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Abstract— The perception of voluntary respiratory con-
sciousness is quite important in some situations, such as
respiratory assistance and respiratory rehabilitation train-
ing, and the key signatures about voluntary respiration
control may lie in the neural signals from brain mani-
fested as electroencephalography (EEG). The present work
aims to explore whether there exists correlation between
voluntary respiration and scalp EEG. Evoke voluntary res-
piration of different intensities, while collecting EEG and
respiration signal synchronously. Data from 11 participants
were analyzed. Spectrum characteristics at low-frequency
band were studied. Computation of EEG-respiration phase
lock value (PLV) and EEG sample entropy were conducted
as well. When breathing voluntarily, the 0-2 Hz band
EEG power is significantly enhanced in frontal and right-
parietal area. The distance between main peaks belonging
to the two signals in 0-2 Hz spectrum graph tends to
get smaller, while EEG-respiration PLV increases in frontal
area. Besides, the sample entropy of EEG shows a trend
of decreasing during voluntary respiration in both areas.
There’s a strong correlation between voluntary respira-
tion and scalp EEG. Significance: The discoveries will
provide guidelines for developing a voluntary respiratory
consciousness identifying method and make it possible
to monitor people’s intention of respiration by noninva-
sive BCI.
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I. INTRODUCTION

RESPIRATION is the most basic and vital physiological
process for maintaining human life, and the perception

of respiratory consciousness is noteworthy in some situa-
tions. In our previous research, we developed a device to
assist with coughing [1]. Although it can effectively facilitate
phlegm clearance for bedridden patients, it requires manual
initiation and cannot start automatically when the patients
have phlegm, which undoubtedly adds to the caregiving
time and manpower costs. Therefore, we propose a ques-
tion: Can we find a method to monitor people’s intention
to cough? As coughing involves a rapid expiratory action,
we elevated this question to a broader level: How can
we identify people’s consciousness of voluntary respiration
control?

For those who participate in respiratory reinforcing or
rehabilitation training, the aforementioned question also holds
great significance of study. When people actively engage
in the training, their respiratory function can be effectively
enhanced [2], [3], [4], [5]. However, the repetitive exercise
movement is often monotonous and can lead to boredom
and fatigue, which can reduce people’s focus and results in
ineffective training, severely impacting the training efficiency.
When people loss focus on the exercise, the consciousness
of voluntary respiration control is lost as well. Thus, if this
consciousness can be detected, people are able to be reminded
when they are inattentive, by which achieving better reinforce-
ment or rehabilitation results.

People have reached a consensus in the current physiol-
ogy textbooks that, respiration movement originates from the
rhythmic relaxation and contraction of the respiratory muscles
under the control of the nerve center [6]. Automatic respiration
rhythm comes from medulla oblongata without relying on
cerebral cortex, while voluntary respiration is derived from the
excitation of cortical neurons (Fig. 1, left). Hence, it can be
inferred from one’s electroencephalogram (EEG) that whether
he/she participates actively in respiratory training. Existing
researches on respiration and EEG are not rare, but most focus
on the effect of respiration-related tasks [7], [8], [9], [10],
while few directly analyze the differences in EEG characteris-
tics when people breathe in the two disparate ways mentioned
above.
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Fig. 1. Neural control of respiration (left) and the corresponding signal waveforms (right). The respiration-controlling nerve signals are generated by
brain stem and cerebral cortex, and eventually act on respiratory muscles through spinal cord. When one’s awake, cerebral cortex plays the role of
the highest neural center. The respiration signal is periodical, while EEG is chaotic. Whether there are detectable connections between respiration
and EEG is a question worth exploring.

Unlike periodic respiration signals, EEG is extremely
chaotic and highly nonlinear in time domain (Fig. 1, right).
Furthermore, EEG differs greatly in individuals. Thus, it’s not
easy to discover signatures of voluntary respiration in EEG.
Nevertheless, a study of Herrero et al. [11] has shown some
important conclusions. Based on intracranial electrodes, they
found that the coherence between intracranial EEG (iEEG)
and breath increases in some brain areas when people put
attention to breathing. Their discoveries provide evidence for
the existence of direct connection between EEG and voluntary
respiration.

However, the acquisition of iEEG requires dangerous elec-
trode implantation craniotomy, which is unacceptable for most
patients with RD. Therefore, we propose a question: can we
identify some respiration-related signatures from scalp EEG
as the noninvasive brain computer interface (BCI) technology
increasingly matures today? Compared to iEEG, scalp EEG
can be conveniently collected by a wearable device without
any surgeries. The difficulties lie in the facts that, scalp
EEG is susceptible to interference from external environment
and human body activities, and has lower spatial resolution
and signal-noise ratio because the scalp hinders the signal
transmission between the cerebral cortex and electrodes.

In the present work, we overcome the aforementioned
difficulties and extract voluntary respiration-related signatures
from scalp EEG for the first time, which suggests that the
information about voluntary respiration control can be conve-
niently captured by utilizing non-invasive BCI. By analyzing

several quickly computable time-domain, frequency-domain,
and correlation signatures, EEG under voluntary respiration
can be distinguished from that under automatic respiration in a
very convenient way. Phase locking value (PLV) was generally
only used for connectivity analysis of brain areas in previous
studies, and we first applied it to analyze EEG’s correlation
with respiration. The results show that voluntary respiration
can have significant effect on scalp EEG in some particular
areas. Based on these new discoveries, there may be a high
feasibility to develop a method to identify people’s conscious-
ness of voluntary respiration control by noninvasive-acquired
neural signals.

II. METHOD

A. Evocation of Automatic and Voluntary Respiration
As mentioned above, human respiration can be divided

into automatic and voluntary patterns, according to physiol-
ogy theories. The word “automatic” means one is still able
to breathe without consciousness, while “voluntary” means
breathing actively. Actually, automatic respiration accounts for
the majority of entire life, especially night time for sleeping.
When people need to phonate, eat, drink, and so on, cerebral
cortex will take over control from brain stem, and adjust
respiration rhythm into a state they think. For example, people
would hold their breath to avoid choking at the time they
swallow a jelly, also breathe deeper and faster when they feel
running out of oxygen.



4626 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 2. The scene of the experiment in different conditions. In condition
0, signals won’t be shown on the screen in order to avoid the participants
receiving any hint about respiration. Top is a magnifying screen view
of the task in condition 1 and 2. The red curve shows the real-time
respiration wave monitored by sensors. In these two conditions, all
participants are required to maintain a consist respiratory rate and
breathe smoothly, finishing the task that training themselves breathing
harder to raise the peaks and lower the troughs in order to get nearer
to two target lines. Level of the task changes with the distance between
the lines, larger distance corresponds to higher level. For example, the
distance is set 1.5 times the amplitude of calm respiration (denoted by
variable A like it shows in the top right-hand corner) in condition 1, and
twice in condition 2.

In our experiment, we set 3 conditions to evoke the
participants into different respiration patterns, condition 0 cor-
responds to automatic respiration while condition 1 and 2 to
the other pattern.

Condition 0 (calm condition) is set at the beginning. When
it starts, the participants will be told to keep relaxed in a chair
but open their eyes up for minutes (the opening and closing
states of eyes can obviously impact the alpha band of EEG
signal, sees in Gilmore’s research [13]), and focus on a simple
picture which is displayed on the screen in front of them at
the same time, so as to prevent them from concentrating on
their respiration and breathe automatically. The maximum and
minimum of respiration signal in this condition are determined
in background and will be used to calculate the amplitude of
automatic respiration.

Condition 1 and 2 are set right after condition 0. At this
stage, the participants are required to finish a one-minute
task by controlling their breath like it shows in Fig. 2. The
real-time respiration signal will be shown on the screen as
a moving curve, and they should breathe harder to make

the curve reach the location of two horizontal lines. In this
task, the participants are no doubt in the state of voluntary
respiration because of forced breathing. There are two levels
of difficulty, depending on the distance between target lines.
The distance will be set 1.5 times the amplitude of automatic
respiration in condition 1, and twice in condition 2, which
means the expected amplitude respectively increases by 50%
and 100% compared to condition 0. Each participant is allowed
to try several times to get a better result before the formal
experiment. The way to record respiration signal will be
introduced in next section.

All participants will take a rest for over 10 minutes to get
completely relaxed when they arrive. To further ensure the
preciseness of condition 0, we make sure that none of them
know the purpose of the experiment before tasks in condition
1 begins. Every level of task in condition 1 and 2 will repeat
for three trials to eliminate some possible accidental data and
make the result more universal and convincing. The room will
be kept quiet to avoid them hearing noises which may causing
interference on EEG.

B. Data Collection

The sampling system of our experiment consists of an
EEG acquisition module, a respiration monitoring module, and
supporting software on the computer.

Considering that the active brain areas of voluntary respi-
ration are still quite unclear in existing researches, we use
a wearable device with 59 electrodes (Fig. 3(A)) which can
cover the whole scalp to record the potential changes near
the brain at a 1,000 Hz sampling rate. By using both ears as
reference electrodes, the collected signal can have better qual-
ity on account of the suppression of electrocardiography [14].
Through the accompanying receiver and router (Fig. 3(B)), the
electrode cap is able to communicate wirelessly and accurately
with computer in low time delay.

Generally, people use an airflow meter or barometer to
monitor respiration, which requires a high level of airtightness.
For those who in mechanical ventilation, the measurement of
gas parameters can be easily done by sensors installed in the
gas circuit of a ventilator, but it does not fit healthy people
and a large quantity of patients who are not so seriously ill.

Inertial measurement unit (IMU) is a tiny sensor that has
been widely used in the measurement of kinematic parameters
like velocity, acceleration, and attitude angles. In addition to its
small volume, IMU also has the advantage of acute sensitivity.
When breathing, the thorax moves cyclically with the rhythm
of respiration. In this work, we attach an IMU to the chest
like it shows in Fig. 4(A), so that the respiration signals can
be clearly expressed as the motion of chest and recorded in
computer. Fig. 4(B) shows how the motion is measured, aZ
represents the measured acceleration of IMU in the Z-axis
direction perpendicular to its upper surface, which is equal
to the difference between the acceleration of chest undulation
motion a and the component of gravity acceleration in that
direction -g·cosθ . In practice, the value of a is very small
compared to the latter and can be ignored. In this research,
the ratio of aZ to g is actually recorded.
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Fig. 3. Details of EEG collecting device. (A) The device to record EEG.
Components include an wearable electrode cap, a receiver, and a Wi-
Fi router. EEG is collected by the cap, then gathered and filtered by
the receiver, and finally arrives at the computer, while the Wi-Fi router
serves as a signal relay. To ensure good contact between electrodes
and scalp, a kind of specially made conductive paste was added to
each hole. (B) Allocation of EEG electrodes. Each electrode channel
corresponds to a specific location on the scalp [15]. In this research,
the channel CPz is only set for re-reference and calculated by CP1 and
CP2, but its electrode doesn’t really exist.

In fact, it’s not the first use of IMU in respiration moni-
toring, quite a lot previous studies show that IMU can done
the job as well as a sensing mask [16], [17], [18], [19].
The communication between IMU and computer is based
on Modbus protocol [20]. The data collected in the latest
5 seconds will be stored in an array and keep updating on
the screen, so that a real-time curve can be shown to the
participants.

For the rigor of subsequent analysis, EEG and respiratory
signals are collected synchronously in our experiment. Given
that the sampling rate of IMU (100 Hz) is not the same as the
EEG collector, a “start-to-end” strategy is adopted instead of
recording at a constant interval. In this strategy, both sensors

Fig. 4. (A) The installation position of IMU. The small sensor cube
is sticked about 5cm below the right clavicle, a place with the largest
chest undulation and weaker heartbeat noise in signal than the left side.
(B) The measurement principle of IMU. The Z-axis acceleration az can
be directly measured by the sensor, and has a mathematical correlation
with the angle θ between the chest surface and the vertical direction.
As people breathe, θ undergoes periodic changes.

are previously programed to start or end sampling at their
respective frequencies when they receive a specific string.
The special string message will be transmitted simultaneously
through serial port at the exact time the experiment begins
or finishes, so that the synchronization of data from different
sensors is ensured. After recording, data from IMU will be
interpolated to the same quantity as EEG for the convenience
of matrix calculation.

To obtain better data quality, all participants are required
to keep still with a fixed sitting posture and breathe stably
without interfering behaviors such as blinking, eyes rolling,
and coughing when the collection is going on [21] and [22].

C. Data Preprocessing
Preprocessing of data is very important before formal anal-

ysis, because of the noise and offset in original signals. The
main interference in respiration signal is from the heartbeat.
Whereas the power of heartbeat noise is much lower than the
main signal, we use the method of moving average filter to
deburr the data. A filtering window with the length of 150 is
selected to do the convolution after several tests, which can
get the best smoothing effect (Fig. 5). When the filtering is
done, average value of the whole signal will be subtracted to
remove any offset, so we can get the final detrended curve.

The preprocessing of EEG data is based on EEGLAB,
a dedicated tool in MATLAB to do the calculation of
EEG. A series of filtering operations are applied to original
EEG dataset, which include a high-pass filtering at the fre-
quency 0.1 Hz, a low-pass filtering at 40 Hz, and a band-stop
filtering at the interval 49-51 Hz for further clearance of
powerline interference. The assumed channel CPz is calculated
and set as re-reference to improve signal-to-noise ratio [23].
Baseline correction runs as the next step to remove DC
component of each channel.

Although we’ve set quite strict rules for participants to
avoid physiological artifacts in EEG, ocular interference is
still difficult to refrain. Therefore, we first manually removed
the intervals that contained eye-blinking artifacts in data from
all participants. Independent component analysis (ICA) has
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Fig. 5. IMU Data preprocessing, a section of data with a length of
25s is used as an example. (A) Comparison of different filter window
lengths on respiration data. The length of 150 can best deburr the curve.
(B) Comparison before and after filtering. The smooth filtered curve is
easy to distinguish the amplitudes of different conditions.

been proved to be an effective algorithm to correct artifacts
especially caused by eyes [24], [25]. The theory of ICA
believes that signal and artifact are independent of each
other, which means the original data can be decomposed
into parts with different characteristics [26]. With the help
of existing researches and pre-experiment, electrooculogram
(EOG) artifact can be easily detected in the graphical interface
of EEGLAB and removed.

D. Spectrum Calculation
Welch method is used in spectrum analysis. Compared with

using Fourier transform directly, Welch method can effectively
reduce the variance of spectrum [27].

Before the calculation, Standardize each segment of the
signal as the following method

xstd =
x − x̄
σx

(1)

where xstd is the standardized signal vector, x is the original
signal vector, x represents the baseline of x calculated by
average, and σx is the standard deviation of x.

In periodogram method, the power spectral density of signal
is calculated by

P ( f ) =
1

N Fs

∣∣∣∣∣
N∑

n=1

x (n)w (n) e−2π i f n/Fs

∣∣∣∣∣
2

(2)

where N is the number of points in vector xstd, Fs is the sam-
pling frequency, i is the imaginary unit, and w is the window
function used to assign different weights to points (all weights
are set to 1 in general, which is called a rectangular window).

As for Welch method, the original signal is divided into
several overlapping data segments of length M , which is
denoted by

x j =
(
x j (1) , x j (2) , . . . , x j (M)

)T (3)

Then, calculate the spectrum of each x j by periodogram
method as Pj ( f ), and the final spectrum is estimated as follow

PW ( f ) =
1
k

k∑
j=1

Pj ( f ) (4)

where k is the number of data segments.
In the analysis of subsequent chapters, we select a rectan-

gular window with the length of 2,000 and a 50% overlap
rate.

E. Phase Synchronization Analysis
Theoretically, voluntary respiration is a behavior under the

control of brain, and the transmission of neural signals takes
time. Thus, there might be a fixed time delay between the two
signals, which can be reflected by the phase difference.

PLV (phase locking value) is one of the common indicators
for evaluating phase synchronization [28], which has been
widely used for connectivity analysis. PLV between signal
vectors x and y is computed as

PLVx y =

∣∣∣∣∣ 1
N

N∑
n=1

ei1ϕ(tn)

∣∣∣∣∣ (5)

1ϕ (tn) = ϕx (tn) − ϕ y (tn) (6)

ϕx (tn) = tan−1 xH (tn)

x (tn)
(7)

ϕ y (tn) = tan−1 yH (tn)

y (tn)
(8)

where N is the number of sampling points, i is the imaginary
unit, 1ϕ(tn) is the phase difference between the analytic
signals of x and y at time tn , 1ϕx (tn) and 1ϕy(tn) are the
instantaneous phase of x and y which is calculated by (8)
and (9). Moreover, xH and yH are the Hilbert transform of x
and y.

If PLV is equal to 1, then the analyzed signal vector x and
y has a constant phase difference during the time period t1
to tN . On the contrary, if PLV is equal to 0, it means there’s
no phase synchronization between the two signals. In most
cases, PLV is between 0 and 1.

F. Nonlinear Features
The neural activity of the human brain reflected in EEG

is quite complex and unsteady. Therefore, methods related to
nonlinear dynamic theory are beneficial to find some charac-
teristics which is helpful for explaining the neurophysiological
process of brain. Various nonlinear dynamic algorithms have
been applied to EEG analysis so far, which demonstrate
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Fig. 6. The recorded respiration data from a participant after processing of filtering and detrending. Curves with different colors represent the
results of different trials.

the nonlinear characteristics of EEG signals from different
levels. Among these EEG analysis methods, the application
of complexity and entropy is particularly widespread.

Here, we use sample entropy (SE) as an indicator to
characterize the nonlinear complexity of EEG. We only list
a few key steps of calculation, and the complete steps can be
found in Richman et al.’s study [12].

First of all, we use the same method as formula (1) to get
the standardized signal vector x. Create (N − m + 1) vectors
xi by

xi = {x (i) , . . . , x (i + m − 1)}

i = 1, 2, . . . , N − m + 1 (9)

where N is the number of points in x, and m is the embedding
dimension which is often taken as 2.

Let Ci be the probability that the distance between vector
xi and x j is less than r , computed as

Ci =
1

N − m + 1

N−m+1∑
j=1

2
(
di j − r

)
(10)

where 2 is the Heaviside function, and di j is calculated by

di j = max (|x (i + k) − x ( j + k)|)

k = 0, 1, . . . , m (11)

Define two variables A and B in (12) and (13)

A =
1

N − m

N−m∑
i=1

Ci (12)

B =
1

N − m + 1

N−m+1∑
i=1

Ci (13)

Then, the sample entropy of x can be described as

SE = −ln
A
B

(14)

The higher the value of SE, the more chaotic the signal
is. The parameters we choose in this work are m = 2 and
r = 0.2.

G. Participants
In total, 18 participants (aged from 18∼28) were recruited.

Among them, 5 participated in the pre-experiment which
was planned to verify the feasibility and discover potential
vulnerabilities in our plan, such as whether the sensors with
different sampling rate could work together normally, and
whether the sitting posture could affect the baseline of res-
piration signal. The rest 13 participants completed the formal
experiment with the same requirements and standards. Each of
them promised not having any neurological or brain diseases
before the experiment started. Data from 2 participants showed
obvious abnormal fluctuations, which was deemed not to be
directly related to voluntary respiration. Later, it was proved
to be caused by frequent blinking of the eyes. Thus, we had
to abandon these two pieces of data and retain data from the
other 11 participants for subsequent analysis. The informed
consent was obtained from all participants.

III. RESULT AND DISCUSSION

A. View of Respiration Data
Fig. 6 shows the recorded respiration data from a partic-

ipant. The black curve corresponds to automatic respiration,
while the red and green curves correspond to the two condi-
tions set in our experiment.
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Fig. 7. (A) Comparison of spectra obtained by Welch method and
periodogram method. (B) A graph with data collected in all conditions
of channel F8 from a participant.

It can be seen that the amplitudes of different conditions are
consistent with our expectations, which proves that we have
successfully evoked voluntary respiration of different inten-
sities. It can be also seen that, the respiration of participant
in this figure is not stable at the beginning of condition 2
because the baseline is above the 0 position. For the other
participants, this problem is not uncommon. Therefore, we will
remove the 0-10s segment of data and retain the 10-60s
segment in the subsequent analysis.

B. EEG Spectrum Analysis
Fig. 7(A) shows the comparison of two spectrum estimation

method with a same EEG signal vector. Compared to peri-
odogram method, Welch method can reflect the trend of signal
power variation with frequency more clearly and effectively
reduce the variance.

For each channel of a single participant, we plot the obtained
EEG spectra under different conditions on the same graph,
as shown in Fig. 7(B). Through preliminary observation of
spectra of every channel from all participants, we found a
common phenomenon that in a low-frequency band, the curve
of condition 0 is below the others of condition 1 and 2, which
means the signal power of some channels in condition 1 and 2
is higher than that in calm condition. Therefore, we assume
that low-frequency EEG in some specific brain areas will be
enhanced during voluntary respiration.

Generally, EEG signals can be divided into five components
with different frequency bands: δ waves (0-4 Hz), θ waves
(4-8 Hz), α waves (8-13 Hz), β waves (13-20 Hz), γ waves
(>30 Hz). Among these, the band of δ waves which fall within
the low-frequency range is of particular interest to us.

To validate our assumption, we computed the percentage
of δ wave energy in the signals from various electrodes
for all participants. Based on these calculations, a group of
topographic maps are able to be generated, as it illustrates
in Fig. 8(A). The results for conditions 1 and 2 are averages
across the three trials. From the topographic maps in Fig. 8(A),
it can be observed that the distribution of δ-EEG power

percentage on the scalp among participants varies under the
three conditions. However, this variation is not consistent. For
instance, for participant 10, there is a noticeable δ-EEG power
increase in the frontal region under Conditions 1 and 2, but
this pattern does not hold true for participant 5.

Theoretically, voluntary respiration involves the brain’s
active control of movements of respiratory muscles, char-
acterized by low-frequency rhythms. Given that the motor
cortex is situated in the frontal lobe, low-frequency EEG
signals in the frontal area during voluntary respiration should
exhibit a macroscopic unified variation. We hypothesized that
these variations might be present in signals of even lower
frequency, and the 0-4 Hz δ-wave frequency band is possibly
not sufficiently narrow for our analysis.

Consequently, we narrow down the frequency range to half
(0-2 Hz) and generate another group of topographic maps,
as shown in Fig. 8(B). From this subfigure, we notice that
the differences between conditions are more pronounced in the
0-2 Hz frequency range. Although the distribution and range
of value still differ a lot between participants, the changes
from calm condition to condition 1 and 2 in some areas are
consistent. Compared to calm condition, the power of signal
from channels in frontal area (Fp1-Fp2, Fpz, AF3-AF4, AF7-
AF8, F1-F8, Fz) and right-parietal area (CP4, CP6, TP8, P4,
P6, P8, PO4, PO6, PO8) is higher in condition 1 and 2. This
provides support for our hypothesis.

0-2 Hz band power from areas mentioned above is calcu-
lated by average to further compare the statistical differences.
Considering rigorousness, in order to eliminate eye movement
interference which usually has great influence on Fp and AF
channels, only the rest 9 channels (F1-F8, Fz) in frontal area
were analyzed. Fig. 9 is plotted as a result, and it’s significant
that condition 1 and 2 have generated stronger low-frequency
EEG components than calm condition because p1 and p2 are
higher than p for the vast majority of participants (p, p1 and
p2 respectively denote 0-2 Hz power in different conditions).
The above results are sufficient to indicate that, within the
selected 0-2Hz frequency range, there exist signatures related
to voluntary respiration in scalp EEG.

C. Joint Analysis of EEG and Respiration Signal

Another question worth figuring out is that whether there
is a certain connection between EEG and respiration signals.
In this section, a series of joint analyses are conducted.

We extracted the 0-2Hz EEG by a digital filter, and per-
formed spectral analysis by Welch method in conjunction with
respiratory signals. We observe that both types of signals
exhibited spectral peaks within the 0-0.4 Hz frequency range,
and each displays a prominent main peak. We use 1 f to
describe the distance between the two peaks, and record the
results in Table I (the values from different trials in the same
condition are averaged across the selected electrodes). In order
to provide a clearer presentation of the calculation method for
1 f and the peak distribution, we select 2 representative set
of data from participants 1 and 9 (due to space limitations,
we only show the two datasets), plotting the normalized
time-domain signals and spectrum as shown in Fig. 10.
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Fig. 8. EEG power percentage topographic maps in different conditions from all participants. (A) δ-EEG. (B) [0-2Hz]-EEG. Data from the same
participant shares a same color bar. The allocation of electrodes is shown in Fig. 3(B).

From the table, it can be observed that in frontal area, 1 f
of data in condition 1 and 2 are significantly lower than that
in condition 0. Furthermore, for the majority of participants,
1 f of data in condition 2 are the smallest. This indicates that
with increasing intensity of voluntary respiration, the main
frequency in 0-2 Hz frontal EEG tends to align more closely
with the breathing frequency. However, in right-parietal area,
this conclusion does not hold true for every participant.

Additionally, it’s worth noting that participants 8, 9, and
11 exhibit very close-to-zero 1 f values in frontal area during
voluntary respiration, which means their spectral main peaks
nearly overlap like it shows in the right plot of Fig. 10.

Upon inspecting the time-domain signals, a strong correla-
tion between them becomes apparent. However, for the rest
8 participants including participant 1, the distance of peaks
only narrows instead of completely overlapping. Whether
these inter-participant differences arise from inherent indi-
vidual variations or are a result of insufficiently stringent
experimental conditions requires further in-depth investigation.

Power spectral density only reflects the amplitude of various
frequency components, but it does not incorporate phase
information from the spectrum. Hence, we also computed the
average PLV across the selected electrodes in the aforemen-
tioned areas, and the results are presented in Fig. 11. It can
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TABLE I
A SUMMARY OF THE MAIN PEAK DISTANCE

Fig. 9. A statistic of 0-2 Hz band power (described as variable P) in
different conditions and brain areas. The broken line plots (top) show
the changes of P in different conditions, each broken line represents
data from one participant. The boxplots (bottom) further display the
differences between conditions, the marker “∗” represents outliers, and p
denotes the significance level (by t-test). Moreover, the trend of average
value is displayed as well.

be apparently seen that PLV between EEG (<2 Hz) and
respiration signal shows an increasing trend and gets closer
to 1, which means the phase synchronization is more obvious
when the participants breath harder.

We propose an explanation to the phenomenon. During
voluntary respiration, the action of the respiratory muscles

is the result of the nerve signals from the cerebral cortex.
These signals (we temporarily call them direct breathing
commands, DBC) are generated by a group of cortical neurons
in some specific brain areas, with a waveform similar to the
respiration signal but with an advance in phase (as a result of
the time delay in neural transmission). Due to the blocking
effect of the scalp and skull, as well as the interference
between signals from different brain areas, the phase advance
in scalp EEG is not so significant, resulting in PLV of less
than 1. As the intensity of respiration grows, the weight of
DBC in scalp EEG increases likewise, which leads to the rise
of PLV.

D. Nonlinear Analysis
Here’s an explanation of the relevant variables before pre-

senting the results. Let variable SE0, SE1, SE2 respectively
represent the sample entropy of EEG in condition calm,
1 and 2, and we use dSE1 and dSE2 to describe the percent
rate of change from SE0 to SE1 and SE1, i.e.

dSE1 = (SE1 − SE0) · 100% (15)
dSE2 = (SE2 − SE0) · 100% (16)

If dSEi (i = 1 or 2) is a negative value, it indicates that EEG
in condition i has a lower degree of chaos than calm condition.
Fig. 12 shows the value of dSE1 and dSE2 in different scalp
areas. By contrast with directly displaying the value of sample
entropy, we can get a better comparison result in this way. As it
can be seen, most data points are below the zero line, and the
distribution of dSE2 value is lower than dSE1, from which we
can deduce that EEG in frontal and right-parietal area tends
to be more orderly when breathing voluntarily.

We can explain this phenomenon from a physiological per-
spective. Considering that voluntary respiration is controlled
by the cerebral cortex, the brain will continuously send nerve
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Fig. 10. The spectrum and time domain signal graph from data of two participants who respectively represents one typical peak distribution. For
each participant, the right column presents EEG (<2 Hz) and respiratory signals of all experiment trials, while the left column shows the spectrum
of 0-2 Hz. Range of 0.4-2 Hz are not displayed for a very low proportion of power by contrast with 0-0.4 Hz. The time domain EEG signals are from
channel Fz, which is the center of frontal area. The positions of the main peak of the two signals in the spectrum are marked out, and ∆f denotes
the distance between the two peaks.

Fig. 11. A statistic of EEG (<2 Hz)-respiration PLV in different
conditions and brain areas. Data from all participants are marked out
in the boxplot, and p denotes the significance level (by t-test). Besides,
the trend of average value is displayed by a black broken line as well.

signals to the respiratory muscles as hard breathing goes
on. Although EEG itself is highly chaotic, respiration is a
highly ordered activity, so as the respiratory-controlling signal
components. When people put more strength on breathing,
these components will also be enhanced. Hence, the chaos
level of EEG has been reduced overall.

Fig. 12. The boxplot of dSEi in frontal and right-parietal area. The
definition of dSEi sees in formula (15) and (16). A red horizontal zero
line is also plotted for comparison.

IV. CONCLUSION

We have analyzed data from 11 participants and calculated
multiple signal characteristics to figure out whether there’s
a correlation between voluntary respiration and scalp EEG.
The results manifest that this connection not only exists,
but is also significant. From the conducted analysis, the
specific impact of voluntary respiration on EEG includes the
following aspects. In frequency domain, when people breathe
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harder, the low-frequency EEG components within 2 Hz turn
more active in frontal and right-parietal area, and the promi-
nent main peak in the band of 0-2 Hz gets more closer to the
frequency of respiration signal in frontal area. In time domain,
there’s a positive correlation between respiration intensity
and EEG (<2 Hz)-respiration PLV. From the perspective of
nonlinear dynamics, breathing voluntarily can decrease the
sample entropy value of EEG, which means a more orderly
state. The significance of this work lies in its demonstration of
the potential to utilize a convenient noninvasive BCI for identi-
fying respiratory consciousness. This could meet applications
in various fields including respiratory assistance, respiration
monitoring, and respiration signal feedback. Apparently, con-
clusions drawn at present do remain space for refinement, and
cannot yet explain inter-individual differences, we believe that
more rigorous experiments based on various populations in the
future will address these gaps.
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