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Uncertainty-Aware Denoising Network for
Artifact Removal in EEG Signals
Xiyuan Jin , Jing Wang , Member, IEEE, Lei Liu, and Youfang Lin

Abstract— The electroencephalogram (EEG) is exten-
sively employed for detecting various brain electrical
activities. Nonetheless, EEG recordings are susceptible to
undesirable artifacts, resulting in misleading data anal-
ysis and even significantly impacting the interpretation
of results. While previous efforts to mitigate or reduce
the impact of artifacts have achieved commendable per-
formance, several challenges in this domain still persist:
1) due to black-box skepticism, deep-learning-based auto-
matic EEG artifact removal methods have been impeded
from being applied in clinical environments. How to support
reliable denoised EEG signals with high accuracy is impor-
tant; and 2) effectively exploring valuable local and global
information from contaminated contexts remains challeng-
ing. On the one hand, feature extraction and aggregation
in prior works are often performed blindly and assumed to
be accurate, which is not always the case. On the other
hand, global contextual information is gradually modeled
by local fixed single-scaled convolutional filters layer by
layer, which is neither efficient nor effective. To address
the above challenges, we propose an Uncertainty-aware
Denoising Network (UDNet) with multi-scaled pooling atten-
tion for efficient context capturing. Specifically, we predict
the aleatoric and epistemic uncertainty existing during the
denoising process to assist in finding and reducing the
uncertain feature representation. We further propose a sim-
ple yet effective architecture to capture local and global
contexts at multiple scales. Our proposed method can
serve as an effective metric for identifying low-confidence
epochs that warrant deferral to human experts for further
inspection and assessment. Experimental results on two
public datasets show that the proposed model outperforms
state-of-the-art baselines.

Index Terms— Artifact removal, deep neural network,
uncertainty estimation.

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is a widely uti-
lized method for detecting brain electrical activity, with

applications for diagnosing various neurological patholo-
gies [1], conducting cognitive science research [2], monitoring
drivers [3], tracking health parameters [4], and constructing
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Brain-Computer Interfaces [5], among others. Compared to
other brain signal acquisition methods, EEG has several
advantages, such as being a non-invasive and user-friendly
technique, having a high temporal resolution, and being more
cost-effective. However, its weak amplitudes make it often
contaminated by various noises, especially for physiological
artifacts from recording systems, including but not limited to
ocular artifacts, myogenic artifacts, and cardiac artifacts. Such
physiological artifacts can significantly disrupt neural infor-
mation, potentially leading to their misinterpretation as normal
phenomena in practical applications like brain-computer inter-
faces [6]. Furthermore, they might mimic cognitive or
pathological activities, thereby introducing biases into the
visual interpretation and diagnosis of clinical research studies,
including Alzheimer’s disease [7], sleep pattern analysis [43],
seizure detection [25], among others. Therefore, developing
effective algorithms that can reduce the impact of artifacts in
EEG recordings while simultaneously preserving neural infor-
mation to the greatest possible extent, is of utmost importance.

While detecting and removing artifacts automatically in
such applications presents a significant challenge due to
the overlapping nature of artifacts with background EEG
rhythms and target events in both the temporal and spectral
domains. Moreover, differentiating artifacts from the desired
signal becomes difficult as artifacts can exhibit considerable
variations based on factors such as their origin, waveform
shape, and frequency characteristics.

Traditional artifact removal algorithms have shown accept-
able performance in various EEG-based applications. How-
ever, these algorithms are subject to certain limitations when
applied to specific contexts [8], [10], [19]. In recent years, deep
learning (DL) has emerged as a highly effective approach for
automatic feature extraction and representation learning [20].
Consequently, significant research efforts have been dedicated
to developing DL-based techniques for EEG artifact denois-
ing [32], [33], [34], [35], [36], [37]. Compared to traditional
models, DL-based approaches offer two major advantages.
First, they exhibit universality, as their uniform architecture
enables them to handle a wide range of artifact removal tasks
without the need for the manual design of prior assumptions
specific to a particular type of artifact. Second, DL models pos-
sess higher capacity, which results in substantial performance
improvements. Despite these advantages, several challenges
persist in the domain of EEG artifact removal when utilizing
DL-based methods.

C1: How to ensure the reliability of the denoising
results. The widespread use of DL-based EEG artifact removal
methods in clinical settings has yet to take off due to the
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common criticism that DL models are ‘black boxes’, espe-
cially when applied to artificial intelligence in healthcare and
medicine [21]. This raises questions about how much to trust
their results when denoising real-world signals. Fortunately,
uncertainty estimation can be used to gauge model reliability
and is already employed extensively in many other applica-
tions [22], [23], [24]. For instance, uncertainty estimation has
been widely explored and proven beneficial in various fields
such as MRI reconstruction [22], image segmentation [23],
and seizure prediction [24]. In these applications, uncertainty
estimation not only aids in generating output results but also
provides valuable confidence values, enabling better inference
by agents. Furthermore, incorporating uncertainty measure-
ment can result in more informed decisions and potentially
improve the quality of predictions [24]. Despite its integral role
in many domains, uncertainty estimation has received limited
attention in the field of EEG artifact removal. Besides, existing
studies merely treat uncertainty estimation as a regularization
term, overlooking the exploration of relationships between
uncertainty regions and confidence. The question of how to
leverage the knowledge embedded in confident representations
to improve uncertain ones remains open. Therefore, it is
worth investigating the integration of uncertainty estimation
into EEG denoising, while simultaneously addressing the
aforementioned challenges.

C2: How to restore accurate waveforms under extremely
worse noisy context. Leveraging convolution to extract con-
textual information to recover the severely damaged segments
is a common choice. In fact, local contexts in EEG segments
reflect the adjacent trend information, aiding the recogni-
tion of noisy positions. Current DL-based artifact removal
methods model local contextual information by applying 1-D
convolution with fixed kernel size layer by layer. However,
single-scale kernel size is not suitable for different noisy
segments. On the other hand, the global context reflects the
long-term trend and potentially valuable information, which
should also be taken into consideration. Correspondingly,
the attention mechanism is famous for its high flexibility
in modeling global dependencies, which has been widely
applied to various domains [27], [30]. However, one of the
key challenges in applying the attention mechanism lies in
its inefficiency when dealing with long-time series, which
primarily stems from the high computation and memory
complexity.

To address the aforementioned challenges, we propose a
pioneering approach called the Uncertainty-aware Denoising
network (UDNet). UDNet focuses primarily on attaining pre-
cise denoising outcomes while concurrently providing accurate
uncertainty estimation. To begin with, we incorporate an
Uncertainty Estimation Module (UEM), which is responsible
for assessing the combined aleatoric and epistemic uncertainty
at each sampling point. Furthermore, we integrate a Feature
Enhancement Module (FEM) to enhance the quality of hidden
representation of denoised signals by capturing local and
global contextual information using an efficient multi-scaled
pooling-attention mechanism, since details from multi-scales
help differently in signal recovery. By combining the UEM
and FEM, our proposed UDNet can effectively leverage
uncertainty information and improve the denoising process in
accuracy and reliability.

Fig. 1. The visualization of uncertainty maps and reconstruction errors
(a) Denoising results. (b) Uncertainty map. (c) Error maps (i.e., the abso-
lute value of the difference between predicted and true values |ŷ − y|).
The deeper color in the uncertainty map and error map indicates a
higher uncertainty over the corresponding original noisy signal or higher
reconstruction error.

To the best of our knowledge, our proposed approach repre-
sents the first attempt to incorporate uncertainty estimation for
EEG artifact removal. As depicted in Figure 1, our model has
the capability to predict the uncertainty at each sampling point
during the denoising process. Consequently, it can effectively
identify uncertain regions that are more likely to contain sig-
nificant reconstruction errors. By leveraging this information,
we are able to achieve more compelling denoising results.
To summarize, this paper makes the following contributions:

• We propose a novel Uncertainty-aware Denoising Net-
work (UDNet) that aims to enhance the quality of features
and generate reliable, noise-free signals.

• We propose an Uncertainty Estimation Module (UEM)
to capture the aleatoric and epistemic uncertainty of each
sampling-point-wise denoising results together.

• We develop Feature Enhancement Module (FEM) to
adaptively enhance the learned features, which captures
both the local and global contexts through a multi-scaled
pooling-attention mechanism.

• We conduct extensive experiments on two real-world
datasets to evaluate the performance of the proposed
model. Meanwhile, we conduct an ablation study to prove
that uncertainty quantification in UDNet is beneficial for
promoting denoising accuracy.

II. RELATED WORK

A. Traditional Artifact Removal
Traditional methods can be divided into two main cate-

gories: those that estimate artifactual signals using a reference
channel and those that decompose the EEG signal into other
domains.

Specifically, regression-based methods [8] estimate noise
signals by utilizing noise templates and subtracting them from
the EEG data. Adaptive filtering [9] adjusts weights iteratively
using optimization algorithms to reduce the amount of artifac-
tual contamination in the primary input. However, the reliance
on reference channels to enhance the accuracy of artifact
removal poses limitations for certain applications [10], [11].



4472 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fourier transform and wavelet transform (WT) [15], [16]
are used to map the signal from the time domain to
the spectral domain, as EEG signals and artifacts often
exhibit different spectral profiles. Wavelet quantile normal-
ization [16] attenuates artifacts of different natures, requiring
no auxiliary input, parameter tuning, or human intervention.
Wavelet domain optimized Savitzky–Golay (WOSG) filtering
approach [17] uses the optimized SG filter in the wavelet
domain for the removal of motion artifacts. Dyadic boundary
points based empirical wavelet transform (DBPEWT) [18]
introduced an optimal transition width-based filter bank to
decompose EEG time series into sub-band (SB) signals.
However, due to the overlap between artifacts and the EEG
spectrum [19], complete removal of artifacts may not be
achievable, leading to the potential loss of neural information.
Recent approaches have proposed hybrid methods such as
EEMD-ICA [28] and EEMD-CCA [29], which combine tradi-
tional techniques [13], [14] to improve performance. However,
these methods still do not address the limitations imposed by
prior assumptions.

B. Deep Learning Artifact Removal
With the emergence of deep learning, profound denoising

models have been developed to tackle the challenge of EEG
artifact removal. One such model is the 1D-ResCNN [34],
which is a one-dimensional residual convolutional neural net-
work. It constructs a regression model capable of capturing
the complex and intricate nonlinear relationship between noisy
and clean EEG signals. DeepSepeparator [33], an exten-
sion of linear blind source separation methods, is designed
to learn the decomposition of the clean EEG signal and
artifacts within a latent space. GRUMARSC [37] focuses
on identifying the most relevant artifact pattern by utiliz-
ing an attention-based adaptive feature selection mechanism
to prevent erroneous reconstruction of contaminated signals.
Compared to traditional methods, deep learning models offer
significant advantages in terms of their universality and high
capacity. However, the widespread adoption of deep learning
in EEG denoising has been somewhat limited due to concerns
regarding weak interpretability and safety. Therefore, there is a
growing interest in developing interpretable and reliable deep
learning models specifically tailored for EEG denoising.

C. Uncertainty Estimation
In general, uncertainty in EEG artifact removal can be

categorized into two types: aleatoric uncertainty (data uncer-
tainty) and epistemic uncertainty (model uncertainty) [39].
Data uncertainty relates to the inherent noise present in the
EEG signals. On the other hand, model uncertainty captures
the uncertainty associated with the model parameters and can
be reduced by increasing the number of training samples.
Bayesian neural networks (BNNs) and their variants are com-
monly used to model epistemic uncertainty by introducing
probability distributions over model parameters [40], [41].
However, these methods often require different training tech-
niques for the neural network and may introduce additional
model parameters, sometimes even doubling the parameter
count. Gal et al. [42] proposed the Monte Carlo dropout
framework (MC-Dropout), which can be directly applied to
a pre-trained model. It involves applying stochastic dropouts

after each hidden layer and treating the output as a random
sample generated from the posterior predictive distribution.
In our approach, we propose a variant of MC-dropout and
focus on capturing the epistemic uncertainty of the noisy signal
representation in each layer.

III. PRELIMINARIES

A. Problem Statement
Let D = {X, Y } = {xi , yi }

N
i=1 be a training dataset,

yi ∈ RL×d is the cleaned EEG signal for an input noisy EEG
signal xi ∈ RL×d , where L denotes the length for each time
series sample, d denotes the number of channels of interest.
Our primary objective is to learn a transformation function f ,
which is parameterized by weights ω and maps a given input x
to a cleaned EEG ŷ and the associated uncertainty σ̂ ∈ RL×d ,

denoted as x
f (·)
→ [ŷ, σ̂ ].

B. Bayesian Inference and Uncertainty Modeling
We define our likelihood as a Gaussian with mean given

by the model output: p(y| f ω(x)) = N ( f ω(x), σ 2), with an
observation noise scalar σ . In the inference phase, given a test
sample x∗, the predictive probability y∗ is computed by:

p(y∗
|x∗, D) =

∫
p(y∗

|x∗, ω)p(ω|D)dω (1)

where the posterior p(ω|D) is intractable and cannot be com-
puted analytically. A variational posterior distribution qθ (ω),
where θ are the variational parameters, is used to approximate
the true posterior distribution by minimizing the Kullback-
Leilber (KL) divergence between p(ω|D) and qθ (ω), resulting
in the approximate predictive distribution

p(y∗
|x∗, D) =

∫
p(y∗

|x∗, ω)qθ (ω)dω (2)

Minimizing the Kullback–Leibler divergence is equivalent to
maximizing the log evidence lower bound,

LVI =

∫
qθ (ω)p(Y |X, ω)dω − KL[qθ (ω)||p(ω)] (3)

With the re-parametrization trick [45], a differentiable mini-
batched Monte Carlo estimator can be obtained.

The predictive (epistemic) uncertainty can be measured by
performing T inference runs and averaging predictions:

p(y∗
|x∗, D) ≈

∫
p(y∗

|x∗, ω)qθ (ω)dω ≈
1
T

T∑
t=1

p(y∗
|x∗, ω̂t )

(4)

where T corresponds to the number of sets of mask vectors
from Bernoulli distribution in MC-dropout, or the number of
randomly trained models in Ensemble, which potentially leads
to different set of learned parameters ω = {ω1, . . . , ωt }.

C. Scaled Dot-Product Attention
Scaled Dot-Product Attention [44] is a type of attention

function that calculates the weights by taking the dot-product
between queries and values, which offers benefits such as
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Fig. 2. Overview of the proposed UDNet. The UDNet is composed of M Uncertainty-aware Denoising Layers (UDLs), where each layer, UDLm
{m = 1, . . . ,M}, incorporates the use of UEMm to estimate the corresponding uncertainty map Um, along with an intermediate denoising result Ĵm.
Additionally, FEMm is employed to modulate HFm−1, generating an enhanced feature EFm and amplifying uncertain features from HFm−1.
Furthermore, a gate unit is utilized to aggregate HFm−1 and EFm, producing a more reliable and improved representation, HFm.

efficient use of space and time. Formally, it is defined as
follows,

Attention(Q, K , V ) = softmax(
QK T
√

F
V ) (5)

where Q, K , V and F are queries, keys, values, and their
dimension, respectively.

IV. METHODS

Our goal is to restore clean EEG segments with better
confidence (less uncertainty) from their noisy observation
containing EOG or EMG artifacts. To this end, we introduce
an Uncertainty-aware Denoising Network (UDNet), which
focuses on improving the uncertain feature representation and
leveraging the confident parts. As shown in Figure 2, UDNet
consists of M Uncertainty-aware Denoising Layers (UDLs)
that are interconnected to enhance the hidden features (HFs).
In the mth UDL (m = 1, . . . , M), an Uncertainty Estimation
Module (UEM) is utilized to estimate the uncertainty map Um
and produce an intermediate denoising result Ĵm . Additionally,
a Feature Enhancement Module (FEM) is employed to mod-
ulate the previously hidden feature H Fm−1 by leveraging the
confident feature and generating the Enhanced Feature E Fm .
To combine the enhanced feature E Fm and the previously
hidden feature H Fm−1, we use the uncertainty map Um
as a gate. This linear combination allows UDL to update
the representation in H Fm−1 with E Fm and output a more
confident and improved representation H Fm . The process can
be summarized as follows:

H Fm = (1 − Um) ⊙ H Fm−1 + Um ⊙ E Fm (6)

where ⊙ represents the element-wise product.
To provide more specific details, the first step in our

approach is to convert the raw input x ∈ RL×d into a
high dimensional representation H F0 ∈ RL×F via linear
projection. After that, H F0 is updated gradually by M UDLs
to obtain H F0, H F1, . . . , H FM . Finally, H FM is converted
to the original size by linear projection.

A. Aleatoric and Epistemic Uncertainty Estimation
Bayesian deep learning provides a comprehensive frame-

work for modeling two distinct types of uncertainty:
1) aleatoric uncertainty, which arises from the noise inher-
ent in the observations, and 2) epistemic uncertainty, which
captures uncertainty within the model itself. These two forms
of uncertainty are also present in denoising models. However,
conventional methods typically yield deterministic outcomes
without providing any information about their associated con-
fidence. In this paper, we introduce an Uncertainty Estimation
Module (UEM) to model sampling-point-wise aleatoric uncer-
tainty σ 2

A and epistemic uncertainty σ 2
E together. As shown

in Figure 3, UEM contains two branches to model aleatoric
and epistemic uncertainty, separately.

1) Aleatoric Uncertainty: Aleatoric uncertainty is explained
as the inherent noise and random influences that cannot be
explained explicitly. In our approach, we make the assumption
that the denoising output at each sampling point, denoted as
p(J | Ĵ , ω), follows a Gaussian distribution. The mean and
variance of this distribution correspond to the ground-truth
signal J , and aleatoric uncertainty σ 2, where ω represents
the network parameters. In the context of Bayesian neural
networks, the functions are defined through the weights of the
neural network, which serve as our sufficient statistics denoted
as ω = (Wm)M

m=1. We perform Maximum A Posteriori (MAP)
inference to obtain the optimal values for ω when given
the observed data and any prior knowledge or assumptions,
as follows:

ω̂ = arg max
ω

log(p(J | Ĵ , ω))

= arg max
ω

{−
1

2σ 2 ||J − Ĵ ||
2
2 −

1
2

log σ 2
} (7)

We treat σ 2
A = σ 2. Two branches in UEM are used

to predict σ 2
A and Ĵ , separately. For aleatoric uncer-

tainty, it is conditioned on the denoising results of the
previous layer and finally constrained by the following
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Fig. 3. The uncertainty estimation module (UEM) consists of aleatoric
uncertainty and epistemic uncertainty estimation. Aleatoric uncertainty
is obtained through 1-layer convolution and Sigmoid. Epistemic uncer-
tainty is obtained through the Monte Carlo estimation of multiple shared
convolutions.

minimization objective:

Lm
r =

1
Dm

Dm∑
i=1

[
1

2(σ i
m A)2

(J i
m − Ĵ i

m)2
+

1
2

log(σ i
m A)2

] (8)

where the superscript i denotes the sampling point index,
and Dm is the number of the output points. In practice, we train
the UEM to predict the log variance, sm A := log(σ i

m A)2:

Lm
r =

1
Dm

Dm∑
i=1

[
1
2

exp (−sm A)(J i
m − Ĵ i

m)2
+

1
2

sm A] (9)

2) Epistemic Uncertainty: Epistemic uncertainty encom-
passes the uncertainty in the model parameters, representing
our lack of knowledge regarding which specific aspects of the
model generated the observed data. Existing denoising models
fail to capture epistemic uncertainty since they follow the
deterministic network’s parameters and optimize the network
directly.

Bayesian neural networks have always been used to
capture epistemic uncertainty, replacing the deterministic net-
work’s parameters with a prior distribution. Then performing
Bayesian inference to compute the posterior distribution over
these weights. While posterior distribution is not tractable for
a Bayesian NN, Bayesian convolutional neural networks [40]
define approximating variational distribution qθ (Wm) for every
layer m to relate the approximate inference to dropout train-
ing as:

Wm = Mm · diag([zm,n]
Fm
n=1)

zm,n ∼ Bernoulli(pm) for m = 1, . . . , M, n = 1, . . . , Fm

(10)

here zm,n are random variables following a Bernoulli distribu-
tion with probabilities pm , and Mm represents the variational
parameters need to be optimized. The operator diag(·) trans-
forms vectors into diagonal matrices.

Following [40], we reframe the 1-D convolution operation
as a linear operation that integrates over the kernels. Specifi-
cally, let Kk ∈ Rl×Fm−1 , where k = 1, . . . , Fm , be the CNN’s
kernels with length l, and Fm−1 channels. The input to the
layer denoted as x ∈ RLm−1×Fm−1 . By convolving the input
with a given stride s, we can interpret it as extracting segments
from the input, each with dimensions l×Fm−1. These segments
are then vectorized and collected as rows in a matrix, resulting
in a new representation denoted as x̄ ∈ RLm×l Fm−1 , where Lm
represents the number of segments. The vectorized kernels are
arranged as columns in the weight matrix Wm ∈ Rl Fm−1×Fm .
Thus, the convolution operation can be expressed as the matrix
product x̄Wm ∈ RLm×Fm . To capture epistemic uncertainty,
we introduce a prior distribution on convolution kernels and
leverage Bernoulli variational distributions to approximately
integrate each kernel-segment pair. Then we sample Bernoulli
random variables zm,n and then multiply segment Lm by the
weight matrix Mm · diag([zm,n]

Fm
n=1), which is equivalent to

an approximating distribution modeling each kernel-segment
pair with a distinct random variable, tying the means of
the random variables over the segments. Such a modeling
approach randomly sets certain kernels to zero for different
segments. Implementing Bayesian CNN in the inference stage
is therefore equivalent to applying dropout after every convo-
lution layer through multiple forward propagations.

Further, in order to quantify epistemic uncertainty and
perform Bayesian CNN in the training stage, we find an
alternative method. To be specific, we incorporate distributions
over each 1D-Conv-Sigmoid layer of each UEM and employ a
mask operation to approximate the inference process. Herein,
we randomly mask parts of the input feature channels by
setting their values to 0. These masked inputs are then passed
through a shared Conv layer to reconstruct original EEG
signals. This process is repeated T times, resulting in T dif-
ferent denoising results { Ĵm,t }

T
t=1. Subsequently, we calculate

the mean and variance (representing epistemic uncertainty)
of { Ĵm,t }

T
t=1. Specifically, we compute the predicted mean

Ĵm =
1
T

∑T
t=1 Ĵm,t and the epistemic uncertainty σ 2

m E =

1
T

∑T
t=1 Ĵ 2

m,t − ( 1
T

∑T
t=1 Ĵm,t )

2, which quantifies the level of
uncertainty in the model’s prediction.

To summarize, the predicted uncertainty of each sam-
pling point in the mth UEM can be approximated using the
following:

Um ≈ σ 2
m E + σ 2

m A

=
1
T

T∑
t=1

Ĵ 2
m,t − (

1
T

T∑
t=1

Ĵm,t )
2
+ σ 2

m A (11)

With the assistance of the uncertainty map Um obtained
from UEMm , we can discern the level of uncertainty associated
with each sampling point.

B. Feature Enhancement Module (FEM)
The primary objective of FEM is to enhance the uncer-

tain feature. It is observed that hard-to-denoise regions are
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Fig. 4. The feature enhancement module (FEM) consists of multiple
multi-scale pooling attention units and a bottleneck layer.

highly related to the estimated uncertainty map, which usually
contains complex contexts. In the artifact removal task, it is
not surprising that the original signal amplitude from different
time steps is the same. The non-local similarity characteristic
suggests that two distant sampling points in the clear signal,
despite having the same amplitude, may experience differ-
ent types of degradation. This results in complex contextual
dependencies in their corresponding noisy observations. More
importantly, a denoising network is required to map these two
different observations to the same amplitude, which presents a
challenging many-to-one mapping task. Therefore, capturing
the trend around the current time step to further help identify
informative contexts is the key point.

However, capturing local trends under ambiguous contexts
as existing works do [33], [34], [35] is not a simple thing.
The captured inaccurate contexts by 1-D convolution will
continuously accumulate errors layer by layer. Alternatively,
global receptive fields can help to learn effective contextual
information to a certain extent since similar trends at the
far end may be relatively clean. In representation learning
scenarios, the attention mechanism is commonly employed
to automatically extract the most pertinent information, espe-
cially from the global perspective [44]. Nevertheless, when it
comes to capturing context information from long-time series
data like EEG signals, employing the attention mechanism can
pose challenges due to limitations in computing resources and
memory.

Based on this premise, we have devised a pooling-attention
architecture that endeavors to capture both local and global
contextual information concurrently while mitigating the
quadratic attention complexity. This design improvement
enhances the efficiency of attention-like modules for EEG
artifact removal applications. Additionally, we integrate multi-
scale convolutions instead of linear mappings to enhance the
perception of trends in the data.

1) Trend-Aware Multi-Head Attention: We propose the
Trend-aware Multi-Head self-Attention (TMHA) mechanism
to capture contextual information in signals. TMHA is built
upon the self-attention mechanism, which enables the deriva-
tion of queries, keys, and values from the same sequence
of symbol representations. In TMHA, we first employ
Multi-Head Self Attention (MHA), which enables simultane-
ous attention across multiple representation subspaces.

To implement MHA, previous works apply linear pro-
jections and transform them into separate representation
subspaces. The attention function (Eq. 5) is then indepen-
dently performed in parallel for each subspace. Afterward, the
resulting outputs from each subspace are concatenated and
projected to generate the final output. By employing MHA,
we can effectively capture interdependencies between different
parts of the signals, facilitating the modeling of contextual
information in a trend-aware manner. Formally,

MHSelfAttention(Q, K, V) = ⊕(head1, . . . , headh)W O

(12)

head j = Attention(QW Q
j , KW K

j , VW V
j ) (13)

where h denotes the number of attention heads. W Q
j , W K

j ,
W V

j , and W O are projection matrices applied to Q, K, V, and
the final output, respectively.

The traditional multi-head self-attention mechanism, orig-
inally designed for discrete tokens like words, may not
adequately capture the local trend information inherent in
continuous data such as EEG signals. Applying this mech-
anism directly to EEG signal transformation can lead to a
mismatch between the attention mechanism and the data char-
acteristics [31]. To address this limitation and incorporate local
trend information into numerical data prediction, we propose
a novel approach called TrSelfAttention, which stands for
Transformer-based Self-Attention. TrSelfAttention is inspired
by the Convolutional Self-Attention model [31] and introduces
1D convolutions to replace the projection operations on queries
and keys in Eq. 13. This modification enables the model to
consider local contextual information and be more sensitive
to the changing trends present in the noisy EEG signals.
Mathematically, the definition of TrSelfAttention is as follows:

TrSelfAttention(Q, K, V) = ⊕(Trhead1, . . . , Trheadh)W O

(14)

Trhead j = Attention(8
Q
j ⋆ Q, 8K

j ⋆ K, VW V
j ) (15)

where ⋆ indicates the convolution operation and 8
Q
j , 8K

j are
the parameters of convolution kernels.

2) Pooling Attention: To address the quadratic complexity
issue in self-attention blocks, we introduce a pooling operation
before attending to the input. This pooling operator, denoted
as P(·; 2), is used to downsample the intermediate tensors K̂
and V̂ . The parameter 2 := (k, s, p) specifies the pooling
kernel size (kt ), stride (st ), and padding (pt ). By default,
we employ non-overlapping kernels with shape-preserving
padding in our pooling attention operators. This results in an
output tensor with a reduced signal length L̃ , which is achieved
by a factor of s compared to the input tensor’s length L .
The pooled tensors are denoted as K̂ = P(·; 2K ) and V̂ =

P(·; 2V ). The attention computation is then performed on
these shortened vectors.

PoTrAttention(Q, K, V) = ⊕(PoTrhead1, . . . , PoTrheadh)W O

(16)

PoTrhead j = Attention(8
Q
j ⋆ Q,P(8K

j ⋆ K; 2K ),

P(VW V
j ; 2V )) (17)
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Naturally, the pooling operation introduces the constraint
sK ≡ sV .

Computational Analysis By pooling the key and value ten-
sors, the computation and memory requirements of attention
computation, which scales quadratically with the signal length,
are dramatically reduced. Denoting the reduction factors for
the signal lengths as fQ , fK , and fV , we have fQ = 1, fK =

sk, fV = sv . If we consider the input tensor to the pooling
operator P(·; 2) to have dimensions D × T , the runtime
complexity of TMHA is O(DT/h(D + T/ fQ fK )) per head,
and the memory complexity is O(T h(D/h + T/ fQ fK )).

3) Multi-Scale Pooling Attention: The effectiveness of exam-
ining EEG signals in multiple scales has been demonstrated
in several studies [26], [49]. In the context of EEG arti-
fact removal, we are motivated by two factors to design a
Multi-Scale Pooling Attention mechanism. (i) By working at
multi-scale lower resolutions, we hope to reduce the com-
puting requirements as well as allow maintaining satisfactory
performance. (ii) Multi-scales provide a more comprehensive
sense of context within the EEG signals. This contextual
information at multiple lower resolutions can better guide the
processing and decision-making at higher resolutions.

Herein we utilize 4 Pooling Attention units, each with
different kernel sizes and pooling strides ranging from 1 to 4.
These units operate on the same input feature map, enabling
the extraction of information from multiple receptive field
scales. By applying pooling operations at various scales,
we generate feature maps for each scale. These feature maps
are then combined to create a multi-scale feature map. This
integration of information from different receptive field sizes
enhances the representation of the input data, allowing for a
more comprehensive understanding of its underlying patterns
and structures.

Xr
ss = PoTrAttentionr (Q, K, V), r ∈ [1, 2, 3, 4] (18)

Xms = Concat (X1
ss, X2

ss, X3
ss, X4

ss) (19)

where PoTrAttention is the Trend-aware Pooling Attention
with kernel sizes and pooling strides from scales 1 to 4, and Xr

a
is the multi-scale feature map.

To minimize the number of parameters, we incorporate
a bottleneck layer, which is responsible for reducing the
channels in the concatenated feature map as follows:

E F = Bottleneck(Xms) (20)

where E F is the final multi-scale feature map and has Cout =

Cin/rate channels. Cin is the channel number of Xms and
rate is the down-sampling rate of bottleneck layer.

C. Model Training
Considering the presence of M UDLs in UDNet, we have

M UEMs responsible for estimating the denoising results and
uncertainty maps. To formulate the overall objective, we define
the following:

L = θ f

N∑
i

|ŷi − yi |
2
+

M∑
m=1

θmLm
r (21)

where N is the total number of samples, ŷ is the final denoised
EEG signal, Lm

r is the reconstruction loss described in Eq. 9,
θ f and θm are weight factors.

V. EXPERIMENTS

To validate the effectiveness of the proposed method,
we conduct performance comparisons on semi-simulated EEG
recordings using publicly available datasets, ISRUC and
TUSZ. Each dataset contains EEG that has undergone visual
inspection and noise reduction processing. We synthesize
contaminated signals based on corresponding artifact sources.

A. Dataset and Experiment Settings
1) ISRUC Dataset: ISRUC-S3 dataset [46] contains

10 healthy subjects (9 male and 1 female). Each recording
in the dataset includes 6 EEG channels, 2 EOG channels,
and 3 EMG channels. Furthermore, domain experts have
classified these polysomnography (PSG) recordings into five
sleep stages, adhering to the standards set by the American
Academy of Sleep Medicine (AASM).

2) TUSZ Dataset: TUSZ dataset [47] stands as one of
the largest annotated datasets available for EEG seizure
classification. It comprises a total of 5,612 EEGs, encom-
passing 3,050 annotated seizures extracted from clinical
recordings, and encompasses four distinct seizure types [48].
The dataset includes 19 EEG channels following the standard
10-20 system.

B. Implementation Details
We implemented the UDNet model based on the PyTorch

framework and trained by the Adam optimizer with the
learning rate of 10−3. The model dimension F is 64, and the
number of layers L is 4. We empirically set θ f and θm to 1.

We perform subject-independent experiments and split each
dataset into training and testing sets in the ratio of 6:1 in TUSZ
and 9:1 in ISRUC. Each experiment was repeated 5 times, and
the reported results represent the mean values.

We use an end-to-end way to train and rely on synthetic data
as the contaminated EEG and ground truth to optimize the total
objective L. To be specific, the contaminated EEG x can be
generated by linearly combining the clean EEG segments y
with EOG or EMG artifact segments, as described by the
following equation:

x = y + λ · n (22)

where the term n represents either ocular or myogenic artifacts.
The hyperparameter λ is utilized to regulate the signal-to-noise
ratio (SNR) in the contaminated EEG signal, as indicated:

SNR = 10 × log
RMS(y)

RMS(λ · n)
(23)

RMS(z) =

√√√√ 1
Nz

Nz∑
i=1

z2
i (24)

where RMS(·) denotes the root mean square, Nz denotes the
number of EEG points in the segment z, and zi denotes the
i th sampling point. The SNR in our experiment is −10 dB.

C. Performance Metrics
1) Change in Signal to Noise Ratio: We define the metric

1SNR as the change in the signal-to-noise ratio before and
after artifact removal. The calculation of 1SNR is defined as

1SNR = SNRafter − SNRbefore (25)
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Fig. 5. Visualization of the denoised results, uncertainty maps, and reconstruction errors. The red dashed line indicates the part with severe
artifacts. (a) ICA results. (b) 1D-ResCNN results. (c) UDNet results. (d) Uncertainty map. (e) Error map.

where SNRbefore and SNRafter are the signal-to-noise ratio
before and after artifact removal, respectively.

2) Normalized Mean Squared Error: The normalized mean
squared error (NMSE), in decibels, is defined as:

NMSE = 10log
∑

i |ŷi − yi |
2∑

i |yi |2
(26)

where yi is the i-th sample of the signal y.
3) Change in Correlation: We defined the change in corre-

lation 1R before and after the artifact removal as:

1R = Rafter − Rbefore (27)

where Rbefore and Rafter are the Pearson correlation coefficients
between the ground truth and the signal before and after
artifact removal, respectively.

4) Improvement in Spectral Coherence: We defined the
improvement in coherence Icoh before and after the artifact
removal as:

Icoh = (Cafter − Cbefore)/(1 − Cbefore) (28)

where Cbefore and Cafter denote the average magnitude squared
coherence, calculated between the ground truth and the signal
before and after artifact removal, respectively.

D. Comparison With the State-of-the-Art Methods
To validate the effectiveness of the UDNet, we con-

ducted experiments with the subject-independent procedure.
We compare the proposed UDNet with four traditional
methods (i.e., EMD-ICA, EMD-CCA [12], WT [15], and
WQN [16]), two signal processing-based methods (i.e.,
WOSG [17] and DBPEWT [18]), and five DL-based methods
(i.e., MMNN [38], Novel CNN [35], 1D-ResCNN [34],

DeepSeparator [33], and GRUMARSC [37]). We included
artifacts of different natures (ocular, muscular) using datasets
of semi-simulated. In Table I, it was observed that UDNet
achieved the highest increase 1SNR and the lowest NMSE
across all datasets. Furthermore, UDNet demonstrated supe-
rior performance in terms of correlation and coherence
improvement, because UDNet can effectively preserve fre-
quency information and avoid spectral distortion. In particular,
EMD-ICA and EMD-CCA showed inferior performance on
seizure-related datasets since TUSZ contains more subjects
and channel numbers than ISRUC. WOSG and DBPEWT
exhibit stable results across different datasets. MMNN is
ineffective in NMSE and 1SNR indicators, while it performs
well in 1R and Icoh, demonstrating its ability to recover infor-
mation in the spectral domain. Novel CNN and 1D-ResCNN
had relatively stable performance against different noise types
and datasets. DeepSeparator severely damages spectral domain
information in EOG artifact scenarios. GRUMARSC had a
significantly reduced effect on more complex epilepsy data.
Overall, UDNet stood out among the tested methods, achieving
the best improvement in both temporal and spectral domains.

1) Ablation Experiment: To assess the individual contribu-
tions of each module in our model, we designed several variant
models. These variants involve modifications to specific mod-
ules while keeping the rest of the architecture unchanged.
We start with a 4-layer 1-D temporal convolution architecture
to construct the basic model, which serves as the founda-
tion upon which we gradually add and stack the remaining
modules to create a complete branch. First, we use 4-layer
1-D temporal convolution as the basic model to gradually
stack the remaining modules to form a whole branch. Then,
we integrate data and model uncertainty estimation into the
basic model, separately. Finally, we integrate the multi-scaled
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TABLE I
RESULT ON VALIDATION ON DIFFERENT DATASETS FOR THE

PROPOSED UDNET METHOD. ∆SNR AND NMSE VALUES

ARE IN dB. THE BEST PERFORMANCE FOR EACH

METRIC IS HIGHLIGHTED IN BLACK

pooling-attention feature enhancement module to form the
proposed model. The specific process is described as follows:

• variant a (Temporal Convolution (Base Model)): We
utilize a 4-layers temporal convolution as the base model.

• variant b (+ Data Uncertainty): We add data uncertainty
estimation σ 2

m A based on variant a to form a data-
uncertainty-aware temporal convolution network.

• variant c (+ Model Uncertainty): We add model uncer-
tainty estimation σ 2

m E based on variant a to form a
model-uncertainty-aware temporal convolution network.

Fig. 6. A comparison of the designed variant models to assess the
effectiveness of different modules in UDNet.

• variant d (+ Data Uncertainty + Model Uncertainty): We
add two kinds of uncertainty estimation Um = σ 2

m A +

σ 2
m E based on variant a to form an uncertainty-aware

temporal convolution network.
• variant e (+ Single-scale Pooling-Attention): We replace

single-scale temporal convolution with single-scale
pooling-attention feature enhancement based on vari-
ant d equipped with an uncertainty estimation module.

• variant f (+ Multi-scale Pooling-Attention): We replace
single-scale temporal convolution with multi-scale
pooling-attention feature enhancement equipped based
on variant d with the whole uncertainty estimation
module.

Figure 6 demonstrates the effectiveness of the key modules
in our model. We begin by evaluating the impact of the
two types of uncertainty individually. The results show that
both types of uncertainty lead to performance improvements.
Additionally, using the fused uncertainty Um = σ 2

m A + σ 2
m E ,

which combines both types, further enhances the performance.
Moreover, trend-aware pooling attention provides a global
receptive field for capturing the global trend context. Mean-
while, multi-scales are better than single scales since more
potential patterns can be characterized distinctively. In sum-
mary, the ablation experiment validates the effectiveness of
each module in our model.

2) Effectiveness of UEM: We further visualize the denoised
result, uncertainty map, and reconstruction errors in Figure 5.
From top to down, firstly, our denoised results are superior
to traditional and deep methods. More importantly, we can
observe that the uncertainty maps are intricately linked to
the reconstruction errors, whereby the magnitude of the error
directly correlates with the corresponding uncertainty value.
Utilizing these maps, epochs that receive high uncertainty
scores from our model can be appropriately deferred to
clinical experts for further scrutiny and examination. There-
fore, it is of great significance to provide uncertainty-aware
reconstruction, which actively prevents misleading data use
and decision-making.

3) Influence of Denoising on Nonlinear Characteristics of
Signals: Figure 7 and 8 show the power spectral density (PSD)
of clean EEG, contaminated EEG, and denoising EEG treated
by MMNN, Novel CNN, 1D-ResCNN, DeepSeparator, GRU-
MARSC, and our proposed UDNet, which includes EOG
noise and EMG noise. As depicted in the two figures, the
PSD of the EEG signal noticeably decreases in the spe-
cific frequency range of the noise after applying the noise
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Fig. 7. PSD results of removing EOG noise from EEG signal.

Fig. 8. PSD results of removing EMG noise from EEG signal.

reduction techniques. Importantly, our UDNet generates the
closest PSD to the original clean EEG signal.

4) Downstream Task Performance of Different Artifact
Removal Methods: To compare the quality of generating
noise reduction results, we compare UDNet with 6 rep-
resentative artifact removal methods on two downstream
tasks (i.e., seizure classification and sleep staging) with
corr-DCRNN [48], and MSTGCN [50] as the task-related
classification models. We pre-train them on clean datasets and
test on the contaminated datasets. Figure 9 shows the total
F1 score and each class F1 score results of the TUSZ and
ISRUC datasets with different artifact sources, respectively.
We also provide clean EEG signal classification results for
comparison.

UDNet improves the classification performance of almost all
types in TUSZ and ISRUC datasets. Specifically, in the TUSZ
dataset, the pre-trained corr-DCRNN performs extremely
worse except for CF whose training samples are much
more than the summation of all other types. Importantly,
our method significantly improves the classification accuracy
of minority classes, i.e., AB, CT, and GN. Almost all the
remaining methods had similar results to the noisy EEG
signal. For the ISRUC dataset, the results were similar to
TUSZ. MSTGCN cannot accurately judge noisy EEG signals
and drops severely in all five stages. Our UDNet improves
the classification performance, especially for REM and Wake
stages. Overall, the denoised signals generated by traditional
methods only have limited improvement in downstream tasks.
DL-based methods like the 1D-Res, DeepSeparator, and GRU-
MARSC are relatively better-performing and stable models.
Our UDNet can produce robust denoising results on both
datasets.

Fig. 9. Accuracy performance patterns of different seizure types and
sleep stages were obtained by corr-DCRNN and MSTGCN. The total
and each class’s F1 scores were evaluated. Seizure types conclude:
combined focal (CF), generalized non-specific (GN), absence (AB), and
combined tonic (CT). Sleep stages conclude: Wake, N1, N2, N3, REM.
(a)TUSZ-EOG (b)TUSZ-EMG (c)ISRUC-EOG (d)ISRUC-EMG.

VI. DISCUSSION

In this paper, we propose an innovative denoising network
called UDNet, which aims to produce reliable and accurate
denoised results. Our method has a more stable and accu-
rate denoising performance compared with traditional signal
processing methods. Additionally, by utilizing dimensionality-
invariant convolution operations, our method can process noisy
signals of any length. Furthermore, our approach seldom
requires retraining the network when processing data closely
resembles the training set once our model is fully trained.
We incorporate uncertainty quantification to improve model
interpretability compared to deep learning methods. While
providing denoised output, the corresponding credibility can
be provided at the same time, which can improve the clinical
application prospects of deep learning. Extensive experi-
mentation on synthetic datasets demonstrates the remarkable
quantitative and qualitative enhancements achieved by UDNet,
surpassing the current state-of-the-art techniques. Despite this,
the solution in this article has a large demand for computing
resources. When computing resources are limited, more Monte
Carlo samplings cannot be performed, thus limiting the ability
to quantify uncertainty.
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