
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023 4713

ViTab Transformer Framework for Predicting
Induced Electric Field and Focality in

Transcranial Magnetic Stimulation
Barna Ghosh, Khaleda Akhter Sathi , Md. Kamal Hosain , Md. Azad Hossain , Member, IEEE,

M. Ali Akber Dewan , Member, IEEE, and Abbas Z. Kouzani , Member, IEEE

Abstract— Transcranial magnetic stimulation is an
electromagnetic induction-based non-invasive therapeutic
technique for neurological diseases. For finding new
clinical applications and enhancing the efficacy of TMS
in existing neurological disorders, the current study
focuses on a deep learning-based prediction model as
an alternative to time-consuming electromagnetic (EM)
simulation software. The main bottleneck of the existing
prediction models is to consider very few input parameters
of a standard coil such as coil type and coil position for
predicting an output of electric field value. To overcome
this limitation, a transformer-based prediction model
titled as ViTab transformer is developed in this work to
predict electric field (E-max), focality or area of stmulation
(S-half), and volume of stimulation (V-half) by considering
several input parameters such as sources of MRI images,
types of coils, coil position, rate of change of current,
brain tissues conductivity, and coil distance from the
scalp. The proposed framework consists of a vision and
a tab transformer to handle both image and tabular-type
data. The prediction performance of the offered model is
evaluated in terms of coefficient determination, R2 score,
for E-max, V-half, and S-half in the testing phase. The
obtained result in terms of R2 score for E-max, V-half,
and S-half are found 0.97, 0.87, and 0.90 respectively.
The results indicate that the suggested ViTab transformer
model can predict electric field as well as focality more
accurately than the current state-of-the-art methods. The
reduced computational time, as well as efficient prediction
accuracy, resembles that ViTab transformer can assist
the neuroscientist and neurosurgeon prior to providing
superior TMS treatment in near future.
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I. INTRODUCTION

TRANSCRANIAL magnetic stimulation (TMS) is a
non-invasive neuro-modulation method that employs a

strong magnetic field to stimulate neurons in the brain
cortex. Since the introduction of TMS in 1985, this ther-
apy has been successfully used to treat a wide range
of neurological symptoms. United States Food and Drug
Administration (FDA) has approved TMS for the treat-
ment of various neuropsychiatric disorders such as major
depressive disorders (MDD), obsessive-compulsive disorders
(OCD), and other brain-related diseases in different years.
When the medicine based treatment modalities do not work
effectively for neurological disorders, the neuromodulation
technique of TMS is used. The major advantages of TMS
include non-invasive property, minor side effects, low cost,
etc. [1], [2], [3], [4], [5], and [6].

TMS works based on the electromagnetic induction law
of Faraday, in which pulses of current flow through metallic
coils placed on the human head to produce a time-varying
magnetic field. Then the changing magnetic field generates an
electric field in brain cortex, raises neurotransmitter levels, and
improves neural connectivity. The generated electric field must
be strong enough to depolarize the target neurons responsible
for neurological diseases [7], [8], [9]. The depth (e.g. field
penetration distance from the vertex) and focality (e.g. area of
stimulation) of the produced electric field are two additional
parameters that are responsible to determine the efficiency and
side effect of TMS therapy [10], [11], [12].

Design of a new coil and performance evaluation of a
coil in new application are carried out in a simulation soft-
ware. Recursive-based computer simulation of TMS helps to
calculate the electric field strength within the brain cortex
before applying it clinically. There are some paid electromag-
netic (EM) software available for manual TMS simulation,
such as Sim4Life, SIMNIBS, etc. These software programs
go through a number of stages while estimating the electric
field. The first step is to create a three-dimensional model
of the human head through the MRI images. The creation

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0031-9284
https://orcid.org/0000-0001-7495-3937
https://orcid.org/0000-0002-8251-5168
https://orcid.org/0000-0001-6347-7509
https://orcid.org/0000-0002-6292-1214


4714 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

of a three-dimensional human head model by segmenting
MRI images takes about 8 to 10 hours [13], [14], [15], [16],
[17], [18]. After that, the electric field intensity is predicted
using finite element analysis (FEA) of the volume conductor
model (VCM). The calculation time for estimating the electric
field depends on the size of tissue model’s voxel [19], [20].
The estimation of the electric field intensity cannot be gen-
eralized based on the result of a single-head model since
the structure of a human head model is not fixed. Moreover,
the optimization with iterative stimulation takes a significant
amount of computational time.

Since the estimation of the electric field using the VCM
requires a significant amount of computation time, an alterna-
tive deep learning based method can be employed to reduce
it. Several works have recently been published that require
very less computation time than conventional EM software
by incorporating simulation data into deep learning architec-
tures [13], [14], [15], [16], [17], [18], [21]. However, in the
reported works, several parameters including the distance of
coil from the scalp, conductivity of the tissue [22], [23], [24],
and the rate of current change [25], [26] are not taken
into consideration as input parameters to predict the electric
field through the deep learning-based model. For instance,
Drakaki et al. [26] has demonstrated that the rate of current
change has a linear proportional implication on the induced
electric field due to its dependency on the coil model, stim-
ulator model, and pulse intensity. By adjusting the rate of
current change, clinicians can tailor the treatment to achieve
desired outcomes, such as stimulating specific brain regions
or modulating neural activity. Moreover, by considering the
safety issue, the flexibility of controlling this parameter is
necessary rather than providing an identical fixed value for
different neural disease cases where the requirement of activity
threshold is different [27], [28]. Contrarily, the researches [22],
[23], [24] have demonstrated that a significant change in the
generated electric field has occurred with the modification in
tissue conductivity. For training purposes, it has thus been
necessary to take into consideration the input tissue conduc-
tivity parameter with a large range of fluctuation while taking
into account all conceivable practical uncertainties. If this is
not considered, the model can produce a false forecast after
being deployed. Moreover, in real-world situations, the Elec-
trical Impedance Tomography (EIT) or Magnetic Resonance
Electrical Impedance Tomography (MREIT) [24], [29], [30]
measurements of brain-tissue electrical conductivity assist
in identifying anomalies that are susceptible to neurological
disorders. The model’s prediction of the E-field for a certain
brain illness therapy would be incorrect if it did not take
into account the MREIT-measured conductivity as an input
parameter. Therefore, these input parameters play a very
imperative role in predicting output electric field. If one of
these parameters is changed, the output of stimulation is also
changed [22], [23], [24], [25], [26]. Thereby, this study has
proposed a transformer-based model called ViTab to predict
the electric field intensity (E-max), area of stimulation (S-half),
and volume of stimulation (V-half) directly from MRI scans
by considering a variety of factors such as subject-specified

MRI image, coil type, coil position, rate change of current,
conductivity of brain tissues, and coil distance from skin.
A dataset made up with pairs of input parameters and the
corresponding output parameter’s values is used to translate
the input parameters to the E-max, S-half, and V-half. This
prediction model can accurately estimate induced electric field
in the head model.

The major contributors of this study are highlighted as:
• A larger dataset by considering different input parameters

such as human head, coil type, position of coil, coil dis-
tance from skin, rate change of current, and conductivities
of brain tissue is generated that aids the value on effective
field estimation.

• Different input including an image feature, two cate-
gorical features, and five numerical features and various
output pairs including E-max, V-half, and S-half numer-
ical are employed in the database,

• A new prediction model titled as ViTab transformer
is developed to learn sequential information of input
features for estimating E-max, S-half, and V-half instead
of using electromagnetic software.

• The proposed model out performs the existing state-of-
the-art prediction models.

The organization of this article is summarized as follows:
Section I describes the fundamentals of transcranial magnetic
stimulation, how it operates, and the limitations of elec-
tromagnetic software for computing electric fields in TMS.
Section II presents the latest research on TMS simulation
and their drawbacks. Section III comprehensively describes
the suggested architecture. The results of the proposed model
are thoroughly discussed and analyzed in Section IV, along
with a comparison to published works. The summary of the
article and recommendations for the future work are included
in Section V.

II. RELATED WORKS

Concerning the time complexity of commercial EM sim-
ulation software, few researchers have recently focused on
the use of the deep learning-based network to predict the
electric field in a TMS system. For instance, Yokota et al. [13]
suggested a deep neural network (DNN) model to forecast
the electric field from a figure of eight (fo8) TMS coil.
For segmenting the T1 and T2 weighted MRI images, the
FreeSurfer software has been utilized to create a 3D model of
a human skull. Then, the finite element analysis is performed
on SimNIBS software for estimating the induced electric field
for several coil positions. Following that, a dataset is produced
using a VCM for various MRI scans and coil positions. Then
the dataset is used to train the DNN model. The outcome
demonstrates that the DNN model provides quite similar
output to the SimNIBS EM software computation. However,
the model’s drawback is that it can only predict the electric
field for a single type of TMS coil. If the coil type is altered,
the model does not function correctly. Another delimitation is
that the estimation accuracy of the DNN model depends on the
quality of the MRI scans. Therefore, the performance of the
DNN model can deteriorate if the picture quality deteriorates.
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Moreover, a DNN model is proposed by Sathi et al. [14] to
calculate the electric field inside a human head phantom
model by considering different coil designing parameters.
In this work, the COMSOL Multiphysics software is used
to build datasets for training the DNN model. The VCM of
a two-shell human head is created to compute the electric
field for the halo-V assembly (HVA) coil with the variation
of six design parameters. The DNN model is subsequently
trained using newly produced dataset. The model is trained on
a dataset of 100 samples. In this study, some characteristics
including conductivity and rate change of current are not taken
into account. However, a realistic human head model is not
considered in this task, which prevents the network from
producing an accurate output in real-world scenarios. This
analysis also ignores crucial output factors such as focality
and V-half for prediction. In the meantime, Tashil et al. [17]
proposed a deep convention neural network (DCNN) to predict
induced electric fields from T1 and T2 weighted MRI of
11 healthy person. The DCNN model could predict induced
electric fields accurately but the main drawback of this model
is that it could predict induced electric fields for a fixed coil
position parameter. At the same time, Hongming et al. [18]
developed a self-supervised deep-learning model which can
accurately predict induced electric fields based on different
coil positions of a single coil-type parameter. After-while,
Guoping et al. [16] also proposed a DNN model based on
T1 weighted isotropic and anisotropic MRI images, different
types of coil, different coil positions, and variation of rate
change of current parameters. This study hasn’t considered coil
distance from the scalp and change of conductivities as input
parameters. In another study, Afuwape et al. [15] created a
deep CNN model to measure the strength of the produced
electric field across sixteen distinct types of coils straight from
the patient’s MRI data. T1-weighted MRI scans are used to
create the 3D human model. The induced electric fields for
several coils in a 3D human head are calculated using the
Sim4Life program, and a dataset of 3200 samples is produced
from the simulated results. The produced dataset is used to
train the CNN model which can estimate the induced electric
field & V-half of stimulation. Due to the small number of
sample in dataset, the model’s V-half prediction accuracy is
extremely low. Another drawback of this model is that it only
takes into account types of coil and coil positions, neglecting
for the other parameters such as the rate change of current,
the conductivity of brain tissues, and distance from the scalp
which affect electric field.

Most of the earlier deep learning works on TMS [13], [14],
[15], [16], [17], [18] have focused on the prediction of the
electric field using the input parameters of coil type, coil posi-
tion, and MRI image. However, these existing works ignore
vital factors such as the conductivities of the brain tissues,
the distance of the coil from the skin, and the rate of current
change. These characteristics are really important for superior
electric field measurement even though the majority of recent
researches have treated these parameters as having a default
value. By considering the limitations of existing works, this
study generates a new database to deal with different factors

Fig. 1. Workflow of proposed prediction mechanism of TMS coil-
induced field.

such as MRI image types, coil configurations, coil positions on
the human head, coil distance from the skin, and conductivity
of brain tissues including white matter conductivity, gray
matter conductivity, and scalp conductivity. Moreover, there
has not been found any research yet that attempts to estimate
the induced electric field, focality, and V-half by taking into
account all relevant elements simultaneously. Another vital
advantage of this work is to employ the transformer-based
model for learning the contextual information quickly from
the input parameters and improve the prediction accuracy than
the existing state-of-the-art models.

III. METHODOLOGY

Fig. 1 illustrates the overall workflow used to predict the
induced field from a TMS coil. The process begins with data
samples generation from the conventional simulation process
through SimNIBS software. After that, a ViTab transformer
model is employed to train with generated data. Then, the
performance of the ViTab model is assessed using the testing
dataset that comprises of previously unseen data for the final
prediction of E-max, V-half, and S-half of the TMS coil.
A detailed explanation of the entire prediction process is
presented in the following subsections.

A. Conventional Simulation Process
The process of data sample generation is initiated with the

aid of SimNIBS software where the VCM of the human head
model and different coil parameters are generated for finite
element analysis (FEA). After that, the output data samples
are found that are combined with the input data samples for
fitting with the transformer-based prediction model.

1) Human Head Models: The T1-weighted MRI scans of
32 healthy individuals ranging in age from 20 to 70 years are
collected from the western university centre for functional and
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Fig. 2. Visualization of TMS coil induced electric field distribution at
points where distributions are 99 to 50 percentiles.

metabolic mapping (CFMM) [31]. With the aid of MATLAB
software, the 3D human head models generated from the
individual MRI scans in SimNIBS software by segmenting
the pictures into several anatomical layers including bone,
cerebrospinal fluid (CSF), eyes, gray matter (WM), ventricles,
and white matter (WM).

2) Finite Element Analysis: Following the creation of 3D
VCM, the simulation is initiated by determining the change
of magnetic potential, A in the fitted TMS coil [32], which
is represented by the d A/dt and is calculated by using
Biot-Savart law under quasi-static approximation, [33] which
is shown in Equation (1).

A =
1

4π

∫
V

B(r) × (r − r)

|r − r|
∂3r (1)

∇ · (σ∇φ) + ∇ ·

(
σ

∂ A
∂t

)
= 0 (2)

n⃗ ·

(
σ∇φ + σ

∂ A
∂t

)
= 0 (3)

where B is Magnetic flux density in electro-static case and r, r
denotes the spatial vector representation. Magnetic vector
potential, A is obtained from Magnetic flux density with V
denoting integration over all of space. Moreover, σ, n⃗ and φ

represented tissues conductivity, normal vector to the surface
of the tissue, and electric scaler potential respectively.

Then, the induced electric field in 3D volume conduc-
tor head model E = −∇ϕ−

∂A
∂t is calculated by solving

equation (2) with Neumann boundary condition which is
shown in equation (3). Because the frequency content of TMS
pulses is confined at frequencies lower than around 10 kHz,
the assumption is made that E-fields fluctuate slowly with
time [29]. Each tetrahedral element of the head mesh receives
an electric field due to these computations.

After simulating in the software, output parameters of
99th percentile induced electric field (E-max), 50th percentile
volume of stimulation (V-half), and focality (S-half) are pro-
duced. Moreover, Fig. 2 aids in a better comprehension of
E-max (99 percentiles), D-half (50 percentiles), V-half (50 per-
centiles), and S-half (50 percentiles). In this figure, x1Emax99th
and x2Emax50th

are represented by the location (points) where
99th percentile (E-max) and 50th percentile of the induced

Fig. 3. Image data augmentation at different angles of rotations in the
clockwise direction.

electric field have been found. Then, equation (4) assists to
find the distance between these two points which is called D-
half. After that, the volume of stimulation (V-half) has been
found using equation (5) which calculates the volume between
99th percentile to 50th percentile of the induced electric field.
At last, equation (6) is measured focality (S-half) of the TMS
coil with the help of V-half and D-half.

D − hal f = x1Emax99th
− x2Emax50th

(4)

V − hal f =

∫∫∫ x1Emax99th

x2Emax50th

dxdydz (5)

S − hal f =
V − hal f
D − hal f

(6)

Here, D-half indicates the distance of brain region to which
the induced electric field is half of E-max. Then, V − half
and S − half are presented volume of stimulation and area of
stimulation (focality) respectively.

B. Dataset Generation & Pre-Processing
For a head model (T1 weighted MRI images, I) along

with different input parameters such as coil type (x1), coil
position (x2), Rate change of current (x3), coil distance (x4),
WM conductivity (x5), GM conductivity (x6), and scalp
conductivity (x7), the output parameters including E-max
(>100V/m) [35], [36], V-half, and S-half are taken. Conse-
quently, a database is created with a combination of images,
categorical and numerical data types for input features, and
numerical data types for output prediction. A total number
of 1024 samples are collected from the simulation software
to create the dataset, D = {[x1; x2; x3; x4; x5; x6; x7; I]n,

[E − max; V − half; S − half]n}
N
n=1 in.CSV format where N

represents the number of samples in the database. After
creating the database, some pre-processing techniques are
performed on image and numerical input data features. The
augmentation method is employed for images by rotating a
single image at angles of 0◦, 45◦, 90◦, 180◦, and 270◦ in
the clockwise direction as indicated in Fig. 3 for increasing
the total number of samples as well as helping to increase
the model’s accuracy [37], [38]. A visualization of corre-
lation heatmap generated by using Seaborn python library
as presented in Fig. 4 where the correlation factor between
augmented images and the original image is measured ∼0.47.
Therefore, a variation of > 0.50 of newly generated images
compared to the original image has been found which qualifies
the augmented images as new content with different pixels
information. Therefore, after performing image augmentation,
the final database is created with a total of 5120 samples.
A summary of the database with their ranges of values is
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Fig. 4. Correlation heatmap for analysing correlation factor among
original and augmented images.

TABLE I
INTERPRETATION OF INPUT AND OUTPUT FEATURES

presented in Table I. In addition, the normalization technique
is utilized only for the numerical data type to retain the values
within a range of 0 to 1. A visualization of normalized output
for numerical data is presented in Fig. 5. The database is split
into training and testing datasets with a ratio of 80:20. The
training and testing dataset contain a total number of samples

of 4096 and 1024 respectively. Then, the training dataset is fit
to the ViTab transformer model to build a complex relationship
between input and output pairs. On the contrary, the testing
dataset is used to evaluate the model learning.

C. ViTab Prediction Framework
Fig. 6 represents the proposed prediction model named as

ViTab transformer which is the combination of a vision and
a tabular transformer to knobs both image and tabular data.
The inputs for these two distinct types of architectures have a
variety of properties including image [I], categorical features
(coil type [x1] and coil position [x2]), and numerical features
(rate change of current [x3], coil distance [x4], WM conduc-
tivity [x5], GM conductivity [x6] and scalp conductivity [x7]).
The vision (ViT) transformer processes input MRI image
data, whereas the tab transformer processes the numerical and
categorical aspects of the input data. The combination of two
different transformers allow the ViTab transformer design to
learn the order of input characteristics and create a complicated
relationship between input and output features [39], [40],
[41], [42]. The followings include a description of each
component of the ViTab transformer.

1) ViT Transformer: The main working principle of the ViT
transformer is to pay attention to every pixel in a picture
to identify the relationship between each pixel’s sequences.
To accomplish this, the transformer block of the model
incorporates the multi-head self-attention mechanism, where
a number of self-attention are performed simultaneously and
generates a contextual embedding vector based on how much
one feature or patch is related to another feature or patch.
As the transformer block supports 1D encoded input vector,
the patch encoding of the 2D MRI scans is performed before
being fed to the transformer block.

a) Patch encoder: The central axial MRI image, I with
dimensions of (64 × 64×3) is divided into patches
IpϵR(N×P2

·C) where, P represents the patch size, and the total
number of patches is indicated as N= ( 64×64

p2 ). Then, the linear

projection of patches (EϵR(P2
·C)×pd ) is performed to flatten

each patch and embed each patch with a dimension of pd .
The information about each embedded patch position is then
carried via a positional embedding, E pos hence concatenated
to it. The output of the patch encoder, Z0 is found by
concatenating with the E pos where, Z0ϵR(N×pd ).

Z0 =

[
I 1

p E; I 2
p E; . . . . . . , I N

p E
]

+ E pos (7)

b) Transformer block: The main goal of the transformer
block is to pay attention to every input embedding patch vector
and determine how much one vector affects another. Thereby,
the transformer block uses multiple heads of self-attention to
attend the input embedding sequence before passing the results
to a feed-forward network. The self-attention calculates three
parametric matrices, such as query, key, and value, for each
input using projection matrices, WQ_vi t ∈ R(pd×KV ); Wk_vi t ∈

R(pd×KV ); andWv_vi t ∈ R(pd×VV ) where, kandv are the dimen-
sions of key and value respectively. The generated query, key,
and value matrices are found as follows.

QV = Z0 × WQ_vi t ; QV ϵR(N×KV ) (8)
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Fig. 5. Normalized output of numerical input features.

KV = Z0 × WK _vi t ; KV ϵR(N×KV ) (9)

VV = Z0 × WV _vi t ; VV ϵR(N×VV ) (10)

After calculating the parametric matrices, the most relevant
feature is found by the attention function f0 and the individual
attention function is combined and projected to achieve multi-
head self-attention, mvh output. Here, h represents the number
of heads. After that, the final output of ViT transformer, VT is
found by passing to a multilayer perceptron (MLP) layer that
receives a normalized output of mvh .

f0 = Attention (QV , KV , VV )

= so f tmax

(
QV .K T

V
√

k

)
VV (11)

mvh = concat ( f0, f1, f3, . . . . . . .., fh) ;

h = {0, 1, 2, . . . . . . , h} (12)
VT = M L P[L N (concact (mvh, Z0)] (13)

2) Tab Transformer: The tabular data, X T able incorporates
two types of features including categorical features, X T able

Cat
and numerical features, X T able

Num . The considerations of coil
type (x1) and coil position (x2) generate categorical feature
X T able

Cat = {x1, x2} and the numerical features as represented
X T able

Num = {x3, x4, x5, x6, x7}. From these two features, the
categorical features are passed to the Tab transformer model
to reveal the contextual information of the feature classes.
The basic building block of the Tab transformer is a stack
of transformer blocks with column embedding.

a) Column embedding: Column embedding is used to
represent each class of categorical features into embedding
vectors where one categorical feature X T able

cat i
has dth classes.

These classes are converted into numerical values in order to
convey them into transformer blocks. The embedded vector
eϕi ϵR((di +1)×l) with dimension, l for the ith feature with dth

classes generate the following embedded output.

Eϕ

(
X T able

Cat

)
=
{
eϕ1 (x1) , eϕ2(x2)

}
(14)

b) Transformer block: The output of column embedding,
Eϕ is fed into the multi-head attention, mT h based transformer
block which generates query, key, and value vectors for each
column-embedded vector. After that, the output of mT h is
concatenated with the input of Eϕ . Then the generated output,
Rc is passed to an MLP unit. The output of the transformer
block, TT is created by adding MLP’s output to the output
of Rc.

QT = Eϕ × WQ_tab; QT ϵR(N×KT ) (15)

KT = Eϕ × WK _tab; KT ϵR(N×KT ) (16)

VT = Eϕ × WV _tab; VT ϵR(N×VT ) (17)
ft = Attention (QT , KT , VT )

= so f tmax

(
QT .K T

T
√

k

)
VT (18)

mT h = concat ( f0, f1, f3, . . . . . . .., fh) ;

h = {0, 1, 2, . . . . . . , h} (19)

Rc = concat
(
mT h, Eϕ

)
(20)

TT = concat (M L P (Rc) , Rc) (21)

3) Final Prediction: The output of ViT and Tab transformer
are flattened so that all of the features are turned into
a 1D vector. After that, the output is concatenated with
the normalized numerical features, Nn to generate concate-
nated output, YV iT ab. Then, MLP is utilized on YV iT ab with
7 dense layers of 6000-2000-512-256-28-64-32 sequential
nodes. Finally, an output dense layer of 3 units is employed for
final prediction of E-max, V-half, and S-half. The following
equations are utilized for the purpose of prediction.

Nn = L N (x3, x4, x5, x6, x7) (22)
YV iT ab = concat ( f latten (VT ) , f latten (TT ) , Nn) (23)
{E − max; V − hal f ; S − hal f }pred

= Linear [ReLU 1,2,3,4,5,6,7ϵh(YV iT ab ⊙ W(k)
i, j + bk

i )]

(24)
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Fig. 6. Framework of proposed ViTab transformer-based prediction model.

Here,
W(k)

i, j = the weight of ith unit of kth layer and

jth previous layer

b(k)
i = the bias of ith unit of kth layer

ReLU = f (x) =

{
0, x < 0
x, x ≥ 0

(25)

Linear = f (x) = x (26)
For all the 7 dense layers, rectified linear units (RELU) acti-
vation function is used to add non-linearity in the regression

model, and the linear activation function is used for the final
output layer. The selected optimum parameters for the ViTab
transformer model are summarized in Table II. After several
laborious training, the parameter values are selected based on
the superior model’s performance.

D. Hyperparameter Settings
Selecting model hyperparameters is a vital task to get

superior results from any deep learning model. Thereby,
the optimum hyperparameters of the proposed ViTab frame-
work are selected based on the values shown in Table III.
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TABLE II
OPTIMUM PARAMETERS OF ViTab FRAMEWORK

TABLE III
SELECTED HYPERPARAMETERS OF THE

PROPOSED ViTab ARCHITECTURE

The ‘Adam’ optimizer with a learning rate of 0.0001 is
chosen for compiling the model. Moreover, the mean square
error loss function is used to compute the regression loss
for 100 epochs. For both training and testing, the Google
Colab platform with Python 3.8.15 version is used. For dataset
preparation, the NumPy 1.3.5 and Scikit-learn 1.0.2 packages
are used for model evaluation. In addition, Keras 2.9.0 and
Tensorflow 2.9.2 frameworks [43] are employed for model
implementation.

IV. RESULT AND DISCUSSION

In this section, the obtained results from laborious experi-
ments on the developed database are presented. For ensuring
a superior prediction, a 4-fold cross-validation technique is
applied to divide the data samples randomly 4 times using
about 80% of the training set and the rest 20% as testing
data. At every fold, data shuffling is performed to ensure
non-repeated samples during training and testing. Finally, the
results are obtained by averaging each fold results of the
proposed model.

A. Quantitative Analysis
The quantitative analysis of the proposed model is per-

formed based on four matrices including coefficient of
determination (R2), mean absolute error (MAE), mean square
error (MSE), and mean absolute percentage error (MAPE).
Table IV shows the summary of these evaluation matrices for
E-max, S-half, and V-half prediction on the ViTab model.
In terms of R2 value, the E-max provides maximum predic-
tion accuracy of 0.97 compared to S-half and V-half values.
Moreover, the individual prediction performances based on
(25) to (28) are described in detail in the following sections.

R2
= 1 −

∑n
i=1 (yi − ŷi )

2∑n
i=1 (yi − y)2 ϵ [−1, 1] (27)

M AE =

∑n
i=1 |ŷi − yi |

n
ϵ [0, +∞] (28)

M SE =

∑n
i=1 (yi − ŷi )

2

n
ϵ [0, +∞] (29)

TABLE IV
SUMMARY OF EVALUATION METRICS VALUE FOR

TRAINING AND TESTING DATASET

M AP E =
1
n

∑n

i=1

(yi − ŷi )
2

yi
ϵ


< 10%; V eryGood
10% − 20%; Good
20% − 50%; Ok
> 50%; Notgood

(30)

Here,

yi = actual stimulated value

ŷi = predicted value

y = mean of stimulated value

n = total number of sample

E-Max:
In the training and testing phases, the model for E-max

prediction provides R2 values of 0.98 and 0.97, respectively.
In this case, R2 may more precisely explain the variance
between the actual and predicted values and it provides the
prediction value within a reasonable range. The MAPE num-
ber, which is 1.340% for the training phase and 1.509% for
the testing phase, is likewise within a desirable and acceptable
range.

V-half:
The R2 values of V-half for the training and testing datasets

are 0.93 and 0.87, respectively. The model provides results that
are near the real output value by properly generalizing the con-
nection between the input characteristics and the actual output.
The MAPE values are found as 2.946% during the training
phase and 3.943% during the testing phase demonstrating how
effectively and correctly this model can perform prediction.
For both MAE and MSE, the error rate is comparatively
very low.

S-half:
The training R2 score for the S-half prediction is found 0.96,

and the testing R2 score is found 0.90. This suggests that the
model can accurately generalize the link between the input
characteristics and actual output to provide output that is close
to the true output value. For further demonstrating the model’s
effectiveness, MAPE is found to be 2.039% in the training
phase and 3.197% in the testing phase.

The parity plot of the actual and predicted values of E-max,
V-half, and S-half are shown in Fig. 7. The graph indicates that
the ViTab transformer model prediction accuracy is superior
enough because the simulated and predicted values are aligned
with the fit curve. Therefore, the proposed model has the
superiority to predict E-max, V-half, and S-half values in an
accurate manner.
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Fig. 7. Parity plot of training and test data for E-max, V-half, and S-half prediction.

TABLE V
ACTUAL VS PREDICTED VALUES FOR A

SINGLE SAMPLE OF THE DATABASE

B. Qualitative Analysis

From the created dataset, a sample of data is taken for
analyzing the model performance qualitatively. Table V shows
how well the ViTab transformer model can predict the values

of E-max, V-half, and S-half for the sample data. Table V
indicates that the predicted values for the E-max and S-half
are quite close to the actual values. On the other hand, the
difference between the actual and predicted values for the
V-half prediction is modest because the R2 score is smaller
than those for the other two predictors.

C. Computational Time Analysis
Table VI represents the computation time for the ViTab

transformer model and SimNIBS EM software. The required
computational times of ViTab model are 0.025s and 0.033s
in GPU and CPU respectively. Whereas, in the SimNIBS
software, each stimulation is required to 7 min 40s exclud-
ing the VCM model generating time. Moreover, considering
the VCM generation, the required time is 8 to 10 hours.
Thereby, the ViTab transformer model is preferred over
SimNIBS EM software because of its lower computation
time.

D. Model Comparison
To find out the superiority of the proposed ViTab model

over the existing state-of-the-art models such as DNN and
CNN, the developed database is also trained on these models.
Table VII presents the loss and accuracy results of E-max,
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Algorithm 1 ViTab Transformer Model for Predicting the Output of TMS Coil

Input: MRI image (I), Categorical feature(X T able
Cat ), & Numerical features(X T able

Num )

Output: Predicted value {(E − max); (V − hal f ); (S − hal f )}
#ViTab Transformer Model

1. Training stage
1.1 Encoded image features from ViT

Transformer model, VT
1.2 Encoded categorical features from

Tab transformer model, TT
1.3 Normalizing numerical features, Nn

Nn = L N
(
X T able

Num
)

1.4 Concatenating the normalized
numerical features Nn and flatten
encoded images and categorical
features of VT and TT .
YV iT ab = concat ( f latten (VT ) , f latten (TT ) , Nn)

1.5 Predicting output variable from Multi-
layer perceptron, YFinal_V iT ab =

{E − max; V − hal f ; S − hal f }train_pred

= Linear [ReLU 1,2,3,4,5,6,7ϵh(YV iT ab ⊙ W(k)
i, j + bk

i )

1.6 E-max mean squared error loss:
E − max Loss = L M SE

(
E − max, YE−max

)
V-half mean squared error loss:

V − hal f Loss = L M SE (V − hal f, YV −hal f )
S-half mean squared error loss:

S − hal f Loss = L M SE (S − hal f, Ys−hal f )
2. Testing stage

Predicted value, {E − max; V − hal f ; S − hal f }test_pred
= YFinal_V iT ab

(
Sampleimage,categorical,numetical

)

#ViT Transformer Model
1. Image patching Ip and concatenating

position embedding E pos for each
embedded patch image

Z0 =

[
I 1

p E; I 2
p E; . . . . . . , I N

p E
]

+ E pos
2. Feeding embedded patch vector into

transformer encoder
QV = Z0 × WQ_vi t ; QV ϵR(N×KV )

KV = Z0 × WK _vi t ; KV ϵR(N×KV )

VV = Z0 × WV _vi t ; VV ϵR(N×VV )

f0 = Attention (QV , KV , VV )=so f tmax
(

QV .K T
V√

k

)
VV

mvh = concat ( f0, f1, f3, . . . . . . .., fh);
h = {0, 1, 2, . . . . . . ., h}

VT = M L P[L N (concact (mvh, Z0)]

#Tab Transformer Model
1. Embedding categorical features, Eϕ

(
X T able

Cat
)

2. Feeding embedded categorical vector into
transformer encoder

QT = Eϕ × WQ_tab; QT ϵR(N×KT )

KT = Eϕ × WK _tab; KT ϵR(N×KT )

VT = Eϕ × WV _tab; VT ϵR(N×VT )

ft = Attention(QT , KT , VT )=so f tmax
(

QT .K T
T√

k

)
VT

mT h = concat ( f0, f1, f3, . . . . . . .., fh);
h = {0, 1, 2, . . . . . . , h}

Rc = concat
(
mT h, Eϕ

)
TT = concat (M L P (Rc) , Rc)

TABLE VI
COMPUTATION TIME REPRESENTATION FOR ViTab TRANSFORMER

MODEL AND SimNIBS SOFTWARE

TABLE VII
PERFORMANCE EVALUATION OF THE PROPOSED ViTab

TRANSFORMER OVER THE EXISTING DEEP LEARNING MODELS

V-half, and S-half prediction in both the train and test phases.
From this table, it is shown that the proposed ViTab trans-
former model outperforms the DNN and CNN model by a
significant margin for the identical input features. In terms

of E-max prediction, the test R2 score is found 0.86, 0.89,
and 0.97 for DNN, CNN, and ViTab transformer model
respectively. on the contrary, in terms of V-half, the DNN
and CNN model testing R2 score is found 0.83 whereas the
ViTab model shows a score of 0.87. For S-half, the testing
R2 score is found 0.84, 0.86, and 0.90 for DNN, CNN, and
ViTab transformer respectively. Therefore, after analyzing all
the performance index values, the ViTab transformer model
functions better than other models because it has the acquired
sequential and contextual knowledge of the input character-
istics, whereas other models have struggled to create this
relationship properly.

Moreover, Table VIII shows a comparison between this
study and the existing studies [14], [15] on TMS coil-induced
field prediction. It is observed that this study works with
two types of data such as structural data (numerical data
and categorical data) and non-structural data (image). For
these two types of data, the proposed model can predict
the area, volume, and intensity of the stimulation. Compared
with work [15], the ViTab transformer model achieves greater
accuracy of 0.97 and 0.90 for both electric field and V-half
prediction. Therefore, the accurate prediction of these three
output parameters could aid in an effective treatment process
for neurological patients since the process not only depends on
the intensity value of the induced electric field but also on the
area and volume of the stimulation. In addition, the proposed
model can predict the induced electric fields more accurately
by considering variant types of input coil parameters than the
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TABLE VIII
COMPARISON BETWEEN EXISTING STUDIES AND

PROPOSED ViTab TRANSFORMER MODEL

existing works. In terms of prediction score, R2, the proposed
ViTab model achieves the highest score over the existing
works.

V. CONCLUSION

This study proposes a novel ViTab transformer model for
TMS coil-induced field prediction that can simultaneously
process both tabular and image-type data. In addition, a new
database comprising 5120 samples is developed in this work
by considering additional input properties such as rate change
of current and conductivity of different tissue mediums that
significantly influence the generated electric field of the TMS
coil. Compared to the existing models, the ViTab transformer
model outperformed in estimating the electric field, V-half,
and S-half of the TMS coil with an accuracy of 97%, 87%,
and 90% respectively. This improved electric field prediction
results in reduced side effects and unwanted stimulation to
assist neurosurgeons prior to TMS therapy. Moreover, it excels
neuroscientist’s TMS research concentrating on novel coil
design as well as analyzing its implications on all possible
practical uncertainties of different human cases in ViTab
transformer-based electromagnetic software. Although the pro-
posed model is superior for continuous value prediction,
however depending on the significance of determining the

direction of electric field distribution, a future work could be
done by emphasizing on segmentation task in parallel with the
proposed regression network.
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