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Improving the Efficiency of Dysarthria
Voice Conversion System Based on

Data Augmentation
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Abstract— Dysarthria, a speech disorder often caused
by neurological damage, compromises the control of vocal
muscles in patients, making their speech unclear and com-
munication troublesome. Recently, voice-driven methods
have been proposed to improve the speech intelligibility of
patients with dysarthria. However, most methods require a
significant representation of both the patient’s and target
speaker’s corpus, which is problematic. This study aims
to propose a data augmentation-based voice conversion
(VC) system to reduce the recording burden on the speaker.
We propose dysarthria voice conversion 3.1 (DVC 3.1)
based on a data augmentation approach, including text-
to-speech and StarGAN-VC architecture, to synthesize a
large target and patient-like corpus to lower the burden
of recording. An objective evaluation metric of the Google
automatic speech recognition (Google ASR) system and a
listening test were used to demonstrate the speech intel-
ligibility benefits of DVC 3.1 under free-talk conditions.
The DVC system without data augmentation (DVC 3.0) was
used for comparison. Subjective and objective evalua-
tion based on the experimental results indicated that the
proposed DVC 3.1 system enhanced the Google ASR of
two dysarthria patients by approximately [62.4%, 43.3%]
and [55.9%, 57.3%] compared to unprocessed dysarthria
speech and the DVC 3.0 system, respectively. Further, the
proposed DVC 3.1 increased the speech intelligibility of
two dysarthria patients by approximately [54.2%, 22.3%]
and [63.4%, 70.1%] compared to unprocessed dysarthria
speech and the DVC 3.0 system, respectively. The proposed
DVC 3.1 system offers significant potential to improve
the speech intelligibility performance of patients with
dysarthria and enhance verbal communication quality.
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phonetic posteriorgram, voice conversion.
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I. INTRODUCTION

ACCORDING to a study by the American Speech-
Language-Hearing Association, dysarthria is primarily

caused by stroke, cerebrovascular accidents (CVA), tumors,
cerebral palsy (CP), and other diseases [1]. For example,
CVA patients often result in flaccid, spastic, and mixed-type
dysarthria in patients. However, CP patients may suffer from
spastic, ataxic, hyperkinetic, and mixed-type dysarthria. Both
conditions result in patients being unable to flexibly con-
trol the muscles used for speech production and generating
unclear speech, difficulties in consonant pronunciation, short-
ness of breath, or fatigue while speaking. This, in turn,
leads to a decrease in the intelligibility, audibility, natural-
ness, and communicative efficiency of speech for individuals
with speech disorders, making it difficult for listeners (or
machines) to understand [2]. Many augmentative and alter-
native communication (AAC) devices have been developed
[1], such as eye-tracking systems [3] and communication
boards [4]. These devices use limbs, eyes, etc. to control
devices to spell out words and form sentences to help
people with dysarthria pursue better communication meth-
ods. However, most patients with cranial nerve damage are
unable to use such technologies efficiently because of physical
disorders or tremor problems. In addition, previous studies
have indicated that the speech rate with AAC devices is
slower (2–10 words per minute) [5], [6], [7] than that of
dysarthria patients who can still speak and voice their opinions.
Therefore, these classical AAC systems still have room for
improvement.

Voice-driven AAC systems have recently been proposed
to improve dysarthric patients’ speech intelligibility using
the voice conversion (VC) method, which is defined as
dysarthria voice conversion (DVC) in this study. The idea
of DVC is to convert distorted speech into normal speech
using a conversion model to improve intelligibility for lis-
teners [8]. For example, Hosom et al. [9] proposed a VC
architecture that clarifies dysarthric speech by adjusting the
prosody and formants of dysarthric speech to be more similar
to a normal speaker’s rhythm. The experiment also proved
that the dysarthric speech recognition rate was improved by
19%. Tolba and El_Torgoman [10] proposed a GMM-based
VC method with linear coding of prediction coefficients by
analyzing the patient’s speech envelope, which also success-
fully improved the speech recognition rates of dysarthric
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speech. Fu et al. [11] proposed a joint dictionary learning-
based non-negative matrix VC method to improve the speech
intelligibility of surgical patients who have had parts of
their articulators removed. The method was demonstrated
to not only improve the short-term objective intelligibility
score (standardized objective intelligibility evaluation index)
significantly, but also perform comparably to traditional VC
architecture.

Moreover, many recent studies have shown that, compared
to traditional algorithms, deep learning-based VC methods
can further improve the speech intelligibility of patients with
dysarthria. For example, Chen et al. [12] proposed a deep
learning-based architecture to convert dysarthric speech using
the log-power spectra [13] and Mel frequency cepstral coef-
ficient (MFCC) [14]. The proposed system improved speech
intelligibility compared to baseline systems. Yang and Chung
[15] utilized a generative adversarial network (GAN) in this
context and improved the speech recognition rate by 33.4%.
However, there is still room for improvement in terms of
the temporal variability and instability of patients’ speech.
We recently proposed a deep learning-based DVC system
(DVC 3.0) [16]. The system addresses the variability of
patients’ speech characteristics using the speaker-independent
property of phonetic posteriorgrams (PPGs) [17], [18] and
converts phonemes into normal speech using a gated convo-
lutional neural network model (gated CNN) with long-term
memory effects. The listening test revealed that the proposed
system exhibited higher speech intelligibility scores with
fewer parameters than baseline systems during duplication
(i.e., when the dysarthric patient repeated sentences in the
training set). However, the accuracy and stability of the DVC
3.0 system rely heavily on the accuracy of the PPGs that
are extracted by the acoustic model, which requires a large
representative corpus to cover all possible phonemes. Thus,
although DVC 3.0 can currently assist patients in performing
well on repetitive sentences, a substantial amount of language
data recording by both patients and target language speakers
is still required to handle unfamiliar sentences. Additionally,
the system requires a large amount of patient speech to
participate in training, which can be burdensome for patients.
Therefore, this will also result in difficulties for users in terms
of usability. In this context, the purpose of this research is
to develop a training corpus augmentation method for patients
and corresponding target speakers; furthermore, the aim of the
training data is to enable DVC 3.0 to convert the correct speech
accurately even in a free-talk situation (in which any words
can be uttered with no restraints), without further recording
data from patients.

Many data augmentation and data generation methods have
been proposed. For example, Vachhani et al. [19] adjusted the
speech rate and rhythm of normal speech to make it similar to
that of dysarthric patients to increase the amount of training
data. The study results showed that this data augmentation
method improved the recognition rate of the proposed system
by 4.24%. Shor et al. [20] used a large amount of normal
human speech data as the pre-training weight of the training
model and then performed training using a small amount of
patient speech. This method improved the training effective-

ness of dysarthria speech recognition architectures. Jiao et al.
[21] proposed an adversarial training model to convert normal
speech into dysarthric speech, improving the speech recogni-
tion rate by approximately 10%. Although these methods have
improved the performances of several classical VC systems,
they require a significant amount of normal speech to be
recorded, which is burdensome for the speakers. Further, they
generally adopt one-to-one (i.e., single normal speaker and
single patient speaker) conversion to augment the patient-like
training data, which limits the diversity of the augmentation
data and constrains the benefits of DVC system training.
Jin et al. [22] proposed a method based on VAE-GAN and data
augmentation for disordered speech recognition. This method
enables the system to encode, produce and differentiate syn-
thesized impaired speech successfully. Soleymanpour et al.
[23] presented a novel means of using the DNN-HMM model
on synthesized dysarthric speech and derived good results
in dysarthric speech recognition. In view of this, this study
proposes a new data augmentation method based on a many-
to-one approach. More specifically, text-to-speech (TTS) [24]
technology is used to synthesize the speech of multiple normal
target speakers. Subsequently, the many-to-one VC system is
used to convert these corpora into a patient-like corpus using
augmentation data, and these augmented data are used to train
the DVC system. The main purposes of the present study are
as follows: First, we propose a patient-like data augmentation
approach for the DVC system, known as DVC 3.1, to improve
the speech intelligibility of dysarthric speakers using the TTS
system and many-to-one VC model. Second, we assess the
similarity of the proposed augmentation units and the speech
intelligibility of the converted speech achieved by the entire
system. Finally, the performance of the proposed DVC 3.1 on
free speech is compared with that of well-known baseline DVC
systems.

The remainder of this paper is organized as follows: In
Section II, the proposed system, DVC 3.1, is introduced.
The methodology and experimental design of this study are
also discussed in this section. The experimental results are
presented and discussed in Section III. Finally, the conclusions
are presented in Section IV.

II. METHODS

A. Proposed Architecture
Fig. 1 depicts the proposed DVC 3.1 system, which was

obtained by modifying the system proposed in our previous
study [16]. DVC 3.1 involves four stages: data augmentation,
speaker-dependent automatic speech recognition (SD-ASR)
[25] training, conversion model training, and conversion. The
detailed descriptions of these four stages are provided in the
subsections below.

1) Data Augmentation Stage: During data augmentation, the
Tacotron2 TTS technology [26] is used to synthesize normal
speech n (t) from a large number of texts. The Tacotron2
architecture is illustrated in Fig. 2. It converts textual data
into text vectors via character embedding and uses an atten-
tion mechanism [27] to achieve an attention relationship
between the Mel spectrum and character embedding. Then,
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Fig. 1. Proposed DVC 3.1 system. For the training phase, DVC 3.1 separately trains the Data Augmentation Unit, SD-ASR Training Unit, and
Conversion Model Training Unit. Note: n(t), d(t), and s(t) represent the waveforms of the synthesized normal speech, dysarthria speech, and
synthesized dysarthria speech, respectively.

Fig. 2. Tacotron2 [26] TTS method of proposed system in Fig. 1.

the trained model is used to convert the input text into the
Mel spectrum. Subsequently, the WaveGlow [28] vocoder is
used to generate normal speech from the converted features.
For a detailed description of WaveGlow, please refer to [28].
Next, the synthesized normal speech n (t) is used to generate
the corresponding paired dysarthric corpus s (t) through the
StarGAN-VC [29], [30] model.

Fig. 3 depicts a block diagram of the training process
of StarGAN-VC. It adopts the many-to-many speaker VC
approach and does not require a paired corpus, which enhances
the effectiveness of the data augmentation. More specifically,
it uses a single generator G (·) to learn the mapping function
for multiple speaker domains and applies the generator for
many-to-many data augmentation. To this end, the generator
G (·) is designed as a model that can flexibly transform input
speech xi into output speech x j corresponding to a domain
c j based on random input attributes. The generated speech is

denoted by G
(
xi , c j

)
. Note that i, j represent the i th and j th

domains, respectively, which can be regarded as the source
speaker and conversion target speaker domains, respectively.

To enhance the similarity between the generated data
G

(
xi , c j

)
and real data x j corresponding to a selected domain

c j , a domain classifier C (·) and discriminator D (·), as illus-
trated in Fig. 3 (b), are adopted. C (·) is used to distinguish
input data corresponding to the given domain successfully,
whereas D (·) is used to determine whether the input data
are real data x or generated data G (x, c). Both C (·) and
D (·) generate two loss values, namely the domain classi-
fication loss (Lcls (·)) and adversarial loss (Ladv (·)), based
on the error between the recognition result and ground truth,
thereby enabling G (·) to generate more realistic data that are
conditioned on the target domain. By minimizing Lcls (C),
the domain classifier C (·) correctly classifies the input data
into the domains to which they belong. Moreover, the domain
classification loss aids the generation of outputs that are more
related to the given domain. That is, G (·) minimizes Lcls (G)

to generate data to be classified with respect to the target
domain.

The adversarial loss Ladv (·) is only applied to G (·) and
D (·). During training, D (·) determines whether the input
speech is real or generated data by maximizing Ladv (D).
In contrast, G (·) generates G

(
xi , c j

)
, which is as similar

to realistic data x j as possible, to fool the discriminator by
minimizing Ladv (G). Based on the interactions of the two
components, G (·) learns to construct a mapping function that
can generate realistic speech features based on any input data.

However, training G (·) using the Ladv (G) and Lcls (G)

losses does not guarantee that G (·) will preserve the correct
linguistic information of the input speech while changing only
the domain-related parts of the inputs. Thus, the cycle consis-
tency loss Lcyc (G) and identity mapping loss L id (G) are
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Fig. 3. StarGAN-VC block diagram of proposed system in Fig. 1.

also adopted. The cycle consistency loss encourages G (·) to
generate the corpus based on the linguistic information of the
input data, where G (·) moves the translated G

(
xi , c j

)
back-

wards to the original domain ci to reconstruct the original input
xi . That is, minimizing Lcyc (G) ensures that G (·) learns
to generate speech based on the input content. Furthermore,
to prevent G (·) from making unnecessary transformations
when the transformation target domain is identical to the
source domain, the identity mapping loss L id (·) is employed.
In summary, the complete objective function is given by:

LG (G) = Ladv (G) + λcyc Lcyc (G) + λcls Lcls (G)

+ λid L id (G)

L D (D) = Ladv (D)

LC (C) = Lcls (C) (1)

Note that λcyc ≥ 0, λid ≥ 0, and λcls ≥ 0 represent the impor-
tance of the cycle consistency loss, identity mapping loss, and
domain classification loss relative to the adversarial losses,
respectively. By completing the optimization of the afore-
mentioned objective function, the generator in StarGAN-VC
performs VC in a many-to-many manner and, in combination
with TTS (Fig. 2), generates a vast dysarthric-like training
corpus.

2) SD-ASR Training Stage: As discussed in our previous
study [16], during the SD-ASR training stage, a feature extrac-
tor is trained and the acoustic features of dysarthric patients are
normalized to linguistic features. Finally, the linguistic features
are converted into textual format as output. The SD-ASR
training scheme is depicted in detail in Fig. 4.

The speech of one dysarthric speaker and a large amount
of synthesized speech of dysarthric speakers are used to train
the SD-ASR system. The detailed training approach can be
found in [16] and [31]. After completing the SD-ASR training,

Fig. 4. SD-ASR block diagram of proposed system in Fig. 1.

the well-trained acoustic model in the SD-ASR system is
applied as the feature extractor in the DVC system, which uses
the well-known time-delay neural network (TDNN) to learn
the contextual information between speech to classify highly
accurate phonemes. For a more detailed technical description,
please refer to [32] and [33].

3) Conversion Model Training Stage and Conversion Stages:
During the conversion model training stage, a paired cor-
pus (i.e., paired dysarthric utterances and normal utterances)
is used for the gated CNN model training (Fig. 5). The
time-domain speech signals of the dysarthric corpus d(t)
and synthesized dysarthric corpus s(t) are used as the
training source corpus x(t). These utterances are converted
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Fig. 5. Gated CNN block diagram of proposed system in Fig. 1.

into 120-dimensional high-resolution MFCCs with dynamic
features (40-dimensional original MFCC + 40-dimensional
delta features + 40-dimensional delta-delta features), X M FCC

m ,
by the feature extraction (MFCC) unit. The frame size and
shift are set to 25 ms and 10 ms, respectively. Subsequently,
the trained acoustic model is implemented to extract the
74-dimensional monophone-PPG features, X P PGs

m , of the
dysarthric speech. Monophone-PPG is a matrix that represents
the posterior probability of the phoneme category correspond-
ing to each frame; further details can be found in [16]
and [34]. Moreover, the synthesized normal speech n(t) is
used as the training target corpus. n(t) is converted by the
feature extraction (Mels) unit to obtain the 80-dimensional
Mel-spectrum (N Mels

m ) features. Subsequently, the gated CNN
model is further used to learn the mapping function between
X P PG

m and N Mels
m . The training details of the gated CNN

model can be found in our pilot study. [16].
After completing the training phases of the acoustic model

and VC model based on the augmented data, the PPG feature
D′ P PG

m is extracted from the dysarthric speech d ′(t) and
further converted into the normal Mel spectrum N ′Mels

m by the
trained gated CNN model. Finally, N ′Mels

m is transmitted to the
WaveGlow Vocoder and synthesized into clear and intelligible
speech. The detailed architecture of WaveGlow can be found
in [28].

B. Materials
A total of ten mild-to-severe dysarthria patients and six

normal speakers were invited to participate in the recording
of the training and testing corpus for this study. Each invited
participant recorded 320 utterances twice. Each utterance
contained ten characters in Mandarin. All sentences used in the
recordings were adopted from the Taiwan Mandarin Hearing
in Noise Test [35], which has been used as the listening test in
many studies [36], proving that it has sufficient vocabulary and
is closely related to daily life. The protocol of the study was
approved by the Research Ethics Review Committee TMU-
JIRB (N201607030) of Taipei Medical University Hospital
and was performed following the principles and policies of
the Declaration of Helsinki. Informed written consent for par-
ticipation was obtained from all participants. The participants
were patients with dysarthria between 12 and 80 years of age.
The individual biographical data for the dysarthria patients and
normal speakers are shown in Tables I and II, respectively.

Six males and four females were invited to record their
data in this study. The dysarthric severity of all participants
was as follows: three mild, six moderate, and one severe.

TABLE I
BIOGRAPHICAL DATA OF DYSARTHRIA PARTICIPANTS

TABLE II
BIOGRAPHICAL DATA OF NORMAL PARTICIPANTS

For subsequent evaluation, one CVA patient with moderate
dysarthria (dysarthria participant 9) and one CP patient with
moderate dysarthria (dysarthria participant 10) were selected
from the ten dysarthria participants as target patients to
record 320 additional utterances as a duplicate corpus (1st

to 288th utterances) and a free-talk testing corpus (289th

to 320th utterances). Meanwhile, one male normal speaker
(normal participant 5) and one female normal speaker (normal
participant 6) were selected from the six normal participants
as corresponding speakers, respectively.

C. Experimental Design
The goal of this study was to propose a dysarthria voice

conversion system with a data augmentation architecture to
improve the speech intelligibility of dysarthric free speech and
reduce the need for a vast dysarthria corpus while training the
system. A well-known VC system (namely DVC 3.0) without
data augmentation was used as a comparison to demonstrate
the benefits of the proposed system. Objective evaluation
metrics and a listening test were used to verify the similarity
of the synthesized dysarthric corpora and intelligibility of the
converted free speech. The training procedure of the model
and the evaluation method are described in the following
subsections.

1) Model Training: We built separate DVC 3.1 and baseline
(DVC 3.0) systems for two target patients to compare the
effectiveness of the proposed system.

Table III presents the corpora used by the two aforemen-
tioned systems. Dreal

9 and Dreal
10 represent the recorded corpus

of the two selected moderate dysarthric patients (dysarthric
participants 9 and 10, respectively). Nreal

5 and Nreal
6 represent

the target pair recorded by two normal speakers (normal
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TABLE III
CORPORA USED IN MODEL TRAINING

participants 5 and 6, respectively). Nreal
1∼4 and Dreal

1∼8 denote the
other paired normal corpus (recorded from normal participants
1 to 4) and dysarthric corpus (recorded from dysarthria partici-
pants 1 to 8), respectively. Note that among the aforementioned
corpora, only Dsyn

9 , Nsyn
5 , Dsyn

10 , and Nsyn
6 were synthesized

using the TTS with StarGAN-VC.
The proposed DVC 3.1 requires a well-trained TTS for

large-scale normal corpus augmentation. Thus, the recorded
corpora Nreal

5 and Nreal
6 of two target normal speakers

were used to train the Tacotron2 model of the TTS sys-
tem. We applied the original model (tacotron2_statedict.pt)
released by Tacotron2 as the base model and fine-tuned it
for 100,000 epochs. This enabled the TTS to generate normal
corpora corresponding to additional input text. Subsequently,
the normal speech generated by the TTS (Nsyn

5,6 ) was con-
verted into the corresponding paired patient speech (Dreal

9,10)

using StarGAN-VC. To take full advantage of the many-to-
many conversion ability of StarGAN-VC and enhance the
stability of the data augmentation architecture on the generated
dysarthric-like corpus, the corpora of four additional normal
speakers (Nreal

1∼4) were adopted to train the StarGAN-VC
system. The TTS and StarGAN-VC models are trained to
enable data augmentation by converting any normal speech
corpus into paired synthetic dysarthria-like speech, without
the need for alignment. Finally, the synthesized dysarthria-like
corpus Dsyn

9,10 generated through the Data Augmentation Unit
was combined with the real dysarthric speech corpus Dreal

9,10 and
generated normal speaker speech corpus Nsyn

5,6 to serve as the
training data for the SD-ASR training and conversion model.
The detailed training method is described in Section II-A.2.

In contrast, the baseline system, DVC 3.0, does not use any
dysarthric-like data. Instead, it uses a large amount of real
patient data (Dreal

1∼10, Nreal
5,6 ) as the training corpus to construct

a robust acoustic model. During the training phase of the gated
CNN model, only the Dreal

9,10 and Nreal
5,6 corpora were used as

TABLE IV
DATA DURATION IN DVC 3.0 AND DVC 3.1 SYSTEMS

training data. For further details regarding the training of the
baseline model, please refer to [16].

Table IV summarizes the total word count and total duration
of the dysarthria corpora used by the two systems. DVC
3.0 used a training set from 10 dysarthria speakers to build the
acoustic model, totaling approximately 20 hours of dysarthria
data. However, the DVC 3.1 architecture only employed two
training set from one dysarthria speaker (totaling approxi-
mately 1.28 hours) to establish the data augmentation structure
and acoustic model.

In the training of the gated CNN model, DVC 3.0 used
two sets of real dysarthria data for learning (approximately
1.28 hours), whereas DVC 3.1 employed two set of dysarthria
data and two set of synthesized dysarthria data for training
(approximately 2.7 hours).

2) Evaluation: We conducted two experiments to demon-
strate the benefits of our proposed DVC 3.1 system. The first
experiment was used to evaluate the speech recognition perfor-
mance of the DVC 3.1 system in comparison with the baseline
DVC 3.0 system. More specifically, the speech recognition per-
formance was used to investigate the DVC 3.1 performance in
human-to-machine and human-to-human communication con-
ditions. For the human-to-machine evaluation, we compared
the three different processed sentences, namely dysarthria (i.e.,
patients’ original speech), DVC 3.0, and DVC 3.1, using the
Google ASR system. Meanwhile, the average speech recogni-
tion rate of these three processed sentences was used to discuss
the benefits of DVC 3.1 in the human-to-machine application
scenario. We used Google ASR as the human-to-machine
benchmark as it is one of the most powerful machine-based
ASR systems. For the human-to-human communication eval-
uation, we invited 13 native Taiwanese Mandarin participants
aged between 20 and 25 years (six males and seven females)
to perform the listening test. The word correct rate (WCR)
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was used to compare the accuracy of each processed sen-
tence. The listening test protocol was approved by a research
ethics review conducted by National Yang-Ming University
(YM107017E-3). In this experiment, 10 processed utterances
were used, which corresponded to unprocessed data (original
dysarthria), and two methods were randomly selected for
each participant. Each participant was instructed to repeat the
sentence (containing 10 words) that they had heard. If the
semantic meaning of the repetition was correct, the corre-
sponding pairs of words were assigned one point. The scores
corresponding to all three methods were added and the sum
corresponding to a specific method was directly proportional
to the intelligibility achieved by the method.

Subsequently, we further increased the large synthesized
corpus (57600 words, 32 hours per set) generated through
Aishell [37] text (the overlapping context was not considered
in the test corpus) to retrain two models. The purpose of
this evaluation was to verify whether the acoustic models
trained through SD-ASR with a massive amount of sentences
that patients had never spoken would result in a learning
bias. This would lead to the inability to extract the correct
dysarthria phonemes, thereby resulting in incorrect conversion
in the DVC 3.1 architecture. Therefore, the Aishell synthe-
sized dysarthria-like corpus was only used for the SD-ASR
training of DVC 3.1, whereas training for the gated CNN
still only included 288 sentences of the target dysarthria
corpus and 320 sentences of the synthesized dysarthria-like
corpus. As the DVC 3.0 system cannot generate a dysarthria-
like corpus, the retraining of SD-ASR used the same Aishell
text-generated normal speaker corpus to ensure that the acous-
tic model had the same phonetic diversity as the retrained DVC
3.1 model. In the training of the gated CNN for DVC 3.0,
there were still only two sets of 288 sentences of the target
dysarthria corpus. We repeated the above experiments (human-
to-machine, human-to-human) to compare the performance
between DVC 3.0 and DVC 3.1 in detail.

The second experiment involved evaluating the performance
of the synthesized dysarthria-like corpus using our data aug-
mentation approach. Hence, a listening test was used to
evaluate the similarity between the synthesized dysarthria-like
and real dysarthric speech via subjective testing. A total of
13 subjects (six males and seven females) aged between 20 and
25 years participated in this audiological similarity test in a
soundproof room. The testing speech level was calibrated to
65 dB SPL, which followed the standard of the American
National Standards Institution (ANSI S3.6) [38]. Before the
test, subjects practiced the next test sound to familiarize
themselves with the next test process. Thereafter, eight sets of
test sentences with the same test situation (normal speaker’s
speech and synthesized dysarthria-like speech) were played for
the subjects to identify whether each sentence was similar to
normal speech (or dysarthric speech), and the average score
of the eight sentences was calculated as the similarity score.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The primary purpose of this study was to propose a
data augmentation unit that can synthesize dysarthria-like
patients’ speech, with the aim of helping users of DVC 3.1

Fig. 6. Average speech recognition rate obtained through Google
ASR system in human-to-machine application scenario. The X-axis
represents the signal processing approach and the Y-axis represents the
speech recognition accuracy obtained using the Google ASR evaluation
metric.

to save time in recording while improving the efficiency
of the VC model. Therefore, it was necessary to validate
whether there was an effective improvement in both the
DVC models trained with dysarthria-like speech data and
those trained solely on real patient data without dysarthria-
like speech. For this purpose, we evaluated the benefits of
a synthesized dysarthric-like corpus for the DVC 3.1 system
by evaluating the human-to-machine recognition effectiveness
using the Google ASR evaluation metric, which was defined
as human-to-machine recognition performance in this study.
Fig. 6 presents the human-to-machine speech recognition rates
of the real dysarthric speech and those processed by the
DVC 3.0 and DVC 3.1 systems under free speech testing
conditions. In this experiment, seven methods (Dysarthria,
DVC 3.0, DVC 3.0+5Aishell, DVC 3.0+20Aishell, DVC 3.1,
DVC 3.1+5Aishell, and DVC 3.1+20Aishell) were compared
simultaneously. Dysarthria represents the original untreated
speech of the patients, whereas DVC 3.0 and DVC 3.1 rep-
resent the speech of the patients after being processed by the
DVC 3.0 and DVC 3.1 systems, respectively. Additionally,
+5Aishell and +20Aishell indicate the inclusion of 5 times
and 20 times more of the Aishell corpus for both system
training processes, respectively. For dysarthric patients suf-
fering from CVA, the average speech recognition rates of
dysarthria, DVC 3.0, and DVC 3.1 were 17.8%, 27.5%,
and 80.2% (maximum), respectively. For dysarthric patients
suffering from CP, the average speech recognition rates of
dysarthria, DVC 3.0, and DVC 3.1 were 40.1%, 22.8%, and
83.4% (maximum), respectively. The results indicated that the
Data Augmentation Unit provided benefits for the DVC system
in this challenging application scenario. In addition, we further
generated 5 times and 20 times more of the Aishell news
corpus and retrained the DVC 3.0 and DVC 3.1 systems to
verify whether a large amount of synthetic corpus would affect
the stability of the system. Note that this corpus did not overlap
with any corpus recorded by patients. The results demon-
strated that the synthetic corpus generated by StarGAN-VC
enhanced the diversity of the dysarthric domain corpus and
did not corrupt the VC model or degrade the intelligibility
of the converted speech. Furthermore, the speech generated
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Fig. 7. Average speech recognition rates of the proposed DVC 3.1 in
human-to-human application scenario with 13 listeners under free-talk
test conditions. The X-axis represents the signal processing approach
and the Y-axis represents the speech intelligibility.

via data augmentation was sufficiently similar to the original
dysarthric speech to train a more generalized DVC system.
More specifically, the data augmentation approach enabled
the DVC system to process unknown dysarthric sentences
effectively and simulate free speech.

Fig. 7 depicts the speech recognition results of the human-
to-human application scenario in this study. For dysarthric
patients suffering from CVA, the average speech intelligibility
in free speech testing conditions was 28.1% for the original
dysarthric speech, 18.9% for the speech processed using DVC
3.0, and 82.3% for the speech processed using DVC 3.1 in
the free-talk testing conditions. The results of one dysarthric
patient suffering from CP is depicted in Fig. 7. In this case,
the average intelligibility was 67.7% for the original dysarthric
speech, 19.9% for that processed by DVC 3.0, and 89.3% for
that processed by DVC 3.1.

These results indicated that the proposed DVC 3.1 system
outperformed the DVC 3.0 system comprehensively; hence,
the proposed data augmentation approach aids the conversion
of unknown sentences by the DVC system and improves
the generalization ability of the conversion model. We also
conducted listening tests on models of the Aishell corpora
that were 5 and 20 times the size of the original one. The
results exhibited similar trends to those of Google ASR,
and the intelligibility remained above 79% in DVC 3.1,
proving that the data augmentation method remained stable
even when a large corpus was added. Owing to the limited
speech data from dysarthria patients, the acoustic model of
the DVC 3.0 system fails to accurately extract the correct
and stable PPG features accurately when faced with unseen
patient speech. This also leads to the gated CNN conversion
model failing to learn the relationship between phoneme
combinations of unseen utterances and their corresponding
Mel features. Consequently, DVC 3.0 faces challenges in
converting PPG features (dysarthric speech) into stable Mel
features (normal speech). However, DVC 3.1 addresses this
issue by using the Data Augmentation Unit to synthesize
the dysarthria-like corpus. This compensates for the missing
phoneme types and combinations in the dysarthria corpus.
As a result, the conversion model learns the mapping function
between the speech features of patients with dysarthria and

those of normal speakers more effectively. It achieves greater
conversion benefits, especially in free-talk scenarios.

Based on the above results, we further conducted statistical
analysis, table V presents the statistical analysis results of
each method in the human-to-human and human-to-machine
testing conditions in which multiple linear regression was
used. In the experiments, the seven methods and the speech
provided by different patients (dysarthria participants 9 and 10)
were independent variables, in which patients were regarded as
confounders. For the speech provided by the different patients
(dysarthria participants 9 and 10) under human-to-human
testing conditions, dysarthria had a significantly lower intelli-
gibility of 42.5%, with lower values of [71.0%, 60.8%, 57.1%]
for [DVC 3.0, DVC 3.0+ 5Aishell, DVC 3.0+20Aishell]
and [4.2%, 6.5%] for [DVC 3.1, DVC 3.1+5Aishell] com-
pared to 96.5% for DVC 3.1+20Aishell, on average. For the
speech provided by the different patients (dysarthria partici-
pants 9 and 10) under human-to-machine testing conditions,
dysarthria had a significantly lower recognition rate of 50.4%,
with lower values of [54.1%, 47.2%, 46.3%] for [DVC 3.0,
DVC 3.0+5Aishell, DVC 3.0+20Aishell] and [−2.5%, 1.4%]
for [DVC 3.1, DVC 3.1+5Aishell] compared to 83.1% for
DVC 3.1+20Aishell, on average. More specifically, com-
pared with dysarthria and the DVC 3.0 series, the DVC
3.1+20Aishell method had the highest positive coefficients
while the confounder was fixed, which was a significant
difference compared to the other methods in the intelligibility
listening test and Google ASR evaluation. No significant dif-
ferences were observed among DVC 3.1, DVC 3.1+5Aishell,
and DVC 3.1+20Aishell, which means the large synthesized
corpus with no overlap did not affect the stability of the DVC
model.

To explore how generated data helps DVC models further,
we evaluated the similarity between the generated dysarthria-
like patients’ speech and real speech from dysarthria patients
using a listening test. Fig. 8 depicts the similarity results of
the data augmentation method proposed in this study, obtained
from 13 participants. On average, 87.59% and 85.65% of the
listeners considered the synthesized dysarthria-like speech to
be more similar to real dysarthric patients’ speech compared
to a normal speaker’s speech. These results indicate that
the Data Augmentation Unit can generate synthetic speech
with certain patient-like characteristics. Through the use of
synthetic speech data augmentation, the model can improve
the speech conversion performance with a smaller amount
of real speech data and a larger amount of generated syn-
thetic speech resembling patients’ speech. That is, this data
augmentation approach of the proposed system can help to
alleviate the burden of recording for patients with articulation
disorders.

Fig. 9 presents an example of the converted speech obtained
via data augmentation using the proposed DVC 3.1 sys-
tem compared to that obtained using the DVC 3.0 system
(without data augmentation) and real dysarthric speech by
visualizing the feature N̂ ′

Mels
m converted by the trained gated

CNN. As indicated by the red circles and arrows, the Mel
spectrograms converted by DVC 3.1 were more similar to the
distribution of the target speakers than those obtained using
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TABLE V
MULTIPLE LINEAR REGRESSION STATISTICAL ANALYSIS OF EXPERIMENT RESULTS

Fig. 8. Similarity listening test of synthetized dysarthric corpus.
The X-axis represents the similarity percentage of the total number
of utterances, while the Y-axis represents different sets of synthetic
dysarthria-like speech.

DVC 3.0. This implies that the synthesized dysarthria-like
corpus can effectively aid in the generation of more accurate
Mel spectrograms using the gated CNN model of DVC 3.1,
thereby improving the intelligibility of dysarthric utterances.
Conversely, the DVC 3.0 system was observed to yield inac-
curate Mel spectrograms frequently, thereby degrading the
accuracy during the listening test to lower levels than those
obtained based on unprocessed patient speech.

Fig. 9. Visualized spectrogram from three compared approaches under
free-talk test conditions. All spectrogram content has the same textual
meaning. (a) and (b) are the dysarthric and target speech utterances,
whereas (c) and (d) are the utterances converted from DVC 3.1 and
DVC 3.0, respectively.

We further conducted Mel cepstral distortion (MCD) com-
parisons on 32 test sentences using the original dysarthria
speech and the two sets of speech processed by the systems.
The MCD results for these three sets of speech are presented
in Table VI.

It can be observed that the dysarthria speech exhibited
an average MCD of 1.1685 compared to the target’s normal
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TABLE VI
RESULTS OF MEL CEPSTRAL DISTORTION EVALUATION

speech. The speech converted by the DVC 3.0 system showed
an average MCD of 1.6435 compared to the target’s normal
speech. However, the speech converted by the DVC 3.1
system had an average MCD of only 0.8809 compared to the
target’s normal speech. These results suggest that in a free-talk
scenario, the DVC 3.1 system can produce more precise Mel
frequency spectra and provide speech with higher intelligibility
compared to the original dysarthria speech and that converted
by DVC 3.0.

In summary, we have proposed DVC 3.1 based on data
augmentation for dysarthric patients. This framework gen-
erates synthetic dysarthria-like speech through the Data
Augmentation Unit, thereby replacing the missing phoneme
combinations in the patient data and reducing the burden
of recording for patients. The experimental results indicate
that DVC 3.1 improves the speech intelligibility in free-talk
scenarios. More specifically, the objective evaluations using
ASR and subjective listening tests revealed that the proposed
DVC 3.1 system exhibited an average intelligibility score of
86.0% and an average accuracy of 81.8% on free speech.
Further, the results indicated that the data augmentation system
implemented in DVC 3.1 yielded a dysarthria-like corpus
that was sufficiently similar to real dysarthria data, thereby
demonstrating that the augmentation system can synthesize
patient-representative corpora to enhance the generalizability
of the model in the absence of relevant sentences recorded
from actual dysarthria patients. Furthermore, compared to the
baseline system, which uses a dysarthria corpus recorded by
ten patients for a total of 20.08 hours, the DVC 3.1 sys-
tem, which uses data augmentation techniques, required only
1.28 hours of data recorded by the target patient. This
significantly reduces the total recording time required from
patients (a 93% reduction in data usage). Therefore, the DVC
3.1 system offers the potential to enhance speech intelligibility
for dysarthric patients in real-world environments in the future.

IV. CONCLUSION

In this study, we investigated the effectiveness of data
augmentation in the DVC 3.1 system for dysarthric patients
and attempted to reduce the recording burden on patients
and normal speakers. In the proposed DVC 3.1 system, the
Data Augmentation Unit is used to generate large amounts
of paired normal and patient-like corpora to improve the
performance. The experimental results showed that the DVC
3.1 system achieved higher speech intelligibility performance
for listeners under free-talk testing conditions. Based on the
results of this study, we suggest that the DVC 3.1 system can
reduce the burden of dysarthric patients to record training data.

Moreover, DVC 3.1 can provide suitable speech intelligibility
performance for listeners. Thus, the proposed DVC 3.1 is a
potentially useful method for improving the speech intelligi-
bility of dysarthria patients in free-talk application scenarios
in the future.

This study has some limitations. We mainly focused on
developing free-talk dysarthric VC with a data augmentation
method and further analyzed the benefits of the system.
To establish the baseline DVC 3.0, a significant amount
of paired training sets (dysarthric and target speech) were
required to help the model to encompass all possible pro-
nunciations of patients and establish the mapping function.
However, dysarthria patients tend to slur when speaking
and have difficulty in maintaining a consistent volume and
speed, which leads to challenges in obtaining paired corpora.
Although this study showed that the DVC 3.1 system can
provide more accurate communication to people and machines
than DVC 3.0 on moderate dysarthric speech in a free-talk
scenario, the data amount is still insufficient to claim that
DVC 3.1 can maintain better performance than DVC 3.0 given
sufficient paired corpora as training data. Unfortunately, during
the validity period of our Institutional Review Board approval,
the COVID-19 pandemic was rife, which made it difficult to
gather and reach the dysarthria patients to record more data.
As our study targeted patients with moderate dysarthria, only
two patients who were diagnosed with moderate dysarthria
were willing to record additional corpora after completing the
willingness survey. Hence, we could only provide the results
of one CVA and one CP patient with moderate dysarthria in
this study. As the next phase of our work, we will invite more
mild-to-severe dysarthria patients to record additional paired
corpora and retrain both DVC systems to evaluate reliability
in a future study.
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