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A Wearable Computer Vision System With
Gimbal Enables Position-, Speed-, and

Phase-Independent Terrain Classification
for Lower Limb Prostheses
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Abstract— Computer vision can provide upcoming walk-
ing environment information for lower limb-assisted robots,
thereby enabling more accurate and robust decisions for
high-level control. However, current computer vision sys-
tems in lower extremity devices are still constrained by the
disruptions that occur in the interaction between human,
machine, and the environment, which hinder optimal per-
formance. In this paper, we propose a gimbal-based terrain
classification system that can be adapted to different
lower limb movements, different walking speeds, and gait
phases. We use a linear active disturbance rejection con-
troller to realize fast response and anti-disturbance control
of the gimbal, which allows computer vision to continu-
ously and stably focus on the desired field of view angle
during lower limb motion interaction. We also deployed
a lightweight MobileNetV2 model in an embedded vision
module for real-time and highly accurate inference per-
formance. By using the proposed terrain classification
system, it can provide the ability to classify and pre-
dict terrain independent of mounting position (thighs and
shanks), gait phase, and walking speed. This also makes
our system applicable to subjects with different physical
conditions (e.g., non-disabled subjects and individuals with
transfemoral amputation) without tuning the parameters,
which will contribute to the plug-and-play functionality of
terrain classification. Finally, our approach is promising to
improve the adaptability of lower limb assisted robots in
complex terrain, allowing the wearer to walk more safely.
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I. INTRODUCTION

LOWER limb robotics such as exoskeletons and pros-
theses, can improve the mobility level and quality of

life of individuals with disabilities [1], [2]. Controlling these
assistive robotics requires coordination with the user’s motion
and intent, failing which can lead to abnormal movements
and even falls. However, conventional on-board mechanical
sensors have difficulty predicting the future motion of the user,
which makes coordinated control of the lower limb robots
challenging. One effective solution is to fuse information from
the external walking environment to provide more accurate and
robust high-level decisions.

The use of proprioceptive sensors such as surface elec-
tromyography (sEMG) electrodes [3], [4], [5], [6], [7], [8],
capacitive sensors [9], [10], [11], and inertial measurement
units (IMUs) [6], [12], [13] can indirectly infer information
about the terrain. This is because the human gait will adjust
in advance to the upcoming terrain [14]. The fused features
extracted from these proprioceptive sensors are typically fed
into machine learning algorithms for terrain classification [5]
or the estimation of parameters like stair height or ramp
incline [6]. In recent years, some researchers have utilized
foot trajectory signals estimated by IMU sensors to accomplish
terrain classification through heuristic algorithms prior to heel
contact [12], [13]. Although these methods have achieved
satisfactory results, the predictive performance of proprio-
ceptive sensors for the external environment can only be
realized in one step (i.e., less than 1s) [15]. The predictive
performance within one step, while sufficient to allow the
high-level controller of the prosthesis to switch smoothly
between modes, is available only when the prosthetic side is
leading [16]. Moreover, since proprioceptive sensors collect
kinematic, kinetic, or physiological signals from the user, the
performance of the pre-trained model depends on the specific
user [17], as well as the location where the sensor is worn [6].

Unlike proprioceptive sensors, exteroceptive sensors are
capable of receiving information from the external envi-
ronment of the body, with powerful predictive performance
(usually equivalent to a few steps ahead of time) and
user-independent potential. In some previous studies, laser
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sensors [5], ranged sensors in arrays [18], and radar sen-
sors [19] have been used to achieve terrain classification
and recognition. While these range sensors show a feasible
predictive range, they all share the common problem of being
limited in capturing a wide range of environmental features.
To tackle this issue, certain researchers have employed depth
sensors for terrain edge detection [20], [21], [22] or 3D cloud
classification [23], [24], [25] since they provide an accurate
mapping of the environment and are robust to a variety of
textures and lighting conditions. Recently, there have also been
researchers who directly classify the RGB images of the cap-
tured external environment with promising results [26], [27].

A lateral challenge with exteroceptive sensors is that they
move with the body of the wearer. Some researchers installed
the camera on the user’s waist [28] or chest [23], [29],
[30] to improve stability, but this compromised the system’s
compactness and the user’s comfort. Wearing the sensor on
the head [26], [31] is a solution that provides a wider field
of view; however, it leads to more uncorrelated data and
can diminish the predictive performance of nearby terrain
(i.e., 1 or 2 steps away). Another common option is to install
the sensors on the lower extremity device [18], [25], [26], [27]
to enhance the integration of the system. However, movements
of the lower limbs (such as heel strike and swing flexion)
often cause blurring of the captured images and a narrower
field of view. These factors negatively impact the accuracy of
recognition and the predictive performance of the environment.
Therefore, the vast majority of studies choose to perform
recognition during mid-stance, as it offers optimal predictive
performance and camera stability. Recently, Zhong et al.
proposed an uncertainty-aware frame selection strategy that
can dynamically select reliable and critically predicted frames
based on lower limb motion and environmental context [27].
The real-time performance of the system is improved without
compromising the accuracy of inference. While existing meth-
ods can achieve satisfactory results, they are all phase-based
(or phase-dependent) and lack continuous, highly accurate
predictive ability throughout the gait cycle. This ability is
crucial when dealing with complex environments or cases
involving terrain transitions. Therefore, it remains an open
question how to minimize the negative impact of the human-
machine-environment interaction on computer vision systems
installed in the lower extremity.

The gimbal can maintain the position of the object
unchanged while in motion. This system has been widely used
in stabilization systems [32] and tracking systems [33], [34].
Inspired by this technology, we propose a terrain classification
system that comprises a wearable gimbal and a compact, low-
power machine vision module. Compared to the vision fixed
(VF) solutions used in other papers (i.e., where the camera
angle is passively changed due to lower limb movements),
we utilize the maneuverability of the gimbal to create a terrain
classification system with vision tracking (VT) capability. This
simple yet effective approach can mitigate the disturbance of
the human-machine-environment on the recognition system,
thereby enhancing the continuous prediction and classification
performance during locomotion (see Fig. 1). The major con-
tributions of this article are as follows.

Fig. 1. Continuous terrain classification based on the gimbal during
walking. The wearable gimbal system reduces external disturbances for
computer vision and enables terrain classification independent of gait
phase and cadence by detecting the user’s movements.

1) To ensure stable capture performance for the camera worn
on the lower limb, we implemented an extended state
observer-based active disturbance rejection controller in
the control system of the wearable gimbal. This con-
troller allows for rapid response to lower limb motion
and external disturbances. By employing this approach,
it is possible to achieve continuous terrain classification
performance that is independent of sensor position, gait
speed, and gait phase.

2) In terms of terrain classification algorithms, we evaluate
the real-time performance of several advanced lightweight
CNN models on a low-cost computer vision embedded
device, providing reference implications for pursuing
plug-and-play machine vision applications.

3) We compared the performance of the terrain classification
system at different sensor mounting positions (thigh and
shank), different speeds, and gait phases, evaluating the
impact of both VT and VF solutions on the prediction
and classification performance of the terrain classification
system.

Our proposed method does not require specific parameter
tuning for individuals with varying physical conditions, which
can enhance the plug-and-play capability of wearable terrain
classification systems. The proposed terrain classification sys-
tem also provides more accurate, robust, and seamless mode
switching capabilities for lower limb assistive devices. This is
crucial in enabling disabled patients to walk safely on various
terrains, including complex terrain situations.

II. MATERIALS AND METHODS

A. Embedded System Design
Fig. 2 shows the main components of the terrain classifi-

cation system: the computer vision system and the gimbal
system. The computer vision system uses a compact, low-
power machine vision module (OpenMV4 H7 Plus) equipped
with a high-performance processor (STM32H743, 480 MHz)
and a 5-megapixel sensor (OV5640). A WiFi module con-
nects to the OpenMV CAM through an expansion interface,
allowing for wireless transmission of video streaming data.
We use a 3.7V LIPO battery to power the OpenMV CAM
separately. TThe entire computer vision system is mounted
on the gimbal’s head, which is made using 3D printing. This
gimbal can be rotated in the sagittal and coronal planes within
a range of 0-180◦. In order to minimize current interference
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Fig. 2. Embedded hardware component of the terrain classification
system.

Fig. 3. (a) Sagittal-plane view of the human leg. The terrain classifi-
cation system can be worn on the subject’s thigh and shank, where the
camera having a target tracking angle of -30◦. (b) The shank angle (θs)
and thigh angle (θt) are defined from the global vertical while walking on
level ground.

and optimize the performance of hardware resources, we use
an additional control board (Arduino UNO, 16 MHz) to
execute the control of the gimbal. The gimbal’s motor utilizes
a user-friendly servo motor that is driven by pulse width
modulation (PWM) signals. We also installed an IMU sensor
(BNO055) on the gimbal to measure the rotation angle of
the gimbal in the sagittal plane. The overall size of the
terrain classification system (including the battery and circuit
board) is 102 mm × 65 mm × 40 mm and it weights
363.6 grams. By utilizing a wearable leg guard, the system
can be comfortably and conveniently attached to the thigh or
shank of non-disabled subjects (see Fig. 3 (a)).

B. Control Approach
1) Control Target Setting: In this article, the aim of con-

trolling the gimbal is to minimize the impact of lower limb
motion on the performance of the terrain classification system.

To accomplish this task, implementing the target tracking
capability of the gimbal is an option. We rotate the camera
30◦ counterclockwise around the Z-axis of the IMU (at this
point, the angle between the camera and the horizontal plane
is −30◦), and this position provides both near and distant ter-
rain information well when the subject is standing (Fig. 3(a)).
Since the camera’s view is influenced by the movement of
the lower limbs (Fig. 3(b)), we set the tracking target for the
low-level controller at -30◦. This allows the computer vision
system to maintain the same predictive performance as in the
stance state while the subjects are walking.

2) Design of Controller: In order to achieve robust VT of
lower limb movements for different users, the control sys-
tem must have high response sensitivity and anti-disturbance
performance. Active disturbance rejection control (ADRC)
utilizes an extended state observer (ESO) to achieve real-time
tracking and compensation of disturbances, which can handle
disturbance that cannot be accurately modeled and achieve fast
response [35]. This controller has been used in the control
of gimbal and has achieved improved results compared to
traditional PID controllers [33]. In this paper, we design a
linear ADRC (LADRC) controller and implement it in the
motion interaction control between the gimbal and the lower
limb. Compared to ADRC, LADRC reduces the parame-
ter configuration, making it more suitable for engineering
applications [36].

The general framework of the control system is shown
in Fig. 4. The LADRC mainly consists of a nonlinear error
feedback controller (NLEFC) and a linear ESO (LESO).
During operation, the NLEFC non-linearly adjusts the con-
trol gain, LESO estimates the disturbance in real time, then
compensates for the observed disturbance with feedforward.
The output of LADRC is eventually used as an input to
PI control to achieve closed-loop regulation of the motor
speed. Next, we will mainly introduce the design of NLEFC
and LESO.

3) Linear Extended State Observer: In this study, LESO
is used to estimate the disturbances and uncertainties that
arise in the wearable gimbal system during walking, and
feedforward compensation is given to counteract the effects
of these disturbances on the follower system. First, the
controlled object is reduced to the following second-order
system:

ÿ + a1 ẏ + a2 y = ω + bu, (1)

where y is the feedback position input, a1 and a2 are the
system parameters, ω is the external disturbance, b is the
control gain, and u is the output of the position controller.
For (1), it can be rewritten in the following form:

ÿ = −a1 ẏ − a2 y + ω + (b − b0)u + b0u

= f (y, ẏ, ω) + b0u, (2)

where f (y, ẏ, ω) contains the total external and internal
disturbances, the extended state variables of the system are
x1 = y, x2 = ẏ, x3 = f (y, ẏ, ω), and the state equation of
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Fig. 4. The control architecture of wearable gimbal system. The LADRC controller uses LESO to observe disturbances in the system and the
NLEFC to achieve a nonlinear combination of errors. The output of the LADRC is fed into the PI controller to achieve speed control of the gimbal.

the system is shown as follows:
x1 = y
ẋ1 = x2

ẋ2 = x3 + b0u
ẋ3 = ḟ (y, ẏ, ω)

(3)

Then, LESO can be established in the following way:
ε1 = z1 − y
ż1 = z2 − β1ε1

ż2 = z3 − β1ε1 + b0u
ż3 = −β3ε1,

(4)

where ε is the error signal of the state observer, z1 is the
position observation signal, z2 is the observed angle difference
signal, and z3 is the estimation of the disturbance, β1, β2, and
β3 are the gains of the LESO, which are the parameters to be
set.

By appropriately selecting parameters β1, β2, and β3, it is
possible to achieve the tracking of each state variable of the
system by the observer. Configuring the three poles of
the observer to the -ω0 of the left half of the real axis of the
s-plane enables the adjustment of gain parameters by selecting
the observer’s bandwidth. This simplifies the parameter design
of LESO. According to the stability requirements of NLESO,
the ideal parameter tuning equations are β1 = 3ω0, β2 = 3ω2

0/5
and β3 = ω3

0/10. However, if the value of β3 is too large, it can
easily lead to oscillation in the controller output. Therefore,
we appropriately lower the value of β3, and finally set β1 =
3ω0, β2 = 3ω2

0/5, and β3 = ω3
0/20. Here, we set the value of

ω0 to 16.
4) Nonlinear Error Feedback Controller: Traditional PID

control sums each error linearly weighted, which can often
result in system overshoot or instability when the error is
significant. This means that if the subject’s gait speed is
too fast, it can negatively impact the gimbal system’s target
tracking. NLEFC changes the error combination pattern and
adaptively adjusts the PD control gain based on the magnitude
of the error. This enhancement improves the accuracy and
response speed of the control system. As shown in Fig. 4,
NLEFC combines the errors between the input values and
the z1 and z2 estimated by LESO nonlinearly to calculate the

control parameter u0. The nonlinear feedback is combined in
the following form:

e1 = s1(t) − z1(t), (5)
e2 = s2(t) − z2(t), (6)
u0 = κ2 f al(e1, α1, δ) + κ2 f al(e2, α2, δ), (7)

where e1 is the position error, e2 is the differential signal of
the position error, u0 is the output of the NLEFC, k1 and
k2 as the control gain can be equated to the values of kp and
kd in the PD controller, and f al() is the nonlinear parameter
adjustment function.

The expression of the f al() function in (7) is as follows:

f al(ε, α, δ) =

{
|ε|asgn(ε), |ε| > δ

ε/δ1−a, |ε| ≤ δ
δ > 0, (8)

where α is a nonlinear factor, the smaller α is, the greater
the output gain of the function. δ is a filtering factor, which
affects the limit value of the control gain. The smaller δ is, the
greater the limit value of the function output when the error
is small. NLEFC adaptively adjusts the PD control gain based
on this error combination approach to achieve large error but
small gain control and small error but large gain control.

After the nonlinear combination, feedforward compensation
for disturbances is performed:

u(t) = (u0 − z3(t))/b0, (9)

where z3(t)/b0 is the feedforward compensation for model
errors and disturbances, and the level of b0 reflects the
compensation strength. Then, a linear combination of feed-
forward compensation u(t) and the angular velocity from the
gyroscope is fed to the PI controller to achieve closed-loop
control of the motor’s speed. After parameter tuning, we chose
the following parameters for the PI controller: kp = 1.5,
ki = 0.5.

C. Construction of Training Datasets
Compared to depth cameras, RGB cameras are less expen-

sive and easier to use; however, they lack sensitivity to
geometric information about the terrain. Therefore, to use
RGB cameras for terrain classification, the dataset must be
large enough to train a sufficiently robust model. In this
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paper, we use ExoNet - one of the largest and most diverse
open-source datasets of wearable camera walking environment
images available - to facilitate the development of CNN-based
terrain classification systems [30]. ExoNet has over 922, 000
images that contain a variety of everyday indoor and outdoor
walking environments. To conduct a more targeted study,
we reclassified and refined these images through manual
annotation and extraction, and the final dataset has three
main categories: level ground (LG), stair ascent (SA), and
stair descent (SD). The dataset has a total of about 197 000
RGB images, including 77 000 of LG, 75 000 of SA, and
45 000 of SD.

D. Classification Algorithms
After preparing the dataset, we utilize convolution-based

lightweight deep learning algorithms to train the terrain clas-
sifier. Some of the models in Keras’ functional API, such
as MobileNetV1, MobileNetV2, EfficientNet B0, NASNet-
Mobile, and DenseNet121, have shown high classification
accuracy and low computational cost on the ImageNet
database [30], [37]. This characteristic allows these models
to be applied on devices with limited computing resources,
such as mobile or embedded devices. Therefore, we consider
these five lightweight deep learning models as candidates.
Our goal is to select the best model that can be deployed
on-board devices for real-time recognition based on the offline
evaluation results.

III. EXPERIMENTS
A. Offline Experiment

1) Model Training: We divided the dataset presented in
Section II-C into three parts: the training set (80%), the
validation set (10%) and the test set (10%). Additionally, the
images were resized to 224 × 224 size as input for the models.
We trained the five lightweight CNN models mentioned in
Section II-D on Google Cloud using the Keras functional API.
We fixed the batch size, epochs, dropout rates, and initial
learning rates at 32, 20, 0.1, and 0.0001, respectively, based
on the results of multiple training runs. To reduce the model’s
parameters and prevent overfitting, we employ a single fully
connected layer (8 neurons, 0.1 dropout, ReLu) connected
to the output layer (3 neurons, Softmax). All models utilize
transfer learning to expedite the training process.

After completing the training, we conducted merit-seeking
work on these models based on multi-scale metrics. Similar to
the previous study [30], we use multiply-accumulates (MAC)
expressed in billions (B), inference time (IT) and accuracy (%)
as evaluation metrics to assess the relationship between model
complexity and classification performance. The inference time
is estimated based on the OpenMV4 H7 Plus (STM32H743,
480 MHz). We also consider Flash and RAM, two key
metrics for deep learning models in embedded deployments.
This enables us to compare model sizes in a more intuitive
manner and evaluate the memory usage of these models in
resource-constrained embedded devices. Before deployment to
the device, all models were optimized using the Edge Impulse
E O N T M compiler to improve on-device performance.

Fig. 5. Comparison of offline evaluation results of five lightweight
CNN models. We evaluate the CNN models based on four metrics:
embedded memory usage size (size), multiply-accumulates (MAC),
inference time (IT), and accuracy. The memory usage of EfficientNet B0,
NASNetMobile and DensNet121 exceeds the capacity of the OpenMV
CAM, so their IT are not available. We chose MobileNetV2 as the model
for real-time classification since it offer higher accuracy and lower model
complexity compared to MobileNetV1.

2) Offline Results: Fig. 5 shows a comparison of the results
for offline validation. For classification performance, Effi-
cientNet B0 (98.8%) had the highest accuracy, outperforming
MobileNetV2 (97.37%), MobileNetV1 (89.52%), NASNetMo-
bile (86.97%), and DenseNet121 (90.91%). However, except
for MobileNetV1 and MobileNetV2, the model sizes of Effi-
cientNet B0, NASNetMobile, and DenseNet121 all exceed
the performance capabilities of the controller chip (Flash:
2048 KiB, RAM: 1024 KiB), so the IT of these three
models is non-testable. When comparing MobileNetV2 with
MobileNetV1, the former has a lower MAC (0.0231 B com-
pared to 0.0407 B) while still having a higher accuracy and
lower inference time (67 ms compared to 57 ms). Based on
the comparison of the offline experimental results mentioned
above, we have chosen MobileNetV2 for conducting real-time
classification experiments.

B. Real-Time Experiment
1) Experiment Setup: We invited five non-disabled subjects

(ABs) and two transfemoral amputees (TFAs) to participate in
real-time experiments in two scenarios: indoor and outdoor.
The basic information of the subjects is shown in Table I. The
study protocol was approved by the Committee on Ethics of
Medicine of Shanghai Gongli Hospital, and each participant
provided written informed consent before the experiment.

The experimental procedures for indoor and outdoor settings
are shown in Table II. The indoor experimental environment
is primarily utilized to validate the predictive performance of
our method during continuous terrain transitions. As shown in
Fig. 6, a stairway terrain is placed in front of the treadmill
to simulate the situation of terrain transition during walking.
In this scenario, the distance between the subject and the stairs
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TABLE I
RELEVANT INFORMATION OF THE SUBJECTS

TABLE II
EXPERIMENTAL PROTOCOL SETTING

Fig. 6. Indoor experiment environment. A stairway terrain is overlaid
with the front of the treadmill to simulate the continuous terrain transition
scenario (LG−→SA). An amputee wearing a passive prosthesis (Total
Knee 2000, Össur, Iceland) walked on this terrain with the VF state.

while walking on the treadmill varied approximately between
0.5 to 1 meter, and the subject was considered to be in a
terrain transition situation with each step. Each subject was
asked to walk on the treadmill at 1.2 km/h, 1.6 km/h, and
2.0 km/h, with no fewer than 60 times of terrain transitions
(i.e., no fewer than 60 steps) in each case. Two comparison
experiments are included for walking at each speed, i.e. the
comparison of the effect of sensors mounted position, and
the comparison of performance of LADRC-based VT and VF.

Fig. 7. Outdoor experiment environment.

During walking, our terrain classification system is connected
to the laptop via a USB cable for video data acquisition.
We also attached markers on the stairs and on the subject’s
lower limb to calculate the horizontal distance sd between
the two in the sagittal plane by myoVIDEO (Noraxon, USA).
The prediction time Tpred can be obtained using the following
equation:

Tpred = smax
d /v, (10)

where smax
d is the maximum value of sd for consecutive

correctly detected terrain transitions within one gait cycle,
and v denotes the walking speed of the subject. We also
recorded transitional accuracy, which were derived by dividing
the number of accurate predictions by the total number of
predictions. In this scenario, the system’s prediction of the
terrain transition is considered accurate if the result is SA.
Note that subjects only walk on the treadmill without actual
terrain transitions (i.e., LG−→SA) in indoor experiment,
but the terrain classification system continuously detects the
transition terrain.

The outdoor experimental environment is primarily utilized
to validate the real-time classification performance of our
system. The walking route for the outdoor experiment is shown
in Fig. 7, which includes three terrains: LG, SA, and SD.
There are a total of 12 terrain transition times (three times
each for LG−→SA, SA−→LG, LG−→SD, and SD−→LG).
Each subject was asked to complete the walking task five
times. Similar to the procedure in the indoor experiment, each
non-disabled subject was asked to wear the terrain classifica-
tion system on their shank and thigh while walking outdoors
at a self-selected pace (see Table II). We also installed an
additional IMU on the subject’s lower limb to capture the
kinematic signal. During the experiment, the terrain classi-
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Fig. 8. Comparison of prediction time in the case of terrain transition.
From top to bottom is a comparison of the prediction time when the
camera is mounted on the shank and thigh for continuous walking in
the transition state. Error bars indicate ±1 standard error of the mean
across relevant trials.

fication system saves the real-time classification results and
kinematic data to the memory card. By comparing the video
frames, we further extracted the classification accuracy of
different sensor mounting locations during terrain transitions
and steady states. The steady state accuracy corresponds the
correct classification when the current state and the next state
are identical, whereas the transitional accuracy accounts for
non-identical cases. The overall accuracy combines the steady
state and transition cases.

2) Indoor Experiment Results: The prediction time of the
terrain classification system varied at different walking speeds
(see Fig. 8). When walking at speeds of 1.2 km/h, 1.6 km/h,
and 2.0 km/h, the average prediction time of VT-Shank was
2.54 ± 0.28 s, which was better than the 1.53 ± 0.27 s of the
VF-Shank used for comparison. As expected, the proposed
method has a positive impact on the prediction time of the
terrain classification system. This improvement also applies
when the sensor is mounted on the thigh, and its prediction
time in the case of VT is 2.92 ± 0.23 s, which is better than
that of VF with 2.18 ± 0.27 s.

The level of prediction performance directly leads to differ-
ences in the accuracy of the terrain classification system for
transition situations (see Fig. 9). We conduced a paired t-test
to comparison tests of transitional accuracy in the VF and
VT states (including stance and swing phases, respectively) to
determine statistical differences between the pairs of interest
(p = 0.05). The interaction between all pairs was significant
during the swing phase of the gait. In the stance phase,
a significant difference was observed only when the device
was mounted on the shank and at a speed of 1.6 km/h
(p = 0.02). These results demonstrate the enhanced accuracy
of our method for terrain recognition systems across various
gait phases.

We compared the variation in camera angle between the VF
state and the LADRC-based VT state during continuous walk-
ing (see Fig. 10(a-f)). We also calculated the root mean square
error (RMSE) of the camera angle in the VF and VT states
to evaluate the stability performance of the proposed method

Fig. 9. Comparison of transition accuracy of indoor experiment. A and
B indicate the average transitional accuracy across all participants
(n=7) at different gait phases and walking speeds when the camera
is mounted on the shank and thigh, respectively. VF-Stance represents
the classification performance of the terrain classification system in the
VF state during the stance phase, and the others are similar. The square
bracket shows the result of a paired two-sided t-test (degrees of freedom
(df)=6, ∗p < 0.05). Bars indicate ±1 standard error of the mean over
relevant trials.

(see Fig. 10 (g)). The RMSE of VT-Shank was 2.52, 3.16, and
4.53 at 1.2 km/h, 1.6 km/h and 2.0 km/h, respectively, much
lower than the 19.59, 20.54, and 22.44 in the VF-Shank state.
On the contrary, the RMSE of VT-Thigh is slightly better than
VT-Shank with 1.73, 2.68, and 2.92, respectively.

3) Outdoor Experiment Results: The results of the outdoor
experiments are shown in Fig. 11. The overall accuracy of
the terrain classification system using VT when the camera is
mounted on the shank can reach 96.58 ± 1.76% (transition:
95.13 ± 2.23%, steady: 97.44 ± 1.47%), outperforming the
90.07 ± 3.62% in the case of VF (transition: 84.33 ± 5.50%,
steady: 93.72 ± 2.71%) (see Fig. 11(A)); When mounted on
the thigh, the system achieves an overall accuracy of 98.03 ±

0.91% using VF (transition: 97.27 ± 1.06%, steady: 98.29 ±

0.95%), again better than the 96.18 ± 1.70% in the VF state
(transition: 92.22 ± 3.18%, steady: 97.53 ± 1.12%).

IV. DISCUSSION

A. Performance of Offline Classification
In the offline experiments, we compared five lightweight

CNN models, and the results showed that MobileNetV2 is
potentially more suitable for our current real-time exper-
iments. EfficientNet B0 achieved the highest classification
accuracy (98.8%), but like NASNetMobile and DenseNet121,
it was excluded as a candidate due to its large size, which
would hinder embedded deployment. Although the model
size of MobileNetV2 is larger than that of MobileNetV1,
the former has a lower inference time (67 ms), lower MAC
(0.0231 B), and higher accuracy (97.37%). These results
show that MobileNetV2 provides a better balance between
classification accuracy, IT, and model complexity, facilitating
plug-and-play effects on devices. After completing the embed-
ded deployment of the model, we also measured the program’s
execution time and the video’s frame rate, which were 67.02 ±

1.36 ms and 14.91 ± 0.15 FPS, respectively. Simon et al.
showed that users were not affected by the 90 ms latency of
the prosthetic mode transition [38], which indicates that the
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Fig. 10. Comparison of camera angle variation in VF and VT states during walking. (a)-(c) Comparison of camera (shank-mounted) angle at
1.2 km/h, 1.6 km/h, and 2.0 km/h. (d)-(f) Comparison of camera (thigh-mounted) angle at 1.2 km/h, 1.6 km/h, and 2.0 km/h. (g) Comparison of the
RMSE between the camera angle and the ideal VT angle. VT-Shank indicates the tracking performance of the VT when the terrain classification
system is mounted on the shank, with lower values of RMSE indicating less camera oscillation.

real-time performance of our classification system is sufficient
for everyday use.

B. Performance of Indoor Experiment
1) Effect of Walking Speed: Since the Tpred is inversely

proportional to the speed and the sd is fixed within a certain
range in this experiment, the Tpred of the terrain classification
system decreases as the walking speed increases in both the
VT and VF cases (see Fig. 8). The walking speed also affects
the quality of the camera images, which in turn affects the
classification accuracy of the terrain classification system. For
example, the transition accuracy of VF-Swing at 1.2 km/h is
82.13%, while at 2.0 km/h the accuracy drops by 3.5% (see
Fig. 9(A)). As a comparison, it is shown that by using our
method, the VT-Swing achieves more than 93.51% transition
accuracy at all three walking speeds. Such improvement in
transition accuracy allows the terrain classification system
to achieve a Tpred of no less than 2.09 ± 0.36 seconds at
2.0 km/h, which can leave enough time for high-level control
of the wearable robot. In addition, the average Tpred for VT
was 2.74 seconds, which was a 44.9% improvement over VF
(see Fig. 8). All of these results demonstrate that the proposed
method effectively mitigates the impact of speed on terrain
classification and prediction performance.

2) Effect of Gait Phase: We note that the average transitional
accuracy of the stance phase is 96.79%, which is higher
than that of the swing phase in both the VF and VT cases
(see Fig. 9). This is because the motion of the stance phase
is always smaller than that of the swing phase, regardless
of the walking speed. This provides a more stable capture
performance for the camera. We also observed a significant
improvement in the transition accuracy of the terrain classifica-
tion system during the swing phase compared to the VF-Swing
when using our method. This is primarily because the gimbal
system offers a superior field of view to the camera during
the swing phase, which is not possible in the VF solution
(see Fig. 12). When the camera is mounted on the shank, the
average improvement for VT-Swing is 14.9% and 3.42% for

Fig. 11. Outdoor experimental results. A and B represent the outdoor
classification accuracy of the terrain classification system mounted on
the shank and thigh, respectively. Error bars indicate ±1 standard error
of the mean across relevant trials.

Fig. 12. Comparison of prediction performance of terrain classification
systems with VF (left) and VT (right) states. Our method enables the
terrain classification system to obtain better vision and higher transition
accuracy (SA: 99.6%) in swing flexion phase.

the thigh, and the average transition accuracy reaches 93.86%
and 96.22% for the two mounting positions, which is close
to the classification performance of the standing phase (see
Fig. 9). These results show that our method can achieve terrain
classification that is independent of gait.

3) Effect of Camera Locations: Since the ideal tracking angle
of the gimbal in this paper is not parallel to the ground,
mounting the camera higher will result in a wider predictive
range. As expected, we found that the Tpred of the terrain
classification system mounted on the thigh was better than
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on the shank. However, this gap is reduced when using our
method (Fig. 8). This result suggests that our method can
potentially improve the variance in predicted performance due
to mounting location. Another advantage of thigh-mounted is
that the movement of the thigh is smaller compared to the
shank, which allows the camera to be more stable during
the swing phase. As shown in Fig. 9, the average transition
accuracy in the VT-Swing case was 93.86% (shank-mounted)
and 96.22% (thigh-mounted), respectively. The above results
demonstrate that our method can achieve position-independent
terrain classification.

4) Performance of LADRC-Based VT: Unlike the VF used in
other papers, this paper uses LADRC-based VT control, which
allows the view of the camera to be adjusted autonomously.
We compared the angle changes of these two solutions during
walking as a way to evaluate the predictive stability perfor-
mance of the camera. As shown in Fig. 10(a-f), the tracking
errors in VT mainly arise during the swing phase, while stable
visual tracking can be achieved in the stance phase (including
heel strike, mid-stance, and toe-off). This can be used to
explain the results of Fig. 9, where the stance phase has a
higher accuracy than the swing phase. The LADRC-based VT-
Shank control has a maximum RMSE value of 4.53 during
walking, which is much lower than the 21.16 of the VF-Shank
(see Fig. 10(g)). The results show that the LADRC-based VT
control algorithm is able to keep the camera’s field of view
continuously focused on the terrain ahead to minimize the
impact of gait phase and walking speed on the performance
of the terrain classification system.

C. Performance of Outdoor Classification
In outdoor environment, factors such as walking uncertainty

and collisions between people and the environment are more
likely to affect the image quality of the camera. By using
our method, the overall accuracy of outdoor terrain classi-
fication was 96.58 ± 1.76% (shank-mounted) and 98.03 ±

0.91% (thigh-mounted), an improvement of 6.51% and 1.85%
over the VF scheme, respectively (see Fig. 11). This shows
that the proposed terrain classification system is suitable for
unfamiliar outdoor environments. It also demonstrates that the
LADRC-based VT control provides resistance to disturbance.
In the case of terrain transition, our method is able to achieve
a classification accuracy of no less than 95.13% (shank-
mounted), which is comparable to the accuracy achieved
indoors (see Fig. 11). This is because subjects walking out-
doors typically adjust their walking pattern to the stance phase
as the initial state to negotiate transitional terrain, which
usually facilitates correct classification. Future work could
fuse visual and neural signals (e.g., EMG) to further improve
the accuracy of real-time classification. To realize this work,
selecting the optimal mounting position of the gimbal based on
the position of the electrodes is a necessary endeavor, as this
can effectively reduce the interference of artifacts.

D. Impacts on Users
The proposed terrain classification system has an overall

size and mass of 102 mm × 65 mm × 40 mm and 363.6 grams

respectively. These dimensions are much smaller than those
of the adult leg (the 50th percentile of calf circumference for
adult males and females is 392 mm and 375 mm, respec-
tively [39]). Although some non-disabled subjects indicated
that the wearing side felt weight-bearing compared to the
opposite leg, no obvious effect of weight on lower limb
kinematic data was found during the experiment. Moreover,
the non-disabled subjects generally perceived a change in
the center of mass of the device during walking, which was
opposite to the trend of leg movements (Fig. 1). Reducing the
weight of the load end of the gimbal (i.e., the computer vision
module) could effectively alleviate this sensation. On the
contrary, one amputee subject reported that he did not feel the
relative motion of the gimbal when the device was mounted
on the prosthetic shank. Instead, he felt that the prosthesis and
the gimbal system were integrated. Therefore, integrating the
gimbal system with the prosthesis may improve the overall
comfort of the user’s gait. The size of the system compared to
its weight may have a more direct impact on the wearer’s
lower extremity movement, or even their hand movement.
For example, some subjects expressed concern about devices
mounted on the proximal thigh (or socket) due to the risk of
the device being obscured by clothing or the collision of the
device with the hand. Mounting the device on the distal end of
the thigh (or socket) is a solution that not only greatly reduces
the risks described above but also reduces the cognitive burden
on the user, even though it will sacrifice a certain amount of
predictive performance.

E. Limitations
AA limitation of the proposed terrain classification system

is that the size and weight need further optimization to enhance
the user experience. For size, being too large is not conducive
to the operation of the terrain classification system in crowded
environments and can increase the mental burden on the user.
Optimizing the size of the gimbal (60 mm × 65 mm) is an
effective solution because it dominates the proportions of the
entire system. This article uses a two-axis gimbal, which might
be halved in size if a single-axis gimbal were used. However,
a single-axis gimbal is less stable than a multi-axis one. Future
work will weigh the impact of both size and stability on user
experience and system performance. For weight, the lighter the
weight of the wearable device, the more beneficial it will be
for the user’s comfort in long time wearing. The total weight of
the system’s battery and main control board is 150 grams, so if
the embedded system of the intelligent lower limb prosthesis
is used as the main control of the gimbal, it is promising to
realize a weight reduction of more than 40 %.

V. CONCLUSION

This paper presents a terrain classification system with a
gimbal for high-level control of lower limb prostheses. The
LADRC-based controller can effectively suppress the effects
of external disturbances on the wearable gimbal control system
during human-machine-environment interaction and provide
fast response performance. Offline experiments demonstrate
that MobileNetV2 can achieve feasible real-time inference per-
formance on resource-constrained embedded devices, which
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can make our proposed system much more practical. Real-
time indoor and outdoor experiments show that the proposed
system can provide stable and consistently high predictive
performance during walking or motion pattern transitions,
independent of walking speed, gait phase, and installation
position. This will greatly simplify the operationalization of
the device and help to achieve plug-and-play functionality for
terrain classification, even if subjects have varying physical
conditions. The proposed method can also lead to more
accurate and robust high-level control decisions for lower limb
robotics, thus ensuring the user’s walking safety in everyday
terrain or even complex terrain.
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