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Rethinking Delayed Hemodynamic Responses
for fNIRS Classification

Zenghui Wang , Jihong Fang, and Jun Zhang

Abstract— Functional near-infrared spectroscopy
(fNIRS) is a non-invasive neuroimaging technology for
monitoring cerebral hemodynamic responses. Enhancing
fNIRS classification can improve the performance of
brain–computer interfaces (BCIs). Currently, deep neural
networks (DNNs) do not consider the inherent delayed
hemodynamic responses of fNIRS signals, which causes
many optimization and application problems. Considering
the kernel size and receptive field of convolutions, delayed
hemodynamic responses as domain knowledge are
introduced into fNIRS classification, and a concise
and efficient model named fNIRSNet is proposed.
We empirically summarize three design guidelines for
fNIRSNet. In subject-specific and subject-independent
experiments, fNIRSNet outperforms other DNNs on
open-access datasets. Specifically, fNIRSNet with only
498 parameters is 6.58% higher than convolutional
neural network (CNN) with millions of parameters on
mental arithmetic tasks and the floating-point operations
(FLOPs) of fNIRSNet are much lower than CNN. Therefore,
fNIRSNet is friendly to practical applications and reduces
the hardware cost of BCI systems. It may inspire more
research on knowledge-driven models for fNIRS BCIs. Code
is available at https://github.com/wzhlearning/fNIRSNet.

Index Terms— Functional near-infrared spectroscopy
(fNIRS), brain–computer interface (BCI), deep neural net-
work (DNN), delayed hemodynamic response, domain
knowledge.

I. INTRODUCTION

FUNCTIONAL near-infrared spectroscopy (fNIRS) is
a non-invasive neuroimaging technology that records

changes in the concentration of oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (HbR) by measuring the
absorption of near-infrared light between 650 and 950 nm [1].
Brain–computer interfaces (BCIs) decode signals from patients
suffering from movement disorders to establish non-muscle
communication with the external environment [2]. Owing to its
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non-invasiveness, user-friendliness, and portability [3], fNIRS
has attracted attention in the BCI community.

Methods of classifying fNIRS signals include traditional
machine learning and emerging deep learning. Statistical val-
ues (mean, variance, peak, kurtosis, skewness, and slope) are
extracted from fNIRS signals to train support vector machine
(SVM), linear discriminant analysis (LDA), and k-nearest
neighbor (KNN) [4], [5]. Vector-based phase analysis includ-
ing change in cerebral blood volume (1CBV), change in
cerebral oxygen exchange (1COE), vector magnitude, and
angle is also commonly used to train these classifiers [6],
[7]. However, traditional classifiers rely heavily on manual
feature engineering and prior knowledge. In recent years,
deep learning has become the mainstream of fNIRS clas-
sification research. Convolutional neural networks (CNNs),
long short-term memory (LSTM), and Transformers have been
developed for fNIRS classification [8], [9], [10], [11]. Deep
learning is notoriously data-hungry, but limited fNIRS data
severely hinders its applications. Unfortunately, the scarcity
of fNIRS data is difficult to address in a short time. The high
cost of fNIRS equipment may limit the acquisition scale and
the burdensome signal acquisition procedures may limit the
number of participants. Although some complicated models
have been developed, the insufficiency of fNIRS data still
limits the improvement of classification performance. More
importantly, the domain knowledge of fNIRS signals is not
exploited. The changes in HbO and HbR are a slow metabolic
process manifested as delayed hemodynamic responses which
are also inherent properties of fNIRS signals. Hence, the num-
ber of sampling points per unit time is less than high temporal
resolution signals such as electroencephalogram (EEG) [12].
The delayed hemodynamic responses occur in both onset and
cessation of neuronal activity [13], [14], [15]. Nambu et al.
[16] found a 4 s hemodynamic delay when measuring human
motor-cortical activation. Shin et al. [4] found that fNIRS
classification accuracies reach the maximum after a delay of
several seconds. HbO and HbR do not change significantly in
the first few seconds of experimental stimulation, while they
still have solid hemodynamic responses when the stimulation
is over.

Unlike computer vision and natural language processing
supported by large-scale data, some general design principles
may not be suitable for the fNIRS field, such as deeper
architectures and small convolutions. In order to improve
classification performance, researchers tend to design more
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complex network architectures by increasing the number of
kernels and network depth. However, these operations may
lead to over-parametrization and overfitting on limited fNIRS
data. Finally, researchers have to adopt more regularization
methods to solve these tricky problems, such as dropout [17]
and flooding [18]. In addition, some studies [19], [20], [21] use
small convolutional kernels, e.g., 3 × 3 and 4 × 4, to extract
fNIRS signal features. He et al. [22] used smaller kernel sizes
of 2 × 1 and 1 × 4 to extract temporal and spatial features,
respectively. One-dimensional (1D) CNNs are also popular
for processing fNIRS signals and their kernel size is usually
set at least three [23], [24]. The biggest issue is that fNIRS
signals are fed directly into deep neural networks (DNNs)
without considering domain knowledge. A small kernel with
a limited receptive field is challenging to extract the features
of delayed hemodynamic responses because there is no sig-
nificant change in HbO and HbR in small neighborhoods.
However, stacking more convolutional layers to obtain larger
receptive fields may cause overfitting on limited fNIRS data.
Therefore, we rethink delayed hemodynamic responses and
systematically explore a simple but efficient design philosophy
for a deep learning-based fNIRS classification model.

In this study, two core ideas are presented: 1) delayed
hemodynamic responses as domain knowledge should be
introduced into fNIRS classification models; 2) a simple and
efficient model is beneficial to practical applications on limited
fNIRS data. We propose a compact fNIRS classification net-
work named fNIRSNet which consists of three convolutional
layers and one fully connected (FC) layer without pooling,
dropout, and other complicated structures. Three design guide-
lines are empirically summarized for fNIRSNet: 1) the size
of convolutional kernels is critical for extracting features
of delayed hemodynamic responses and decoupling network
depth and receptive fields; 2) concatenating standard con-
volutions and depthwise separable convolutions can balance
the stability, speed, and efficiency of fNIRSNet; 3) activation
functions with saturated negative values can alleviate infor-
mation loss in the first layer. fNIRSNet achieves superior
performance on open-access datasets, while it has extremely
few parameters and computational consumption. To the best
of our knowledge, fNIRSNet is the least resource-consuming
deep learning-based fNIRS classification model. Our study
illustrates that a compact model infused with domain knowl-
edge outperforms big models in the fNIRS field. These
advantages make fNIRSNet more valuable for applications
on mobile and embedded devices. Code is available at
https://github.com/wzhlearning/fNIRSNet.

The rest of this article is organized as follows. Section II
describes the design ideas of fNIRSNet. Section III introduces
open-access datasets, signal preprocessing, and evaluation
protocols. In Section IV, comprehensive experiments demon-
strate the superiority of fNIRSNet. Discussion is provided in
Section V. Finally, Section VI concludes this article.

II. METHODS

A. Hemodynamic Response
Neurovascular coupling that links changes in neural activity

to the cerebral blood flow (CBF) is the cornerstone of many

Fig. 1. A canonical hemodynamic response function generated by three
gamma functions.

functional neuroimaging techniques based on hemodynamic
responses [25], such as functional magnetic resonance imaging
(fMRI) [26] and fNIRS. fMRI can measure blood oxygena-
tion level dependent (BOLD) signals that are modeled as a
convolution of the hemodynamic response function and the
stimulus function. The hemodynamic response function can
be generated by three gamma functions 0(·) [27]:

h(t) =

3∑
i=1

(
Ai

tαi −1β
αi
i e−βi t

0 (αi )

)
, (1)

where A, α, and β control the height and direction, shape,
and scale of hemodynamic responses, respectively. Fig. 1
illustrates the canonical hemodynamic response function. It is
divided into three phases: initial dip, positive response, and
poststimulus undershoot [28]. In the fNIRS field, the initial
dip manifests an initial increase/decrease in HbR/HbO, which
is associated with neural activity consuming oxygen in nearby
local regions. The positive/negative response for HbO/HbR
is caused by a large increase in CBF, which is usually
manifested as an increase in HbO and a decrease in HbR.
The poststimulus period is characterized by an undershoot of
HbO and an overshoot of HbR, and the period typically starts
between 10 and 20 s after stimulus cessation and lasts up to
60 s [29]. The main reasons for poststimulus undershoot are
the continuous increase in the metabolic rate of oxygen and
delayed vascular compliance [30].

The delayed hemodynamic response is an inherent prop-
erty and a major limitation of fNIRS signals. Limited by
local receptive fields, small convolutions are challenging to
model the long-term dependency on hemodynamic responses.
Therefore, we hypothesize that convolutions with fNIRS
channel-level receptive fields can extract delayed response
features and convolutions with global receptive fields can
explore activation patterns of different brain regions.

B. fNIRSNet
1) Notation: The fNIRS tensor is defined to facilitate the

following description. In Fig. 2(a), HbO and HbR are arranged
to form an fNIRS tensor X ∈ RC×S×D , where C is twice (two
chromophores: HbO and HbR) the number of fNIRS channels,
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Fig. 2. (a) Overview architecture of fNIRSNet. (b) Schema of receptive
fields. The green and yellow feature maps are the output of DHRConv
and DWConv, respectively. The solid lines indicate that the input is
directly obtained from the previous layer and the dotted lines indi-
cate the corresponding receptive fields indirectly in the fNIRS tensor.
(c) Depthwise separable convolution.

S = f ×T is the number of sampling points, f is the sampling
frequency, T is the sampling time, and the depth D is 1.

2) Overview: The architecture of fNIRSNet is illustrated
in Fig. 2(a). fNIRSNet consists of a delayed hemodynamic
response module (DHR Module) and a global module. Specif-
ically, fNIRSNet contains three convolutional layers with
different kernel sizes and a fully connected (FC) layer.
Delayed hemodynamic response convolutions (DHRConv)
extract the channel-level features of delayed hemodynamic
responses. Depthwise separable convolutions consisting of
depthwise convolutions (DWConv) and pointwise convolu-
tions (PWConv) are used to reduce model parameters [31].
Batch normalization (BN) accelerates network training and
improves classification performance [32]. The sigmoid acti-
vation function is used for nonlinear activation and alleviates
information loss in the first layer. The feature maps are
flattened to 1D vectors and then fed into an FC layer. Finally,
a softmax function calculates the conditional probabilities
of the K classes. The proposed fNIRSNet does not have
pooling, dropout, and other complicated structures. Overall,
fNIRSNet is concise and efficient, and comprehensive experi-
ments demonstrate its superiority. Three design guidelines are
empirically summarized.

3) Guideline 1: The size of convolutional kernels is critical
for extracting features of delayed hemodynamic responses
and decoupling network depth and receptive fields. Table I
shows the configurations of fNIRSNet. For an fNIRS tensor
X ∈ RC×S×1, the kernel size of DHRConv is 1 × S, which
means that the width of this kernel equals the number of

TABLE I
CONFIGURATIONS OF THE PROPOSED MODEL

input sampling points. DHRConv with channel-level recep-
tive fields can directly extract single-channel hemodynamic
response features. The kernel size of DWConv is C × 1,
which indicates that the height is twice (two chromophores)
the number of fNIRS channels. In general, model design-
ers stack many convolutional layers to get larger receptive
fields in deeper layers, but this stacking operation brings
more computational cost. The C × 1 DWConv can directly
obtain global receptive fields without stacking layers. Fig. 2(b)
shows the schema of receptive fields. In addition, DWConv
can compensate for spatial information because DHRConv
alone cannot aggregate spatial information from multi-channel
fNIRS, which helps DWConv focus on activation patterns in
different brain regions. Therefore, 1 × S DHRConv and C × 1
DWConv decouple the contradiction between network depth
and receptive fields. Finally, the 1 × 1 PWConv projects the
output of DWConv into a new channel space.

4) Guideline 2: Concatenating standard convolutions and
depthwise separable convolutions can balance the stability,
speed, and efficiency of fNIRSNet. In Fig. 2(c), a depthwise
separable convolution is a factorized convolution that fac-
torizes a standard convolution into DWConv and PWConv
[31]. DWConv applies a filter to each input channel, and
PWConv projects the output of DWConv into a new channel
space. Compared with standard convolutions, depthwise sepa-
rable convolutions reduce computational cost significantly. The
computational cost of standard convolutions is defined as

Kh × Kw × Fin × Fout × Mh × Mw, (2)

where Kh × Kw is the kernel size, Fin is the number of input
channels, Fout is the number of output channels, and Mh ×Mw

is the size of feature map. Depthwise separable convolutions
have the computational cost of:

Kh × Kw × Fin × Mh × Mw + Fin × Fout × Mh × Mw.

(3)

Note that DHRConv is a standard convolution in the first layer
because the depthwise separable convolution performs poorly
in low-dimensional space (the first layer) [33]. Applying
standard convolutions at the first layer has a trade-off between
stability and speed. The computational cost of DHRConv is
S×F1×C . The computational cost of the global module using
standard convolutions and depthwise separable convolutions
is F1 × C × F2 and F1 × (C + F2), respectively. Depthwise
separable convolutions reduce the computational complexity of
the global module. In addition, increasing the length of input
signals only increases the computational cost of DHRConv
without affecting the global module. We do not add any
pooling layer to reduce the number of features. Since the
number of convolutional filters F2 of DWConv equals the
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number of flattened neurons, an FC layer without dropout is
used for classification. Except for the number of filters F1 and
F2, fNIRSNet has almost no other hyperparameters. Therefore,
fNIRSNet is friendly to BCI devices because it has fewer
parameters and computational cost.

5) Guideline 3: Activation functions with saturated negative
values can alleviate information loss in the first layer. We
found that activation functions with saturated negative values
(e.g., sigmoid, hyperbolic tangent (tanh), and exponential
linear unit (ELU) [34]) work better than other mainstream acti-
vation functions (e.g., ReLU and leaky ReLU (LReLU) [35]).
ELU, ReLU, and LReLU alleviate vanishing gradients caused
by increasing model depth via the identity for positive values.
However, we ignore vanishing gradients because fNIRSNet
is a shallow model. Since fNIRSNet has very few trainable
parameters, inappropriate activation functions lead to infor-
mation loss in the first convolutional layer (i.e., DHRConv),
which is a real concern for our study. The negative value input
to ReLU cannot be activated, which causes backpropagation
to fail to update weight parameters, called the dead neuron
problem. Although LReLU avoids dead neurons by a small and
non-zero gradient, it cannot ensure a noise-robust deactivation
state [34]. Sigmoid and tanh are bilateral saturation activation
functions, while ELU is a one-sided negative saturation that
reduces forward propagated variation and information [34].
In Section IV-C, the ablation experiments validate Guideline 3.

C. Label Smoothing
Label smoothing is commonly used to prevent DNNs from

over-confidence by the weighted average of hard targets and
uniform distribution over labels [36]. A network predicts the
probability of each class label k ∈ {1, . . . , K }:

pk =
exp (zk)∑K
i=1 exp (zi )

, (4)

where zi is the logit. The cross-entropy loss function is defined
as

L (y, p) = −

K∑
k=1

yk log (pk) , (5)

where yk = 1 for the ground truth, and yk = 0 for the rest.
Label smoothing is defined as

q L S
k = (1 − ε)yk + εuk, (6)

where ε is the smoothing parameter and is set to 0.1 by
default, and uk = 1/K is the uniform distribution. Finally, the
cross-entropy loss function with label smoothing is written as

L
(

q L S, p
)

= −

K∑
k=1

q L S
k log (pk) . (7)

III. EXPERIMENTS

A. Open-Access Datasets
Extensive experiments are conducted on open-access

datasets, including mental arithmetic (MA1) and unilateral

1http://doc.ml.tu-berlin.de/hBCI

finger- and foot-tapping (UFFT2). The experimental paradigms
and sensor placement are shown in Fig. 3.

1) MA: It consists of 29 healthy subjects (14 males, average
age 28.5 ± 3.7 years) [4]. For the MA task, the subjects
were instructed to perform subtraction such as “three-digit
number minus one-digit number” according to the screen and
short beep instructions. For the baseline (BL) task, they were
instructed to relax by gazing at a black fixation cross on the
screen. Each subject was asked to perform 30 trials for each
task. This is a hybrid EEG-fNIRS dataset, but only the fNIRS
signals are used for our experiments.

2) UFFT: The dataset contains fNIRS signals of 30 subjects
(17 males, 23.4 ± 2.5 years old) for ternary classification
tasks [5]. During the task period, the subjects were required to
randomly perform three types of overt movements according to
instructions on the screen, including right-hand finger-tapping
(RHT), left-hand finger-tapping (LHT), and foot-tapping (FT).
Each movement was performed randomly for 25 trials. They
were instructed to relax during the rest period.

The MA dataset contains MA and BL categories, and the
UFFT dataset includes RHT, LHT, and FT categories.

B. Signal Preprocessing
Following the original studies [4], [5], the fNIRS signals

of MA and UFFT are downsampled to 10 Hz and 13.3 Hz,
respectively. Signal preprocessing usually include the modified
Beer–Lambert law [37], filtering, segmentation, and baseline
correction. The modified Beer–Lambert law converts optical
density 1O D into concentration changes of HbO and HbR
from the absorption of near-infrared light. At time t , it is
described as

[
1HbO
1HbR

]
=

[
εHbO (λ1) εHbR (λ1)

εHbO (λ2) εHbR (λ2)

]−1 [
1O D (t, λ1)

1O D (t, λ2)

]
d × l

,

(8)

where εHbO (·) and εHbR (·) are extinction coefficients of HbO
and HbR at wavelength λ, d is the differential path-length
factor, and l is the distance between source and detector. Raw
fNIRS signals contain instrument noise, physiological noise,
and motion artifacts [3]. As a result, a band-pass filter with a
passband of 0.01–0.1 Hz is used for MA and UFFT. Baseline
correction solves the baseline drift problem by subtracting the
average value of a reference interval from fNIRS signals. The
reference intervals for MA and UFFT are [−5, −2] s and [−1,
0] s, respectively. The fNIRS signals are divided into segments
by a sliding window (window size = 3 s, step size = 1 s) [4],
[23]. The segmented signal intervals for MA and UFFT are
[−2, 10] s and [0, 10] s, respectively. Thus, a trial of MA
and UFFT is split into 10 and 8 segments, respectively. Each
subject of MA and UFFT includes 600 samples (30 trials ×

10 segments × 2 categories and 25 trials × 8 segments ×

3 categories). Finally, these segments are normalized by the
z-score standardization to accelerate convergence.

C. Evaluation Protocols
Currently, evaluation protocols for fNIRS classification are

confusing and some experimental details are inadequately

2https://doi.org/10.6084/m9.figshare.9783755.v1
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Fig. 3. (a) Experimental paradigms for MA and UFFT. A trial consists of an introduction period, a task period, and a rest period. (b) Sensor location
layout for MA [4]. The red and green squares are fNIRS sources and detectors, respectively. Solid black lines indicate fNIRS channels. The blue
and black (ground) circles are EEG electrodes. (c) fNIRS channel locations for UFFT [5]. Ch 1–10 and Ch 11–20 are located around C3 (Ch 9) and
C4 (Ch 18), respectively.

Fig. 4. Schematic diagrams for subject-specific and subject-independent. A dataset contains M subjects and each subject has N trials.

described. In addition, few researchers release their source
code for the fNIRS community. It is difficult to reproduce
these studies and make fair comparisons. We discuss this issue
in Section V. In Fig. 4, we adopt more general and transparent
protocols: subject-specific and subject-independent [11], [38].

1) Subject-Specific: DNNs are trained for each subject using
a 5-fold cross-validation (KFold-CV) that splits training and
test sets according to trials to avoid information leakage. For
example, each subject in MA includes 60 trials where 48 trials
are used as a training set and 12 trials are used as a test
set. Thus, the training set contains 480 samples (48 trials ×

10 segments) and the test set includes 120 samples. The final
experimental results are the average of all subjects’ test sets.

2) Subject-Independent: A leave-one-subject-out cross-
validation (LOSO-CV) can rigorously validate inter-individual
differences and model generalization. One subject’s data is
used as the test set and the rest as the training set. The process
is repeated until all subject’s data has been tested. The reported
results are the average of all subjects.

3) Evaluation Metric: Performance metrics include accuracy,
precision, recall, F1-score (macro-F1 for UFFT), and Kappa
coefficient. F1-score and macro-F1 are defined as

F1 =
2 × P × R

P + R
, (9)

macro-F1 =
2 × macro-P × macro-R

macro-P + macro-R
, (10)

where precision P =
T P

T P+F P , recall R =
T P

T P+F N ,
macro-P =

1
n
∑n

i=1 Pi , macro-R =
1
n
∑n

i=1 Ri , T P is true

positive, F P is false positive, F N is false negative, and n
represents the number of pairwise combinations. The final
performance metrics are the average of all cross-validation
results. Efficiency metrics include model parameters, floating-
point operations (FLOPs), inference time, and frames per
second (FPS).

D. Experimental Settings
In the subject-specific experiments, F1 and F2 of fNIRSNet

are 4 and 8, respectively. Considering the increase in training
samples, F1 and F2 are set to 16 and 32 in the subject-
independent experiments, respectively. For the baseline model,
the hyperparameters of Transformer-based fNIRS-T3 [11] are
adjusted to fit the size of input fNIRS signals. The kernel sizes
of ConvS and ConvC are 5 × 10 and 1 × 10, respectively. The
Transformer layers of fNIRS-T are set to 4, and the dimension
of the linear projection and multi-layer perceptron (MLP)
layer is set to 32. Other baseline CNN4 [8], LSTM4 [8], and
1D-CNN5 [23] follow the original references. The CNN
contains three convolutional layers, whereas 1D-CNN consists
of six 1D convolutional layers, and they both use BN and
ReLU. The LSTM has three LSTM layers and each layer has
20 LSTM cells.

All models are optimized by AdamW [39] with an initial
learning rate of 0.001. Label smoothing is used to improve

3https://github.com/wzhlearning/fNIRS-Transformer
4https://github.com/boyanglyu/nback_align
5https://github.com/sunzhe839/tensorfusion_EEG_NIRS
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TABLE II
EXPERIMENTAL RESULTS FOR SUBJECT-SPECIFIC AND SUBJECT-INDEPENDENT. THE BOLD INDICATES THE BEST RESULT

model generalization. For subject-specific, all models are
trained with a batch size of 64 for 120 epochs, and the initial
learning rate is decayed by a factor of 10 at 60 and 90 epochs.
For subject-independent, we apply the cosine learning rate [40]
for 30 epochs, and its maximum number of iterations is 30.

IV. RESULTS

A. Comparison With DNNs
Comparison experiments demonstrate that fNIRSNet has

excellent advantages. The experimental results (mean ± stan-
dard deviation) are shown in Table II. In the subject-specific
experiments, fNIRSNet achieves the highest average accu-
racy on test sets (Wilcoxon signed-rank test, p < 0.001).
The average accuracy and F1-score of fNIRSNet are 5%
higher than fNIRS-T on MA. All metrics of fNIRSNet are
significantly higher than the other models (Wilcoxon signed-
rank test, p < 0.001). The performance of LSTM is lower
than other models because individual differences and the
scale of fNIRS data prevent LSTM from capturing context
information.

The subject-independent experiment can assess model gen-
eralization performance because the target subject is not
involved in parameter tuning and model training. In Table II,
all performance metrics show overall deterioration. However,
fNIRSNet still outperforms the other models. Owing to indi-
vidual differences and limited data, it is important to collect
data from target subjects to customize a model. He et al.
[22] reported that the accuracy of motor imagery classifica-
tion decreases by 20% in subject-independent experiments.
Although deep models perform better in subject-specific than
subject-independent, subject-independent is more suitable for
practical applications because it reduces training cost and
calibration time significantly.

These results demonstrate the importance of domain knowl-
edge. DHRConv has a channel-level receptive field to extract
features of delayed hemodynamic responses, and DWConv
with global receptive fields aggregates spatial information.

TABLE III
EFFICIENCY METRICS FOR EACH MODEL

B. Comparison of Efficiency
fNIRSNet is a lightweight model with extremely low param-

eters and computational cost. Table III reports the efficiency
metrics for each model. Inference time and FPS are only used
as references due to the metrics relying on hardware platforms.
These tests are conducted on NVIDIA GTX 1080 GPU with
8 GB memory. All metrics of fNIRSNet significantly out-
perform other models. In the subject-specific experiments,
fNIRSNet with 498 parameters is 6.58% higher than CNN
with 4.54 M parameters on MA, and the inference time of
fNIRSNet is 6 times lower than CNN. fNIRS-T has the
highest FLOPs because the complexity of the self-attention
mechanism is the square of input dimension [41]. Thus,
it has a high inference time and low FPS. We also observe
a similar situation on UFFT. Therefore, fNIRSNet is friendly
for practical applications and could be deployed on embedded
devices.

C. Ablation Study
Subject-specific experiments are conducted on the UFFT

dataset to ablate the three design guidelines.
1) Guideline 1: In Table IV, the accuracy and F1-score keep

improving as the width of DHRConv increases. For a signal
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TABLE IV
SUBJECT-SPECIFIC EXPERIMENTAL RESULTS OF DIFFERENT CONVOLUTIONAL KERNEL SIZES ON THE UFFT DATASET

TABLE V
SUBJECT-SPECIFIC EXPERIMENTAL RESULTS FOR DIFFERENT TYPES OF CONVOLUTIONS ON THE UFFT DATASET. STD MEANS STANDARD

CONVOLUTION, AND DWS DENOTES DEPTHWISE SEPARABLE CONVOLUTION

TABLE VI
SUBJECT-SPECIFIC EXPERIMENTAL RESULTS OF DIFFERENT ACTIVATION FUNCTIONS ON THE UFFT DATASET

tensor X ∈ R40×40×1 (i.e., 20 channels × 2 chromophores =

40 and 13.3 Hz × 3 s = 40), the 1 × 40 DHRConv
can extract the complete features of delayed hemodynamic
responses instead of using small convolutions. The 1 ×

40 DHRConv also reduces FLOPs significantly. Furthermore,
fNIRSNet exhibits poorer classification performance when the
height of DWConv is reduced from 40 to 10. Therefore,
convolutions with global receptive fields are more beneficial
to fNIRS classification than local receptive fields and avoid
over-parameterization caused by stacking many convolutional
layers to enlarge receptive fields.

2) Guideline 2: The hybrid pattern that the first module uses
standard convolutions and the second uses depthwise separa-
ble convolutions mainly to balance the stability, speed, and
efficiency of fNIRSNet. The experimental results are reported
in Table V. The pure depthwise separable convolutions (i.e.,
DWS/DWS) have the lowest parameters and FLOPs, while
inference time and FPS show deterioration. In practice, the
arithmetic intensity (ratio of FLOPs to memory accesses) of
depthwise separable convolutions is too low and the hardware
usage is inefficient [42]. However, the hybrid pattern (i.e.,
STD/DWS) yields lower and more stable standard deviations
and the highest running efficiency.

3) Guideline 3: The type and position of activation func-
tions affect fNIRSNet performance significantly. The results
are summarized in Table VI. Saturation activation functions,
such as sigmoid and tanh, outperform the more popular
ReLU and LReLU by about 6%. The hybrid activations (i.e.,
Sigmoid/ReLU and ReLU/Sigmoid) further reveal the effect
of activation position on performance. Experimental results

using sigmoid and ReLU as the first and second activation
functions are significantly higher than those using ReLU and
sigmoid. The first convolution layer followed by saturating
activation functions is beneficial to preserve information for
fNIRSNet. The results of ELU with saturated negative values
and LReLU further reveal that this benefit comes from negative
saturation that decreases the forward propagated variation and
information [34].

D. Visualization
In this subsection, advanced visualization techniques are

used to explain how fNIRSNet works on UFFT. Grad-CAM
[43] is adopted to study the effect of each convolutional
layer. Grad-CAM uses the gradient of the target flowing
into convolutional layers to generate a rough heat map to
highlight important regions. As shown in Figs. 5(a) and 5(b),
the heat map activation pattern of fNIRSNet is different from
CNN. The heat map of DHRConv of fNIRSNet covers the
entire fNIRS channels. The 1× S DHRConv has channel-level
receptive fields, and the C × 1 DWConv has global receptive
fields. The heat map of CNN only covers a part of the fNIRS
channels, especially for the first two layers. This phenomenon
is related to the local receptive fields of convolutions. As the
depth of CNN increases, receptive fields gradually increase.
Thus, the heat map of the third layer tends to extend to the
whole channel.

Fig. 6 illustrates the grand average of all subjects. Fig. 3(c)
shows the fNIRS channel locations. The motor cortex regions
in contralateral hemispheres are well-activated when subjects
perform finger-tapping tasks [5]. For RHT and LHT, HbO
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Fig. 5. (a) and (b) are the Grad-CAM visualization of fNIRSNet and CNN for Subject 1, respectively. (c) and (d) represent the t-SNE visualization
of fNIRSNet and CNN for Subject 1, sequentially.

and HbR located in the anterior regions of C3 and C4 show
significant changes at Ch 5, 6, 15, and 16, while the peak of
hemodynamic responses is delayed by nearly 8 s. Unlike RHT
and LHT, hemodynamic responses of the FT task are well-
activated at 5 s. After the task period (0–10 s), signals still have
solid hemodynamic responses. Therefore, convolutions require
wider scales or receptive fields to extract delayed features. The
kernel width of DHRConv is the number of sampling points,
which can fully extract features of delayed hemodynamic
responses. Grad-CAM illustrates the degree of contribution to
the predicted results by highlighting different fNIRS channels.
A redder color indicates a greater contribution. In Fig. 5(a),
the Grad-CAM of DHRConv exhibits an automatic chan-
nel selection function that removes redundant signals and
selects regions of interest to improve robustness. Compared
to local receptive fields, DWConv with global receptive fields
can extract long-range contextual information and focus on
activation patterns in different brain regions. PWConv facili-
tates information interaction among the channels of DWConv.
In Fig. 5(a), DWConv shows highlighting for HbR of the
LHT task, while PWConv extends the highlighted distribution
to HbO.

The t-SNE [44] is used to visualize features learned by
the FC layer in a two-dimensional space. In Fig. 5(c), the
t-SNE of fNIRSNet has a distinct feature distribution that
intra-clusters are tightly together and inter-clusters are highly
separated into a triangular structure. However, Fig. 5(d) shows
that the features learned by CNN exhibit non-separability in
the middle region. Therefore, fNIRSNet has excellent feature
learning capabilities.

E. Pooling and Dropout
The architecture of fNIRSNet does not use pooling or

dropout. We are interested in whether these components can
further improve performance. A 2 × 1 average pooling layer
is inserted between the DHR and global modules. A dropout
layer with a dropout rate of 0.5 is added after the global
module. In Table VII, average pooling and dropout do not
enhance performance. The average pooling reduces model
parameters and dropout prevents overfitting. In addition, aver-
age pooling has a higher impact on performance deterioration
than dropout. They may lead to underfitting and decreased
learning capability because fNIRSNet has fewer model
parameters.
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Fig. 6. Grand average of the fNIRS signals over subjects. The X-axis interval is [−2, 24] s and the Y-axis interval is [−0.0038, 0.0085] mM·cm. The
red vertical dotted lines indicate the end of the task period (0–10 s). The solid and dotted curves represent HbO and HbR, respectively. The red,
blue, and green curves correspond to RHT, LHT, and FT, respectively.

TABLE VII
SUBJECT-SPECIFIC EXPERIMENTAL RESULTS ON THE UFFT DATASET

Fig. 7. Parameter sensitivity of fNIRSNet for subject-specific experi-
ments on the UFFT dataset.

F. Parameter Sensitivity

Parameter sensitivity is presented for F1 and F2 of
fNIRSNet. Fig. 7 shows the average accuracy of the UFFT
dataset in subject-specific experiments. We found that increas-
ing F2 can improve the classification performance of
fNIRSNet when F1 is fixed. Increasing F2 helps the global

module capture the contextual dependencies of fNIRS chan-
nels. When F1 equals 4, the classification performance
gradually saturates as the value of F2 increases to 32. There-
fore, we recommend setting the value of F2 to at least twice
that of F1 if other researchers apply fNIRSNet to their data.

V. DISCUSSION

Currently, evaluation protocols for fNIRS classification are
confusing. Deep learning-based fNIRS classification research
has become popular in recent years, while some early proto-
cols for open-access datasets are based on traditional machine
learning classifiers. We found that these protocols are not suit-
able for evaluating the performance of DNNs. Although these
studies may achieve higher performance, experimental results
need to be further investigated. For example, Shin et al. [4]
classified signal segments from the same time for each subject
on the MA dataset, which does not validate classifier general-
ization across different time segments. In addition, Shin et al.
suggest that their study is not dedicated to benchmark
machine learning classifiers [4], while some studies follow
the protocols. Sun et al. [23] used DNNs to perform 5-fold
cross-validation on 60 segments from the same time segments.
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Fig. 8. Subject-specific experiments are conducted using various
sliding window sizes on the UFFT dataset.

However, DNNs are difficult to learn more generalized feature
representations from a small amount of data. Kwak et al.
[45] reported the average and maximum accuracy among
10 segments in a trial. Bak et al. [5] published the UFFT
dataset and used leave-one-out cross-validation (LOO-CV) to
evaluate classifier performance. However, LOO-CV is rarely
used to evaluate DNNs considering the high cost of training.
More importantly, the above studies do not conduct subject-
independent experiments. Our previous work [11], [46] used
KFold-CV and LOSO-CV for trial-wise fNIRS classification.
Moreover, we segment signals by sliding windows to increase
the number of samples to alleviate overfitting.

The design philosophy of fNIRSNet is different from other
models. Our motivation is to introduce domain knowledge into
the model design: 1) convolutions with channel-level receptive
fields extract the features of slow delayed hemodynamic
responses rather than small convolutions with local receptive
fields sliding over fNIRS signals; 2) convolutions with global
receptive fields help discover the activation patterns of differ-
ent brain regions. Other deep models that do not introduce
domain knowledge struggle to extract more meaningful and
discriminative features. Moreover, these over-parameterized
models would bring more optimization problems on a limited
dataset. fNIRSNet with fewer parameters and FLOPs achieves
higher classification performance and reduces BCI hardware
resource consumption significantly. In subject-specific experi-
ments, fNIRSNet with only 498 trainable parameters yielded
better results than CNNs with millions of parameters on MA.
In addition, the model inference time (see Table III) is much
lower than other baseline models. Therefore, our study may
inspire more knowledge-driven models.

Our study still has limitations. The size of the sliding
window limits the long-range dependency of hemodynamic
responses, potentially affecting classification performance.
This situation is illustrated by subject-specific experiments on
UFFT. The step size is set to 1 s and signals for each trial
are split into 8 segments to maintain a fixed total number of
data samples. As shown in Fig. 8, the average accuracy of
fNIRSNet improves from 68.67% to 71.79% when the sliding
window increases from 3 s to 7 s, i.e., the size of DHRConv

increases from 1 × 40 to 1 × 93 (i.e., 13.3 Hz × 7 s). After
that, the average accuracy starts to decrease. However, this
blurs the boundary between the task and rest period because
some of the signals in the rest period are also considered as
a continuation of the task period. For example, the eighth
segment of the signal covers a time interval of [7, 17] s when
the window size is 10 s, which includes a 7-second rest period.
Furthermore, this continuation may interfere with real-time
classification for hybrid EEG-fNIRS BCIs. EEG has returned
to the resting state, whereas fNIRS still has a delayed response
because its lower temporal resolution compared to EEG. The
primary aim of this study is to investigate fNIRS classification
during the task state. In fact, fNIRS classification studies have
rarely discussed this continuation operation, which could be
related to specific tasks.

In the future, we will explore more research directions, such
as mental health detection [47], [48], brain-related disorder
diagnosis [49], Hamilton–Jacobi–Bellman (HJB) equation for
training fNIRS models [50], and fusion of EEGNet [51] and
fNIRSNet for hybrid EEG-fNIRS BCIs.

VI. CONCLUSION

In this study, we rethink delayed hemodynamic responses
for fNIRS-based BCIs and propose a concise and efficient
fNIRSNet for fNIRS classification. We summarize three
design guidelines for fNIRSNet. The proposed model with
fewer parameters and FLOPs achieves better classification
results on open-access datasets. Furthermore, Grad-CAM and
t-SNE explain the role of each convolutional layer and fea-
ture learning capabilities. fNIRSNet is ideally suitable for
real-world applications and reduces the hardware configuration
of BCI systems.
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