. Data Pre-Processing
Before using the data for simultaneous recognition, the

raw ultrasound image frames recorded from 2s to 6s of each
movement were extracted by a video split-frame operation,
since the muscle contractions and force levels are more stable
in the duration. After that, we get the raw images with size
of 688 × 544 pixels. To reduce the computation time, the raw
images are resized into 384 × 384 pixels.

D. Sonomyography Transformer (SMGT)
Transformer is a deep sequence model based on self-

attention mechanism, and achieved significant performance in
natural language and image processing recently [24], [25].
In this study, we designed a SMGT model to simultaneously
recognize the hand movements and force levels. Addition-
ally, considering that the transformer-based models typically
require a large amount of data for model training, which is
time-consuming and boring, two data augmentation methods
were integrated with our proposed SMGT model to improve
the performance of our model. The architecture of the model
is shown in Fig. 5(a) and depicted as follows.

1) Data Augmentation: Data augmentation is a useful tech-
nique to improve the generalization ability and robustness
of the model by expanding the size and diversity of the
train dataset. In this study, two data augmentation methods
of Cutout [26] and Mixup [27] were used to generate new
samples for the training dataset, as depicted in Fig. 5(b).
In Cutout method, random portions of each ultrasound image
were removed and replaced with 0 pixel values. As shown in
formula (1), in which (i, j) represent locations of the cutout
pixels. Specifically, we set the probability of performing the
operation to 0.5, the size of the clipped portion to be from 2%
to 40% of the total area of the image, the aspect ratio of the
clipped portion to be from 0.4 to 2.5, and the location of the
clipping to be randomized. While Mixup is a proportional mix

of two random samples and their label, as shown in formula
(2) and (3). In which the x1, x2, y1, y2 represent the image
and label respectively, and the decisive parameter λ, which
determines the mixing rate, takes a value between 0 and 1 and
follows a beta distribution beta (0.5,0.5).

Xcutout (i, j) =

{
0 a ≤ i < b, c ≤ j < d
X (i, j) otherwise

(1)

x̃ = λx1 + (1 − λ)x2 (2)
ỹ = λy1 + (1 − λ)y2 (3)

2) Class and Position Embedding: Before applying class
and position embedding, the input 3-channel image with a
size of 384 × 384 × 3, is divided into 576 patches, each
with a size of 16 × 16 × 3, where 576 is the resulting
number of (384/16)2. Then each patch is flattened into a
768-dimension vector, where 768 is the resulting number of
16 × 16 × 3. The vectors from all 576 patches are then spliced
together to form a 576 × 768 matrix. This matrix is then
fed into a fully connected layer, denoted as E , to obtain the
patch tokens as shown in formula (4). Token is a concept
from machine translation, but the token in this model is a
768-dimension vector that obtained from each patch. Then a
learnable token xclass was embedded to patch tokens. At the
end of the transformer encoder this xclass will be extracted
as the output y for classification, as shown in formula (7).
After class embedding, position embedding is added to the
patches to retain positional information. The class and position
embedding can be described as below:

Z0 = [xclass; x1
p E; x2

p E; · · · ; x N
p E] + E pos

where E ∈ R768×768, E pos ∈ R577×768 (4)

3) Transformer Encoder: It consists of alternating layers of
multiheaded self-attention (MSA) and multilayer perception
(MLP) blocks. MSA enables the model to jointly focus
on information from different representation subspaces at
different locations [25], while MLP applies nonlinear trans-
formations and mappings to the input to enhance the model’s
expressive power and nonlinearity. Additionally, to enhance
the training efficiency and accuracy of the model, a nor-
malization layer is applied before each block and residual
connections are used after each block [28]. The depth of the
transformer encoder, denoted as L , was set to be 12 in our
model. The overall structure is illustrated in Fig. 5(d) and can
be described as formula (5) and (6):

Z ′

l = M S A(L N (Zl−1)) + Zl−1, l = 1 · · · L (5)
Zl = M L P(L N (Z ′

l)) + Z ′

l , l = 1 · · · L (6)

y = L N (Z0
L) (7)

4) Multiheaded Self-Attention (MSA): MSA consists of sev-
eral “Scaled Dot-Product Attention” layers, as shown in
Fig. 5(c). For each element in an input Z , it was multiplied
with three different weight matrices to obtain the query vector
(Q), the key vector (K ), and the value vector (V ). The
Scaled Dot-Product Attention compute the dot product of
the query with all keys, divide each by

√
dk, and apply a

SoftMax function to obtain the weights on the values. So,
the output of Multiheaded Self-attention can be described
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TABLE II
DIFFERENT FORCE LEVELS COLLECTED OF EACH MOVEMENTS

Fig. 5. The architecture of our Sonomyography Transformer (SMGT) model: (a) The overall structure of SMGT, (b) Transformer encoder,
(c) Multiheaded attention, (d) two data augmentation methods used in this study: (i) Cutout, (ii) Mixup.

as formula (8), (9), and (10):

[Q, K , V ] = Z [Wq, W k, Wv] (8)

H = Attention(Z) = Sof t Max(
QK T
√

dk
)V (9)

M S A(Z) = Concat[H1; H2; · · · ; Hh]W o (10)

In this study, we used 12 parallel attention layers (h = 12),
which is commonly referred to as 12-head attention.

5) Training Setup and Data Split: Our model was imple-
mented on Pytorch framework and the training process was
accelerated by an NVIDIA TITAN V GPU. For the training
process, we set the training epoch to 100, the learning rate to
1e-4, and the weight decay to 1e-4, respectively. The dataset
for each subject was divided into two parts: the first four
repetitions and the last four repetitions. The first half of the
dataset were used as the training set and the second half were
used as the test set. To ensure the reliability of the experimental
results, we also performed an additional iteration where the
training and test sets were exchanged, and then the results
from both iterations were averaged.

E. Other Recognition Algorithms for Comparison
The performance of our proposed SMGT was compared

with three other methods in motion recognition based on
B-mode ultrasound. There are two commonly used image
recognition methods that extract features of gray gradient and
histogram of oriented gradients from the B-mode ultrasound
images, respectively, and then classify the features by using
the support vector machine (SVM). Additionally, because

convolutional neural network (CNN) models were reported to
have good performance in image recognition, a deep CNN
model of Resnet152 was adopted as a comparison.

1) Gray Gradient Based on Region of Interest: It has been
proved that this feature can reflect local changes of the image
and is effective in gesture recognition and finger flexion angle
prediction [18]. It was obtained by fitting the grayscale values
of the region of interest (ROI) in an image with a 3D plane, and
the extraction procedure is shown in formulas (11) and (12).
Firstly, a number of circular ROIs was divided from the image,
which can be described as:

RO Ii = {(x, y) : (x − xi )
2
+ (y − yi )

2
≤ r2

} (11)

In each ROI, a plane was found to represent the region by
regression, and the three parameters α, β, and γ were extracted
as features of every ROI.

G(RO Ii ) ≈ αi (xi − x) + βi (yi − y) + γi (12)

2) Histogram of Oriented Gradients (HOG): This feature [29]
can capture the edge information of images and rich texture
information of local position. Ortenzi et al. [30] firstly used
HOG in ultrasound-based motion recognition and proved its
effectiveness. In the calculation process of HOG, an image
was divided into small cells and the gradient magnitude and
direction of the pixels in each cell was computed. These
gradients are then quantized into orientation bins to form a
histogram of the cell. Next, the cells are grouped into larger
blocks, and the feature vectors of each block are concatenated
to form a global feature vector, the whole process can be
shown as Fig. 6.
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Fig. 6. The calculation process of HOG features.

Fig. 7. The architecture of Resnet152.

3) Resnet152: Resnet152 [28] is an image classification
model developed by Microsoft Research. It has strong abil-
ity to automatically extract and represent complex features,
and achieved state-of-the-art performance on various bench-
mark datasets, such as ImageNet, CIFAR-10, and CIFAR-100.
As shown in Fig. 7, the architecture of ResNet152 consists of
152 layers, including convolutional layers, pooling layers, and
residual blocks. It uses a 7 × 7 kernel in the initial convo-
lutional layer to capture global information, and subsequent
layers utilize 3 × 3 kernels to extract local patterns, while
the inclusion of 1 × 1 kernels are incorporated to reduce
dimensionality. Moreover, the model’s residual learning frame-
work enables it to learn residual mappings instead of direct
mappings, allowing for training of very deep neural networks
without encountering the problem of vanishing gradients.

F. Performance Evaluation and Statistical Analysis
In this study, four metrics of classification accuracy (CA),

precision, recall, and F1 score were used to evaluate the
performance of our proposed method. The formulas for these
metrics are shown in (13), (14), (15), and (16), where TP is the
true positive of motion classifications, FN is the false negative,
FP is the false positive and TN is the true negative [31].

Moreover, to assess the significance of the experimental
results, a one-way ANOVA was conducted on the classification
accuracy in this study with a significance level of p = 0.05.

C A =
correctly classi f ied samples

the whole test samples
× 100% (13)

Precision =
T P

T P + F P
(14)

Fig. 8. Binarized ultrasound images of forearm muscles under two
different movements and three force levels.

Recall =
T P

T P + F N
(15)

F1 =
2 × Precision × Recall

Precision + Recall
(16)

In addition, we also investigated the effectiveness of data
augmentation and effects of two important parameters of
depth L and number of heads h on the model performance.

III. RESULTS

A. The Ultrasound Images of the Forearm Muscle
Using the flexible ultrasound transducer, we collected ultra-

sound images of ten movements and three force levels. From
the binarized images shown in Fig. 8, it was observed that
there are distinctions between different movements and force
levels. It indeed revealed the morphological changes during
different movements and force levels. However, we also
observed that the variation between different force levels is
localized and subtle, making it more challenging to distinguish
compared to the differences between different movements.

B. Performance of SMGT on the Non-Disabled Subjects
Fig. 9(a) displays the comparative results of four different

methods on seven non-disabled subjects. The results indicate
that, for the task of this study, our proposed SMGT method
achieved a highest average accuracy of 98.4% ± 0.6%. The
SMGT method exhibited superior performance in terms of
classification accuracy for all seven non-disabled subjects,
outperforming the other three methods. Moreover, statisti-
cal analysis also proved that the proposed SMGT approach
significantly outperformed the other three methods with
p-value < 0.05.

In addition to the classification accuracy, we also used
precision, recall, and F1 score to measure our experimental
results, which are presented in Fig. 10. It can be observed
that our SMGT approach performed better than other three
methods across all the three metrics, and also exhibited lower
variance across different subjects. That indicates its superior
robustness on various subjects. The average confusion matrices
of seven non-disabled subjects are shown in Fig. 11. It can
be seen that the recognition accuracy for all movements and
force levels are above 99%, except for the low force level
of FP, which achieved an accuracy of 93.6%. These results
demonstrated the reliability of our SMGT in recognizing
various movements and forces in non-disabled subjects.
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Fig. 9. Classification accuracy of the four methods for both non-disabled and amputee subjects. (a) The result of seven non-disabled subjects.
(b) The result of three amputee subjects. (The error bars are the standard errors of two-fold cross-validation).

Fig. 10. The comparison of Precision, Recall, and F1 score of the four methods for seven non-disabled subjects. (GG refers to Gray Gradient).

TABLE III
THE PRECISION, RECALL AND F1 SCORE OF THE FOUR METHODS FOR THREE AMPUTEE SUBJECTS

C. Performance of SMGT on the Amputee Subjects

The classification accuracy for the three amputee subjects
is presented in Fig. 9(b), which indicates that our proposed
SMGT method achieved the highest average classification
accuracy of 96.1% ± 2.9% among the four different meth-
ods. Although the classification accuracy of each method
decreased compared to that in the non-disabled subjects, the
relative ranking between methods did not change: SMGT >

Resnet152 > HOG > Gray Gradient. The precision, recall, and
F1 score of the three amputees are shown in Table III, and
the performance of our method is still the best under these
three metrics. These findings demonstrate the superiority of
our method when applied to amputee subjects. As shown in
Fig. 12, although the recognition accuracy dropped to about
82% for some movements and force levels, most misclassified
samples are within adjacent force levels, with relatively few
misclassifications for different movements classes.

D. Data Augmentation Effectiveness
The necessity and effectiveness of data augmentation in our

SMGT model were verified through a comparative experiment
conducted with and without data augmentation. The results are
summarized in Table IV. It can be observed that the addition of
data augmentation improved the accuracy for all ten subjects,
with an average improvement of 1.81%. Notably, Amp 3 who
had the lowest classification accuracy of 89.9% among the ten
subjects achieved the highest improvement of 3.9% when data
augmentation applied.

E. Parameter Sensitivity of the Proposed SMGT
The parameter depth L and number of heads h are the

most important parameters in transformer encoder. Thus,
we assessed the effects of these two parameters on the model
performance. The results in Fig. 13(a) shows that, as the
depth L gradually increases from 1, the model performance
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Fig. 11. Average confusion matrices of non-disabled subjects. (a) Average confusion matrix for functional grasp movements and corresponding
force levels. (H, L, and M represent high, low, and medium force levels, respectively.) (b) Average confusion matrix for fine finger movements and
corresponding force levels. (20%, 50%, and 80% represent different force levels relative to MVC).

TABLE IV
EFFECTIVENESS OF DATA AUGMENTATION IN SMGT

improves. However, at a depth of 5, the model reached a
saturation point with a recognition accuracy of 97.88%, and
further increasing the depth L did not lead to a signifi-
cant improvement. Moreover, increasing depth L lead to an
increase in computational cost due to the growing number
of model parameters. Additionally, in Fig. 13(b), it can be
observed that increasing the number of heads h did not
significantly improve the performance of the model. However,

TABLE V
THE ALGORITHM COMPUTATION TIME OF DIFFERENT METHODS

the optimal performance is achieved when h equals 12, with
a recognition accuracy of 97.93%.

F. Algorithm Computation Time
We compared the algorithm computation time of the SMGT

method with those of the other three methods, as shown in
Table V. The algorithm computation time here refers to the
duration taken to process a raw image and output the corre-
sponding class label for that image using the pretrained model.
As Resnet152 and our SMGT are deep learning methods that
require high computing power, they were conducted on a
GPU (TITAN V, NVIDIA Inc, Santa Clara, California, USA),
the other two machine learning methods of HOG and Gray
Gradient were conducted on a CPU (Ryzen 7 6800H, AMD
Inc, Santa Clara, California, USA), the results are presented
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Fig. 12. Average confusion matrices of amputee subjects. (a) Average confusion matrix for functional grasp movements and corresponding force
levels. (b) Average confusion matrix for fine finger movements and corresponding force levels.

Fig. 13. Parameter sensitivity. (a) Effect of depth on performance and
the number of parameters. (b) Effect of the number of heads on model
performance.

in Table V. The results showed that with CUDA (Compute
Unified Device Architecture) acceleration on the GPU, our
method can achieve an average prediction time of only 28.5 ms
per image.

IV. DISCUSSION

To the best of our knowledge, although there have been
some studies on motion recognition using B-mode ultrasound,
few of them have specifically focused on the simultane-
ous recognition of movements and force levels. In this
study, we proposed a novel SMGT model to recognize the
movements and force levels simultaneously, and tested the
feasibility and effectiveness of our model in both non-disabled
and amputee subjects.

A. Feasibility and Superiority of the Proposed SMGT
In this study, we evaluated the performance of four

different methods, and the proposed SMGT achieved the
highest average classification accuracy of 98.4% ± 0.6%
in non-disabled subjects and 96.2% ± 3.0% in amputees.
In contrast, the methods of HOG and Gray Gradient only
achieved the worst classification accuracy of 91.9% ± 1.8%,
89.7% ± 3.0% in non-disabled subjects, and 84.0% ± 3.7%,
82.9% ± 2.4% in amputees respectively. The challenges
of precise recognition in this study arise from the subtle
morphological variations in muscles between different force
levels of the same movements, as depicted in Fig. 8. These
subtle difference makes the simultaneous recognition task in
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this study resembling a fine-grained image classification task,
where the objective is to distinguish fine-grained images that
with similar appearance features but difficult to differentiate.
Consequently, traditional image feature-based methods, like
HOG and Gray Gradient, faced difficulties to accurately
capture these subtle differences. These observations are
consistent with the findings of Ortenzi et al. [30], who
also found difficult in recognizing force using these two
image features. Moreover, our Transformer-based SMGT
method outperformed the CNN-based Resnet152, with an
average recognition accuracy improvement of 3.72%. This
is supported by the findings presented in [32], which also
proved that transformer structure is more effective than
CNN structure when solving fine-grained image classification
tasks.

Additionally, we found that amputees achieved worse per-
formance than non-disabled subjects in all the four methods.
The possible reason may be the muscle atrophy in the resid-
ual limb of amputees, which limited muscle morphological
and structural information provided in the ultrasound images
which is crucial for hand motion recognition. It is supported
by the individual information of subjects in Table I, which
indicates amputees have smaller arm circumference than able-
bodied subjects. Specifically, amputee 3 who had the smallest
arm circumference, exhibited the lowest recognition accuracy
among all the subjects, as illustrated in Fig. 9(b).

Furthermore, compared with the results in [33], which also
focused on simultaneous recognition of movements and force
levels using sEMG, our achieved accuracy of 98.4% ± 0.6%
in non-disabled subjects and 96.2% ± 3.0% in amputees are
obviously higher than their 86.5% in non-disabled subjects,
and 76.3% in amputees. This discrepancy may be due to the
fact that B-mode ultrasound can detect the activities of small
and deep muscles, which are triggered by fine movements and
force variations. In contrast, sEMG which was recorded on
the skin surface may not provide the same level of sensitivity
and detailed muscle activity information. It shows the distinct
advantages of B-mode ultrasound over conventional sEMG in
hand movement recognition.

As depicted in Fig. 11 and Fig. 12, the average accuracy
for various movements and force levels remained at a high
level, demonstrating great robustness to different movements
and force levels. Although there were still a few misclassified
samples, most of which were classified into adjacent force
level classes. Notably, in the average confusion matrix of
amputees, we found more samples were misclassified into
adjacent force levels. This is probably because even if we
have conducted a mirrored bilateral training, it is still difficult
to guarantee that amputees can perform movements with their
phantom hand at the exact force level for every time.

B. Effectiveness of Data Augmentation
In order to improve the generalization ability of our SMGT

model, two data augmentation methods of Cutout and Mixup
were applied. According to the results in Table IV, classifica-
tion accuracies of all the ten subjects were improved by data
augmentation ranging from 0.31% to 3.90%. In particular, for
Amp 3 (the subject with the poorest performance), the clas-
sification accuracy improved from 89.9% to 93.8% with the
application of data augmentation. These results demonstrate

the necessity of data augmentation and its positive impact on
the performance of B-mode ultrasound image based motion
recognition. Specifically, Cutout masks a random region of an
image by setting the pixel values in that region to 0. This forces
the model to learn to recognize features from the unmasked
regions of the image, encouraging it to pay attention to the
local details. While Mixup combines two randomly chosen
samples from the training data to create a new sample. This
effectively creates a smooth interpolation between the two
samples, forcing the model to learn from the combinatorial
features from both samples rather than from one individual
sample. Thus Mixup can improve the model’s generalization
to new and unseen data and reduce overfitting. The analysis
above confirmed the appropriateness of the two chosen data
augmentation methods.

C. Parameter Effects and Algorithm Computation Time
We explored the effects of two crucial parameters, depth L

and number of heads h, on the performance of SMGT. From
the results in Fig. 13(a), we found that when the depth L
reached 5, the model reached a saturation point with a
recognition accuracy of 97.88%. Additionally, increasing the
depth beyond 5 did not yield a substantial improvement in
performance. However, it did result in an increase in the
number of model parameters, leading to longer computation
time. The results depicted in Fig. 13(b) indicate that the
optimal classification accuracy of 97.93% was achieved when
the number of heads was set to 12. However, we did not
observe obvious positive correlation between the number of
heads and the model performance. This finding is consistent
with the results reported in [34], which used a transformer
encoder for EEG recognition and found MSA module is not
sensitive to the number of heads. These results demonstrated
the importance of selecting the appropriate values for the depth
and number of heads.

The algorithm computation time of four different methods
was evaluated and compared. The results in Table V indicated
that our SMGT not only outperformed Resnet152 in terms
of accuracy, but also in terms of algorithmic computation
time, with a prediction time of only 28.5 ms per image. This
indicates that our model can accurately recognize the correct
movement and force level based on a muscle ultrasound image
within 28.5 ms. Therefore, the proposed SMGT approach
exhibits excellent potential for real-time applications.

D. Potential and Benefits of the SMGT for Amputees
By capturing the intricate morphological and structural

details of muscles, the SMGT presents a good classifica-
tion performance of functional grasp movements, fine finger
movements and their different force levels. According to the
previous study in [35], the response time of a control system
should not to be more than 300 milliseconds, so our response
time of 128.5 milliseconds is acceptable for the real-time
application of the control system, which does not introduce
a user-perceived delay. Thus, it is potential to use the SMGT
method to achieve a more natural and accurate control of
prosthetic hands for amputees, which could greatly improve
the quality of their daily lives.
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E. Limitation and Future Work
One limitation of this study may be the limited number of

subjects. Therefore, in the future work, we will recruit more
non-disabled and amputee subjects to validate the effectiveness
of the proposed method SMGT. Additionally, the size and
weight of the ultrasound transducer can be further reduced to
improve the wearing comfort of users. Furthermore, a wired
connection between the ultrasound system and the computer
was required for transmitting and processing the ultrasound
images. The wired connection may lead to discomforts to the
users. So, in the future work, we plan to develop wireless
wearable ultrasound transducers those can greatly improve
the comfort of users and be used for long-time monitoring
of human activates.

V. CONCLUSION

In this study, we used a self-designed lightweight, flexible,
and wearable ultrasound transducer for data acquisition and
proposed a novel Sonomyography Transformer (SMGT) model
for simultaneously recognizing hand movements and force
levels. By tested on seven non-disabled subjects and three
amputees, our approach achieved an average classification
accuracy of 98.4% ± 0.6% in non-disabled subjects and
96.2% ± 3.0% in amputee subjects. Furthermore, through a
systematically comparison with three commonly used meth-
ods, the superiority of our SMGT is proved in terms of
recognition accuracy and computation time. In general, this
study may promote the applications of intelligent prosthetic
hands and rehabilitation engineering.
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