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Abstract— Motor brain-computer interface (BCI) refers
to the BCI that decodes voluntary motion intentions
from brain signals directly and outputs corresponding
control commands without activating peripheral nerves
and muscles. Motor BCIs can be used for the restoration,
compensation, and augmentation of motor function by
activating the neuromuscular circuit and facilitating neural
plasticity. The essential applications of motor BCIs include
neurorehabilitation and daily-life assistance for motor-
impaired patients. In recent years, studies on motor
BCIs mainly concentrate on neural signatures, movement
decoding, and its applications. In this review, we aim
to provide a comprehensive review of the state-of-the-art
research of electroencephalography (EEG) signals-based
motor BCIs for the first time. We also aim to give
some insights into advancing motor BCIs to a more
natural and practical application scenario. In particular,
we focus on the motor BCIs for the movements of the
upper limbs. Specifically, the experimental paradigms,
techniques, and application systems of upper-limb BCIs are
reviewed. Several vital issues in developing more natural
and practical upper-limb motor BCIs, including developing
target-users-oriented, distraction-robust, and multi-limbs
motor BCIs, and applying fusion techniques to promote the
natural and practical motor BCIs, are discussed.

Index Terms— BCI, EEG, motor BCI, upper limb move-
ment, movement decoding, neural activity, application
systems.

I. INTRODUCTION

RECENT advances in neuroscience and artificial intel-
ligence prompted the development of brain-computer

interface (BCI) [1]. BCI can record, decode and translate
brain signals directly and build a pathway between brains and
peripheral devices. Instead of evoking specific brain signals’
modalities relying on external visual, auditory, and sensory
stimuli, motor BCIs can reflect people’s endogenous intentions
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to the voluntary movements, and thus provide a more natural
and intuitive control.

Motor BCIs can be used for the restoration, compensation,
and augmentation of motor function. Many patients suffer
from diseases that cause motor disabilities, such as stroke,
amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI),
Parkinson’s disease, and multiple sclerosis. For these patients,
though they can only complete some in-balanced, distorted,
or incomplete movements, intact or residual cerebral motor
function areas can still send intentional commands. In this
case, motor BCIs can decode movement intentions from
brain signals directly, which can be further combined with
orthosis, neuroprostheses, and robotic arm to be applied in
neurorehabilitation and daily life assistance. Besides, active
motor BCIs with neurofeedback can help patients rebuild the
neuromuscular pathway and also facilitate neural plasticity [2].
For able person, they can also benefit from combing motor
BCIs with exoskeletons for motor function augmentation or
combining it with robotic arm to reduce physical burden.
Although an able person keeps intact motor function, and
thus detecting movement intentions from electromyography
(EMG), sensors, or camera data is also feasible, motor BCIs
have unique value because brain signals occur earlier.

BCIs can be invasive or noninvasive. Invasive BCIs detect
brain signals from neuronal firing potentials or local field
potentials, which are mainly studied in nonhuman primates and
rodent animals, and also in clinical trials of humans as pilot
studies [3]. Studies on invasive motor BCIs covered the motor
behaviors of motor planning and executing, kinematics and
kinetics parameters’ decoding, and neural encoding patterns in
the motor cortex. For the practical application of motor BCIs,
noninvasive recording from electroencephalography (EEG)
signals has the advantages of convenience, low cost, less
trauma, and not relying on medical and surgical expertise.
Considering this reason, in this review, we concentrate on
EEG-based motor BCIs.

According to the different ways of inducing motor function,
the EEG-based motor BCIs can be categorized into motor
imagery (MI) and motor execution (ME) [4]. MI corresponds
to the mental rehearsal of motor action without any overt motor
output [5]. During MI, the subjects are required to imagine
the repetitive motion of certain body parts (usually hands,
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foot, or tongue), and each part can correspond to one specified
output command. EEG oscillations of MI include sensorimotor
rhythms (SMRs) or mu rhythms with the event-related power
increase/ decrease known as event-related synchronization/
desynchronization (ERS/D). Different from MI, ME is more
natural because the motion tasks of ME are consistent with
the real movement intentions [6]. During ME, the subjects
are required to move or attempt to move, such as opening
hand, grasping, or moving hand in one direction. It is worth
mentioning that it is difficult for most motor-impaired patients
to execute desired movements. More often, they only keep
some residual or completely-lost motor function. But even
so, decoding movement intentions encoded in brain signals
is still feasible. EEG oscillations of ME contain both the
event-related potential and oscillatory components associated
with the preparation and execution or attempted execution of
voluntary motion [7].

To date, most of the studies on EEG-based motor BCIs
involve upper-limb or lower-limb movements. For the upper
limb, it is more proximal, which can imply better performance
in brain signal decoding. Besides, compared with lower limbs,
upper limb movement contains more kinds of movement types,
and also the coordination of upper limbs, including hands,
plays an important role in daily life. Controlling a wheelchair
manually can also help patients with lower limb impairment.
Thus, in this review, we mainly focus on the EEG-based motor
BCIs for upper limb movement, including shoulder, arm,
elbow, hand, wrist, and finger movement. Correspondingly, the
removal of movement artifacts and electromyogram (EMG)
artifacts mainly caused by proximal upper-limb movements
were highlighted. Moreover, the decoding methods and future
insights for the upper limb were introduced, which could be
extended to the lower-limb movement as well.

To study a motor BCI, a typical flow is designing an
experimental paradigm and collecting data, pre-processing
signals, correlating the neural activity, extracting features and
decoding movement intentions, and testing the decoding model
online or further in real application systems. Though there
are various reviews on the paradigms, or neural correlations,
or algorithms, or applications of BCIs, no review has tried to
give a comprehensive review on the motor BCIs of the upper
limb. In this paper, following the flow, we aim to review the
studies on EEG-based motor BCIs for upper limb movement
as well as describe limitations and opportunities for developing
more natural and practical motor BCIs. The organized flow of
this review is presented in Fig. 1.

II. EXPERIMENTAL PARADIGMS

A. Experimental Paradigms of MI
The MI can be divided into kinesthetic MI and visual

MI. The kinesthetic MI is supposed to involve kinesthetic
experiences and to perceive muscle contractions and stretching
mentally, whereas the visual MI requires the visualized
imagination of action from a first-person or third-person
perspective [8]. For MI-BCI, the most common movement
cases are the imagined motion of separate body parts,
including the left or right hand, foot, and tongue [9], [10], [11].

These movement cases are selected to generate enough
discriminative neural activation patterns for classification.
According to the somatotopic organization of the primary
motor cortex (M1), movements of the same limb are usually
with close activation regions of the cortex and share similar
SMR modulations, which are hard to be discriminated
from EEG signals. Thus, movements of different limbs are
more beneficial to establish an effective MI-BCI. However,
this setting can cause counterintuitive connections between
movement actions and real output commands.

Recent studies turn more attention to establishing an
intuitive MI-BCI. Edelman et al. [12] designed an experiment
of complex motor imaginations consisting of right-hand
flexion, extension, supination, and pronation movements.
Similar upper-limb imagination paradigms include forearm
extension, hand grasp, and wrist supination [13], [14],
right-hand opening/closing [15], and finger movements [16].
Pereira et al. [17] investigated the EEG patterns of the
interacting processes related to a single reach-and-grasp
movement’s imagination task. Besides movement types’
decoding, some studies also focused on imagined body
kinematics (IBK). In [18], Jeong et al. proposed an intuitive
upper extremity imagery BCI, which decoded movement
velocities of both imagined and executed arm-reaching tasks
in six orthogonal directions. Kim et al. [19] decoded complex
movement velocities during executed or observed/imagined
movement tasks. Though these studies have explored to design
a more intuitive and natural MI-BCI, some substantial works
on improving the decoding performance, testing the systems
online and in real applications, and also testing its with target-
users, are still in need.

B. Experimental Paradigms of ME
Compared with MI, the ME is more natural because

it decoded the real movement intentions related to actual
movements. Studies on ME include movement type recog-
nition, movement onset detection, and movement kinematics
decoding. Movement types’ recognition is mainly studied for
the sake of applications in daily life assistance, and thus its
paradigms should be natural and easily transferable to people
with residual or completely lost motor function. Common
movements include elbow extension/flexion, forearm prona-
tion/supination, palmar/lateral grasp, and hand opening/closing
[20], [21], [22], [23]. Besides, in most daily scenarios,
a grasp is combined with a reaching movement, and thus
reach-and-grasp tasks are designed. The reach-and-grasp is a
point-to-point movement, and when the hand reaches the target
object, corresponding grasp actions are executed according
to the types and shapes of objects, including movements of
palmar grasp, pincer grasp, lateral grasp, wrist supination,
and pinch [24], [25], [26], [27], [28]. Notably, when different
objects are placed in different positions, this reach-and-grasp
task-based BCI decoded neural information that encodes both
grasp types and movement directions.

For movement onset detection, this kind of BCI discrimi-
nated intentions to move from the rest state [29], [30], [31].
Movement onset detection is vital for an online system to
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Fig. 1. Overview of the organized flow of this review.

avoid false alarms. A two-staged strategy can be adopted by
detecting movement onset first and then decoding movement
types or kinematics [32] and [33]. Some studies also skipped
the first stage by regarding the rest state as one class in
movement decoding [28].

Both the movement types’ recognition and movement
onset’s detection correspond to the movements’ discrete classi-
fication. For the movement kinematics decoding, it contained
both the classification of direction, speed level, and torque-
level and the continuous reconstruction of speed/velocity
and position/trajectory parameters. Center-out is a classical
paradigm for movement kinematics decoding. It is a point-
to-point reaching movement, and the subjects are required
to move the hand from the center point to one target point
[34], [35], [36], [37]. Usually, the movement directions are
orthogonal to each other in 2D or 3D space [34], [35].
This paradigm is basic and does not correspond to one
specific application scenario, nevertheless, a basic paradigm
is more beneficial to explore motor BCIs as a preliminary
research and has better generalization performance. Numerous
studies have adopted the center-out paradigm to study upper
limb movement directions’ decoding [35], [38], [39], [40],
[41]. Besides, Robinson et al. [42] performed a center-
out paradigm at fast and slow speeds, decoded the speed
level, and also reconstructed speed components in each axis.
Though several studies also used the center-out paradigm
for continuous kinematics reconstruction [18], [34], [41],
[43], Wang et al. [44] discussed its limitations in continuous
movement decoding and proposed an improved center-out
paradigm, in which the subjects were asked to move the hands
in four orthogonal directions at an angle of 45◦ from the
cartesian coordinate axes.

For continuous kinematics decoding, pursuit tracking
task (PTT) is widely explored [45], [46], [47]. In this
experiment, the subjects are asked to control the cursor to
track a continuously moving object. Kinematics parameters
of positions, velocities, and accelerations are regressed.
These studies indicated that continuous kinematic movement
information was encoded in low-frequency EEG bands.
However, several issues need to be noticed in continuous
kinematics decoding. First, in the PTT experiment, eye
movement along with the target cursor is inevitable and results

in [45] suggested that the recorded position and velocity
trajectories could be decoded during observed movements.
Thus, decoding continuous movements from brain signals
encoding motor function without visual information need
further research. Second, the decoded movement profiles
and low-frequency EEG signals are in the same frequency
range, and thus the effectiveness of the linear model in
interpreting its correlations is doubtable, which has been
discussed in [19] and [48]. Finally, the continuous decoding
performance in existing studies is still weak with the
correlations between the decoded and recorded kinematics
profiles being around 0.4. This is due to the low signal-to-
noise ratio of EEG signals and also the difficulties in solving
the regression problems. In this case, using EEG signals
to decode the real-time position, velocity or acceleration of
movement along with the sliding time windows is hard,
which causes the unsatisfactory decoding performance of
continuous movement. Thus, some solid work to demonstrate
continuous movements can be decoded from EEG signals,
and further improving its performance is necessary. Lately,
in 2023, Wang et al. [49] proposed a Motion Trajectory
Reconstruction Transformer (MTRT) model, and fused EEG
signals with the geometric information of human joint points
to improve continuous movement trajectory’s decoding, which
provided an inspiring direction for continuous movement
decoding.

Several representative experimental paradigms for EEG-
based upper-limb motor BCIs, including MI BCIs and ME
BCIs, are summarized in Fig. 2.

III. NEURAL CORRELATES

For a motor BCI, correlating neural activities with
physical movement behavior is essential. This could not
only help us know the brain activation patterns associated
with movements but also provides instruction for devel-
oping the decoding model. Furthermore, by the neural
correlates, we can inspect the collected and processed
data for whether being contaminated by artifacts or not.
Thus, before establishing the decoding model and further
application, the plots of neural correlates are encouraged to
be done.
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Fig. 2. The summarization of experimental paradigms for upper-limb motor BCIs, including (a) Motor imagery (MI) BCI and (b) Motor execution
(ME) BCI.

A. Movement-Related Cortical Potentials (MRCPs)

It is known that the MRCPs encode movement-related
information associated with the planning and execution or
imagination of voluntary movement, and can be captured from
low-frequency EEG signals (usually < 10 Hz). The MRCPs
can be categorized as a visually-cue-based movement-related
potential (MRP) or a self-paced Bereitschaftspotential (BP)
associated with motor preparation [50]. Contingent negative
variation (CNV) is also a cue-based potential, and CNV is
time-locked to the cue onset and MRP is time-locked to the
movement onset. To elicit the CNV, a preparation cue for
subsequent movement instruction and an imperative cue to
instruct the subjects to execute movements immediately are
necessary. The illustration of CNV, MRP, and BP is presented
in Fig. 3 (a).

Both the cued MRP and self-paced BP contained three main
chronological components, i.e., the early component, the late
component, and the re-afferent potential [50], as depicted in
Fig. 3 (b). The early component (early BP or MRP) occurs
up to 2 s before movement onset and shows a slow negative
deflection. It represents preparatory somatotopic organization
mainly in the supplementary motor area (SMA) [51]. The late
component consists of a late BP or MRP and a motor potential
(MP). The late BP starts approximately 400∼500 ms prior
to movement onset with a sharp negative deflection. Until

around 100 ms preceding the movement onset, the MP arises
at this time and negatively peaks just after the movement onset.
The late component occurs mainly in the contralateral primary
motor cortex (M1) [52]. After the negative peaking, there is
a positive rebound, which is known as re-afferent potential
or movement-monitoring potential (MMP) and reflects neural
modulations mainly in the primary somatosensory area (S1)
[53]. The MMP could be related to the fine control of
movement.

The readiness potential (RP, includes early-and-late BP or
MRP) and MP correspond to the movement planning and
execution, respectively. Detecting movement intentions from
RP shows the feasibility to predict movements before the
movement onset. The negative phase of MRCP is modulated
by various factors such as the movement’s complexity
and discreteness, exerted force or torque level, cerebellar
lesion, and speed and precision of movement [54]. These
differences imply the effectiveness of using the MRCPs to
inspect movement. To visualize MRCPs, averaging technique
is common because of the low signal-to-noise ratio of
EEG signals and the relatively fixed time delay of elicit
potential [55].

Previous studies showed that there were obvious MRCPs
associated with unimanual and bimanual movements. In [24],
[28], [56], and [57], larger negative offsets were observed in
the centerline (Cz) compared to the contralateral or ipsilateral
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Fig. 3. (a) Illustration of contingent negative variation (CNV),
movement-related potential (MRP), and Bereitschaftspotential (BP).
(b) Different chronological components of BP, including the early BP, late
BP, motor potential (MP), and movement-monitoring potential (MMP).

hemisphere. For unimanual movements, a contralateral effect
was observed [39], [56], [57]. Studies in [28] and [39] showed
significant differences between unimanual and bimanual
movements. In [33], Jochumsen et al. showed that the MRCPs
of palmar grasp tasks can be influenced by speed and
force for both healthy subjects and stroke patients. In [24]
and [56], MRCPs varied between different hand movement
types. In [29], Bi et al. showed that the MRCPs varied between
attended and distracted states during the upper-limb motion
task.

B. Event-Related Oscillations
Besides the MRCPs, event-related desynchronization/

synchronization (ERD/ERS) is found in voluntary motion
execution and mental motor imagery with frequency-specific
neural modulations in M1 [12]. MRCPs and ERD/ERS
reflect different aspects of sensorimotor modulations and
provide complementary motor information. ERD and ERS
are event-related and frequency band-specific power decrease
and increase in the alpha/mu (8–13 Hz) and beta (13–30 Hz)
rhythms over the sensorimotor or motor cortex [12]. These
phenomena can be considered as a decrease or increase in the
synchrony of neuronal populations [55].

For upper limb movements, ERD occurs with mu and
central beta rhythms desynchronization during the motor
preparation, execution, and imagery [5]. It starts attenuation

before movement onset and over the contralateral hemi-
sphere and becomes bilateral toward and during the hand
movement [58].

Accompanied by ERD, ERS occurs as a power rebound
after movement with a rest state [55]. ERS arises in the
beta band over the ipsilateral hemisphere or near the midline.
The maximum of the beta ERS coincides with the reduced
excitability of motor cortex neurons [59]. Results in [60]
demonstrated the ERD/ERS difference was related to action
difference. Common ERD/ERS visualization methods include
the band power method [61] and event-related spectral
perturbation [62].

C. Source Imaging
While scalp EEG provides spatial neural information in

sensor space, the measured scalp signals of electrodes do
not directly indicate the distribution and location of sources.
An active electrode on the scalp measures the local-part
electric field generated by neurons spiking. Due to the volume
conduction, the electric field of each source spreads. Thus,
the electrode does not solely record the neuronal activities
underlying it. Rather, each electrode could pick up electric
signals from different sources [63]. Besides, the recorded
scalp electrophysiological signals can be distorted when being
conducted by the skull, scalp, and other tissues.

To localize the electric sources in the brain, we can estimate
them by solving the forward and inverse problems. The EEG
source localization methods have been reviewed in [64]. For
the upper limb movement, EEG source imaging has been
applied to observe the activation patterns in source space
[37], [44], [45], [46], [65]. In [44], the M1, SMA, superior
parietal lobule cortex, frontocentral cortex, and dorsomedial
occipital cortex in bi-hemispheres were activated during
hand movement execution in a center-out task. In [45],
similar results were observed for the position and velocity
information encoded during movement execution. In [46],
parieto-occipital activation patterns were observed for the
velocity and acceleration decoder of a hand PTT task.

IV. MOVEMENT DECODING

A. Artifacts Removal
Recorded EEG signals are easily contaminated by envi-

ronmental and physiological artifacts [66]. Thus, artifacts’
removal is essential for linking inherent neural activities
with motor behavior. To deal with artifacts, three procedures
including artifact avoidance, removal, and correction can be
involved. First of all, unnecessary motion not associated
with the experimental task should be avoided, and also the
subjects are asked to fix their gaze on the screen to avoid
unnecessary ocular movement. Though avoiding artifacts to
obtain desired EEG signals is an ideal way, some physiological
and non-physiological artifacts are still inevitable in practical
operations. Hence, artifacts, including muscular artifacts,
eye blink and ocular movement artifacts, cardiac artifacts,
motion artifacts, electrodes pop and drift, and electromagnetic
interference, should be removed for upper-limb BCIs.
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1) Muscular Artifacts: Muscular artifacts, also termed
electromyogram (EMG) artifacts, are caused by contracting
muscles. EMG artifacts can be detected from the whole
scalp and exhibit less repetition pattern. The spectral band of
muscular activity (∼20-300 Hz) overlaps with beta and gamma
rhythms, which encoded oscillated information of motion in
EEG signals. To attenuate EMG artifacts, usual techniques
include spatial filtering and independent component analysis
(ICA).

2) Eye Movement Artifacts: Eye movement artifacts corre-
spond to the visual tracking of target stimuli. Both ocular
movement and blink artifacts can lead to the EEG signals’
contamination, especially in the frontal area. One way to
remove the eye movement artifacts is based on vertical and
horizontal electrooculogram (EOG) signals. In [19], EEG
signals are first projected into independent components using
ICA, and then the components whose correlation coefficients
with EOG channels are above the threshold (usually 0.4) are
regarded as eye movement-related components and rejected.
The cleaned components are finally projected back to obtain
cleaned EEG signals. This method is linear and easy to
be implemented, but it needs extra EOG electrodes. Similar
methods can be found in [67] for the subspace subtraction
algorithm and in [68] for the sparse generalized subspace
subtraction algorithm. Other methods not requiring EOG
electrodes include blind source separation methods, e.g.
principal component analysis (PCA), canonical correlation
analysis (CCA), and ICA [69]. Notably, in data analysis of
motor BCIs, electrodes at the prefrontal area (e.g., AFz, AF3,
and AF4) are usually excluded because of EOG contamination
and less motor-related information.

3) Cardiac Artifacts: Cardiac artifacts include pulse artifacts
which can be introduced when electrodes are placed near
pulsating vessels such as the scalp artery, and it is related
to the pulsatile blood flow originating from the heart [70].
This pulse wave can be recognized with a frequency of
around 1.2 Hz. Besides, electrocardiogram (ECG) measures
the electrical activity of the heart and can be recorded along
with cerebral activity. The ECG artifacts can be removed using
a reference waveform, or by an automated interval histogram
method without a separate ECG channel [71].

4) Motion Artifacts: For motor BCIs, removing motion
artifacts is of vital importance, but it is often overlooked in
most studies. Different from muscle artifacts, which usually
originate from the head and neck musculature during motion
tasks, motion artifacts occur with limb or head movement.
Motion artifacts can be characterized as low-frequency and
large-amplitude oscillations. In contrast, muscle artifacts
are observed in high frequencies. MRCPs are easy to be
contaminated by motion artifacts in low frequency, and since
the motion artifact occurs accompanied by limb movement and
resembles the movement pace, it carries a lot of information
about the movement. Hence, removing motion artifacts is
important for decoding movement information from neural
signals, instead of from motion artifacts. Castermans et al.
[72] pointed out that motion artifacts could pollute EEG
signals strongly and also mentioned that this step is absent
in several published EEG analyses. Besides, work by Ló pez-

Larraz et al. [73] suggested that artifacts could over-optimize
the performance of motor BCI and result in a misleading
link between the oscillatory activity with motion behavior.
Even for stroke patients, motion artifacts still exist in the
paretic arm’s movement with their residual motor ability
[73]. However, techniques for removing motion artifacts using
a specific treatment are still lacking. In [39], Wang et al.
applied the artifact subspace reconstruction (ASR) algorithm
proposed in [74] for motion artifact suppression and showed
its effectiveness in removing irregular and large-magnitude
artifacts. Some further work on motion artifact removal and
revealing the correlation of motion artifacts with movement
decoding are needed. Besides, more attention should be paid
to treating motion artifact elimination as one vital part of data
preprocessing, especially for upper-limb motor BCIs.

5) Non-Physiological Artifacts: Besides physiological arti-
facts, non-physiological artifacts such as electromagnetic
interference, pops, and drifts should be considered. The line
noise of 50 Hz or 60 Hz can be suppressed by a notch filter
or removed as one part of ICA. Pops and drift artifacts are
caused by the impedance variations of scalp electrodes and
can be attenuated using the high-variance electrode artifact
removal algorithm [75].

6) Supplements: Besides the above-mentioned methods to
remove one particular kind of artifact, filters and wavelets
are also widely used for filtering. Filters and wavelets can
be applied to remove the noise at certain frequency bands
which are not overlapped with the frequency band of interest,
and simultaneously promote feature extraction in motor-related
frequency bands. There are various popular filtering methods
for EEG-based motor BCIs, for instance, fast Fourier transform
(FFT), Butterworth filter, Chebyshev filter, and finite impulse
response (FIR) filter. Compared with filters, wavelet transform
shows a well time-frequency tradeoff. Not only removing
artifacts, but artifact correction is also essential to help enrich
useful data. For bad electrodes, linear interpolation with
neighboring electrodes can be applied. It should be pointed out
that there is no optimal method for artifact removal. Besides,
while removing artifacts, some clean EEG data sacrifices.
Even so, eliminating artifacts is still crucial to explore the
neural correlates with movement behavior. EEG waveforms
and neural signatures can be plotted as one visualization tool
to inspect the effectiveness of artifact removal.

B. Feature Extraction and Decoding
1) Feature Extraction and Selection: In motor-BCI systems,

once raw EEG data are input, data processing is first
applied to reduce the influence of artifacts and noise on
EEG data, which would help increase the accuracy and
robustness of BCIs. After data processing, feature extraction is
conducted to capture the discriminated information according
to the neural patterns of different movement tasks. And
also, some studies in deep learning ignore this step by
capturing complex characterization implicitly using an end-
to-end model. The extracted features from EEG signals vary
from time-domain features and frequency-domain features
to time-frequency features, independent components, current
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sources, brain connectivity features, etc. Intrinsically, the
extracted features are associated with the neural correlations
of MRCPs, ERS/D oscillations, source analysis, and brain
networks during motor tasks. Extracting features associated
with neural activities makes the decoding model more
interpretable.

For the extracted features, some researchers may involve
feature (or channel) selection techniques to exclude redundant
data. The feature selection can help the model learn useful
information better and meanwhile prevent over-fitting and
reduce the computational burden. Mutual information, analysis
of variance (ANOVA), Fisher score, Pearson’s chi-square test,
etc. can be used to filter features statistically. Instead of
ranking the features using statistical characteristics, wrapper
methods, e.g., forward or backward feature selection, and
recursive feature elimination can select features by optimizing
the object function of the decoding model. Besides, PCA and
linear discrimination analysis (LDA) are also frequently used
for the dimension reduction process.

2) Movement Decoding: Based on the selected features,
the movement intentions can be predicted (before movement
onset) or estimated (after movement onset). The movement
prediction makes sense in both the movement preparation
period before Go-cue and also the movement reaction
period after Go-cue and preceding movement onset. Even
if movement estimation is conducted after movement onset,
it is also of value for motor-injured patients with residual or
completely-lost movement behavior.

From the perspective of the decoder, it can be divided
into classifier and regressor, corresponding to the movement
parameters’ classification and continuous regression, respec-
tively. For the classification of motor BCIs, the popular
classifiers in machine learning include the LDA, support
vector machine (SVM), decision tree, k-nearest neighbor
analysis (KNN), naïve Bayes classifier, etc. For the regression,
it includes multivariate linear regression (MLR), partial least
square (PLS), ridge regression, least absolute shrinkage
and selection operator (LASSO) regression, Kalman filter,
logistic regression, etc. In brief, the linear decoders could
establish the simple linear link between the EEG data and
movement parameters and improve the interpretability of
models, and the nonlinear decodes could capture the nonlinear
and non-stationary characteristics of EEG data. In addition
to machine learning tools, neural network models in deep
learning are widely explored for their remarkable learning
ability. In the EEG-based motor BCIs, popular deep learning
networks include the neural network (NN), convolutional
neural network (CNN), long short-term memory network
(LSTM), etc. Several models based on neural networks are
well-known for their impressive performance in motor BCIs,
e.g., the filter bank common spatial pattern (FBCSP) ()
[76], EEGNet [77], ShallowConvNet [78], DeepConvNet [78],
etc. Besides, several trendy models are in vogue for their
impressive performance, e.g., transformer [79], graph neural
network [80], and deep belief network. It should be noted that
most deep learning models are designed for MI-BCIs, and
more attention should be paid to ME-BCIs considering their
different neural patterns.

Apart from decoding movement intentions in a fixed win-
dow, developing a synchronized (cue-based) or asynchronized
(self-paced) system for continuous movement detection using
sliding windows is more meaningful. This procedure can
reflect the decoding performance along with time, and results
in [39] showed that the movement decoding performance
kept steady during the movement preparation period and
increased gradually with the decoding window involving more
movement execution period. Furthermore, continuous pseudo-
online or online decoding is more in line with the practical
motor-BCIs systems.

Moreover, several studies are dedicated to dealing with
the limitations of EEG data in developing a decoding
model, e.g., small datasets, non-stationarity, and low signal-
to-noise ratio. Brain signals are nonstationary and also vary
greatly across subjects and sessions. Training a more robust
decoder needs a larger amount of data. However, collecting
EEG data can be time-consuming and tiring for subjects.
Thus, several transferring techniques are introduced [81],
e.g., developing cross-subject [82], [83] and cross-session
[84] models. Generative adversarial network (GAN) [85] and
variational auto-encoders (VAE) [13] are frequently used for
data augmentation. Besides, the inherent non-stationarity of
brain signals and electrodes’ drifts can cause the trained
models in offline tests to have declining performance in online
tests. Therefore, online adaptive learning models are proposed
to cope with it [86].

Though numerous studies have explored improving the
decoding algorithms for motor BCIs, testing the models in
online or practical systems over both short periods and long
periods attracts less attention, especially using deep learning
models. The online system’s performance is determined by
multiple criteria, including true positive rate, false positive
rate, precision, response time, etc. To date, decoding models
based on machine learning are still preferable for online
systems. To advance deep learning in practical uses, a robust,
less-computing, and precise model is waiting to be verified.

V. APPLICATION SYSTEMS

The application systems of upper-limb motor BCIs mainly
include neurorehabilitation for motor recovery and assistive
systems for motor substitution. The typical application systems
reported in the literature are shown in Fig. 4.

A. Neurorehabilitation
Motor rehabilitation therapy aims to help restore or

reorganize impaired motor function based on motor relearning
and neuro-plasticity mechanisms. Traditional techniques like
bilateral arm training and constraint-induced movement
therapy show promising effects on improving upper-limb
motor function. However, they require residual movement
ability of the paretic limb. Robot-assisted rehabilitation
systems, including orthoses, exoskeletons, and other robotic
devices, have emerged to enable intensive and repetitive arm
training by providing assistance and resistance forces. For
robotic therapy, an active non-assist or active assist mode is
advantageous over a passive mode by involving the central
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Fig. 4. The typical application systems of EEG-based upper-limb motor BCIs.

nervous system (CNS) functionality in an active way [87].
Besides physical therapy, functional electrical stimulation
(EFS) is used as a rehabilitation way by inducing muscle
contraction via electrical stimulation on the skin surface.

For the rehabilitation systems, subjects’ active participation
in therapies is prone to promote proprioceptive feedback
and improve rehabilitation [88], [89]. To assist the subjects
actively, EEG-based BCIs have been developed as an effective
tool to recognize motor state from CNS directly rather than
from peripheral kinematic sensors, EMG, etc. [90]. Therefore,
it is also appropriate for patients with severe motor function
deficits. The combinations of BCIs with muscle stimulators
or robotic devices can rebuild neuromuscular pathways and
restore motor function by inducing neuroplasticity.

In this regard, pioneering work has been dedicated to
designing neurorehabilitation systems using BCIs and evaluat-
ing their rehabilitation performance. In 1999, Lauer et al. [91]
designed an implanted hand grasp neuroprosthesis controlled
by EEG signals. Latterly, Pfurtscheller et al. [92] reported an
EEG-controlled FES device for restoring hand grasp using
noninvasive surface electrodes. In following-up studies, motor
function improvement using the EEG-controlled closed-loop
FES systems has been detected [93], [94], [95], [96]. Not only
equipped with FES, the motor BCIs combined with robotic
devices, e.g. orthoses, exoskeletons, and robotic arms, are
also explored. In 2011, Ang et al. [97] designed an MI-BCI
with online robotic feedback. Latterly, in 2014, an MI-BCI
coupled with a Haptic Knob robot for arm rehabilitation was
proposed [98]. Frolov et al. [99] designed an MI-controlled
hand exoskeleton to open the affected hand for post-stroke
rehabilitation. Cantillo-Negrete et al. [100] presented an MI-
BCI coupled with a robotic orthosis for hand rehabilitation.

Besides the BCIs combined with robotic devices or FES
for neurorehabilitation, BCIs equipped with visual reality
(VR) feedback have also been demonstrated and reported an
improved motor function [101], [102], [103], [104].

The existing neurorehabilitation systems are mainly based
on MI-BCIs, which have shown similar cortical activation
patterns with actual movements [105]. Studies have shown
that detecting executed movement intentions from residual or

attempted movements is also feasible, and it is more
natural [20], [40]. Besides, in offline movement decoding, the
decoding of motor execution showed better performance than
MI [106]. Nevertheless, few studies have applied ME-BCIs
to develop therapeutic rehabilitation systems and assess their
rehabilitation performance with targeted users. Comani et al.
[107] designed a neuro-motor rehabilitation system integrating
EEG, virtual reality, and a passive robotic device, and involved
three post-stroke patients executing rehabilitation tasks for the
test. Though all patients showed increased participation in
rehabilitation, the proposed robot-based rehabilitation system
assisted passively. Antelis et al. [40] investigated the decoding
of natural movement attempts of paralyzed upper limbs, and
experimental results from six stroke patients showed that
significant continuous decoding of the affected limb was
obtained in 4 out of 6 patients. However, the rehabilitation
performance assessment over time is still lacking. Some
further work to design a natural neurorehabilitation system
using ME-BCI to control actively should be explored in the
future.

B. Assistive Systems
For patients suffering from muscular disorders or paralysis

of the upper limb, the loss of motor functions can severely
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restrict their life independence and decrease life quality. Thus,
besides motor rehabilitation, motor substitution driven by BCIs
is valuable to provide patients with daily-life assistance. While
meeting the needs of daily-life assistance for patients, using
BCIs to control the FES-based prosthetic arm or robotic arm
can generate the afferent-efferent feedback loop and further
facilitate motor function restoration.

For upper-limb movement assistance, the reaching and
grasping actions play a key role in activities of daily living.
The reach-and-grasp movements’ decoding in offline tests has
been demonstrated in both healthy subjects [24], [25], [57]
and patients [20]. Moreover, Tavella et al. [108] presented
a natural MI-BCI to control an FES neuroprosthesis and
involved four healthy subjects to carry out daily grasping
and handwriting tasks. Müller-Putz et al. [109] developed an
EEG-controlled grasp neuroprostheses system and involved
15 participants with high spinal cord injury to control the
neuroprostheses for grasping movements, including hand open,
rotation, lateral and palmar grasp, and rest. This team also
established an online natural simulation scenario based on
an EEG-based ME-BCI and an avatar’s robotic arm, and
15 healthy subjects were recruited to control the avatar’s
robotic arm and interact with virtual objects. Nann et al.
[110] proposed a hybrid EEG-and-EOG-controlled whole-
arm exoskeleton and evaluated its feasibility, safety, and
user-friendliness by involving hemiplegic stroke patients in
a drinking task. Besides, the feasibility of this hybrid BCI
for the semi-autonomous whole-arm exoskeleton control was
demonstrated with seven healthy subjects [111]. Recently,
Tang et al. [112] developed a hybrid-controlled wearable
robotic upper-limb system based on MI and object detection,
and the online test verified the effectiveness of the system
in assisting patients to complete target object grasping tasks.
Besides, for paralyzed patients with motor disabilities in both
upper and lower limbs, using an MI-BCI [113] or MI-based
hybrid BCI [114], [115] to control the wheelchair can assist
the mobility.

The applications of motor BCIs in daily life assistance
could further help improve rehabilitation. Soekadar et al. [116]
designed a brain-controlled hand exoskeleton to be applied in
life scenarios, and results showed an improved rehabilitation
performance of subjects in the ability to manipulate daily-life
objects. Cheng et al. [117] investigated the ability of the MI-
BCI-based soft robotic glove to incorporate with daily-living
tasks for stroke rehabilitation, and randomized controlled
experiments from eleven chronic stroke patients depicted the
rehabilitation improvement.

Performing rehabilitation tasks in a natural scenario could
help the participants engage in and activate the brain more
excitedly. However, its comparison of brain activation patterns
and rehabilitation performance with traditional therapeutic
tasks has not been studied as far as we know. Combining
daily-life assistance with neurorehabilitation in a natural living
scenario is valuable to be explored in future work.

VI. FUTURE INSIGHTS AND DISCUSSION

In past decades, the development of EEG-based motor
BCIs for upper-limb movements is flourishing, covering the

aspects of motor-related brain activation patterns, movements’
decoding, and application systems controlled by motor BCIs.
In Table I, we summarized several typical studies on EEG-
based upper-limb motor BCIs, especially in recent 5 years.
As the cognition of brain motor function and the decoding
techniques mature, it is time to focus on how to develop
a more natural and practical motor BCI. In this section,
we highlight vital issues to develop natural and practical motor
BCIs in the future, including developing target-users-oriented,
distraction-robust, and multi-limbs motor BCIs and applying
fusion techniques to promote the natural and practical motor
BCIs.

A. Natural Motor BCIs
A natural motor BCI is closer to a practical application

scenario and can reflect the participants’ intuitive and directly-
corresponding movement intentions. Such a natural motor BCI
is friendly, engaging, well-performance, and easy to use for the
participants.

For motor BCIs, the ME-BCI is more natural than the
MI-BCI. Instead of repetitive mental rehearsal, the ME-BCI
decodes the actual or attempted movement intentions. Besides,
studies reported better decoding performance of executed
movements than that of imagery movements [106]. For the
ME-BCIs, the basic experimental paradigms like the center-out
movements can be conducted as preliminary research, while to
develop a more natural and practical BCI, the experiment tasks
related to the actual application scenarios are more engaging,
e.g. reaching and grasping objects to drink or eat.

Apart from the natural experimental tasks, how to establish
a natural BCI-controlled application system should be
considered. First, the online systems should show well real-
time movement decoding performance, such as high accuracy
and fast response, and thus provide the participants with
a positive training experience and facilitate proprioceptive
sensory feedback. Besides, virtual reality can be combined
with motor BCIs to display imagined or attempted movements,
which can greatly augment the training enthusiasm of patients
[118]. Moreover, rehabilitation and assistance devices should
be designed to be flexible, convenient, and user-friendly [119].
In the future, more and more studies are welcome to develop
natural and practical EEG-based motor BCIs.

B. The Gaps of Motor BCIs Between Healthy Subjects
and Target Users

Though most studies in the field of EEG-based motor BCIs
involved healthy subjects as a preliminary test, the target users
of motor BCIs are mainly the disabled or patients with motor
impairment. There are differences between the healthy subjects
and target users for not only brain functions but also physical
motor behavior. For users with brain injury, e.g., patients with
traumatic brain injury, decoding movement intentions from
signals recorded at the injured area is hard. However, few
studies involving healthy subjects take this point into account.
It means that the decoding models validated in the healthy
subjects could be not appropriate for the real target users
at all.
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Besides, due to motor and cognition function disabilities,
the movements executed by the patients are usually reacted-
slowly, incomplete, distorted, or weak. The motor-related brain
signals are correlated to the movement response time, speed,
precision, torque level, etc. Therefore, there are differences in
the motion’s encoding patterns between the healthy subjects
and target users. Not only that, the factors like learning ability,
physical power, fatigue, and brain disease should also be
considered when developing neurorehabilitation or assistance
systems for patients. In a nutshell, to promote the motor BCIs
into practical applications, validating the proposed decoding
models and systems with the real target uses is necessary.

C. Motor BCIs Robust to Distraction
When developing a motor BCI for motor-impaired indi-

viduals in real application systems, the users’ physiological
states (e.g., fatigue) should be considered. Besides, the BCI
systems are usually tested in laboratory environments, and
when applying it to real application scenarios, the physical
noise from the environment could distract the users. Apart
from the mental and physical factors, when using the BCIs in
daily life, the users could be in a multitask-oriented state, e.g.,
using a BCI and talking with others at the same time, or using
a motor BCI for the paretic limb and simultaneously picking
up a cup using the unaffected limb. In all, to develop a more
natural and practical motor BCI, the distraction effects should
be considered, rather than preventing the users from doing or
thinking anything while using BCI.

We categorized the distraction effects on BCIs into four
classes, i.e., the physiological, physical, motor, and cognition
distraction. The physiological distraction corresponds to the
users’ state, e.g., fatigue, stress, anxiety, etc. The physical
distraction comes from the surrounding environment, e.g., illu-
mination and environmental noise. The motor and cognition
distractions are related to the multi-task operations of users.
The motor distraction corresponds to the movement distraction
from the other limbs, and the cognition distraction corresponds
to the mental cognition process. Several studies have discussed
the influence of distraction on neural activations and BCI
performance [101], [120], [121], [122], [123].

One solution to cope with the distraction effects on the
decoding model is to establish separate models in the attentive
and distracted conditions and adopt a hierarchical strategy to
first estimate whether there is a distraction and then call for
the corresponding movement decoding models [29]. However,
this strategy could be unsatisfactory if the attention state
is hard to discriminate by EEG signals. Another solution
is to develop a universal model, which can be robust to
distraction [124].

D. Multi-Limbs Motor BCIs
Existing studies on upper-limb movement decoding are

mainly limited to the single upper-limb movement and keep
the opposite upper limb still. This setting is to avoid movement
interference from the no-dominant upper limb and concentrate
on exploring the relationships between neural correlates
and dominant upper-limb movement behavior. However,

in practice, bimanual (bilateral upper limbs) coordination is
essential. For rehabilitation training, bilateral arm training can
facilitate rehabilitation after stroke [125]. Bilateral movement
training can facilitate cortical neural plasticity by reducing
interhemispheric inhibition and increasing recruitments of
the contra-lesional hemisphere and descending pathways.
Compared with unilateral movements, the bilateral imagined
or executed movements activated more areas of the brain,
which therefore maximize the neuroplastic benefits [126]. For
movement assistance, bimanual coordination is common in
daily life, e.g., eating, twisting bottle caps, and pouring water
into glasses. Furthermore, because of the variety of bilateral
movements, decoding bilateral movements to control brain-
machine systems can improve multidimensional control.

It should be noted that the brain activation patterns during
bilateral movement are not the simple superimposition of
unilateral movements. During the bilateral movements, the
brain signals are more complex and with stronger nonlinear
dynamics. Besides, the multi-class movement combinations
also pose a challenge for bilateral movements’ decoding.
In recent years, the bilateral movements’ decoding from
EEG signals arose of attentions from several research teams.
In 2018, Vuckovic et al. [127] discriminated unimanual
and bimanual movements from EEG signals in both ME
and MI tasks, and a significantly stronger ERD was
observed for the bimanual ME compared to unimanual ME.
In 2020, Schwarz et al. [28] discriminated the unimanual
and bimanual reach-and-grasp actions. Besides decoding
movement types, in 2021, Wang et al. [39] investigated
the neural signatures and movement directions’ decoding of
unimanual and bimanual movements. Afterward, this team
also explored the feasibility to decode the dominant hand’s
movement during bimanual movements [128]. Lately, to cope
with the weak multi-class classification performance, this team
proposed a neurophysiological signatures-driven deep learning
model to discriminate the unimanual and bimanual movements
[129]. In 2022, Jiang et al. [130] fused EEG and functional
near-infrared spectroscopy (fNIRS) as bi-modal signals to
characterize and discriminate the bimanual robot-assisted
cyclical movements. Thereafter, this team classified the
unimanual and bimanual coordination movements from EEG
signals, including the leftward, middle-ward, and rightward
tasks [131]. Based on this study, this group reconstructed
the bimanual movement trajectories [132]. In 2023, this team
reported a compound-limbs paradigm which integrated upper-
limb swing movemets to improve the decoding of lower-limb
stepping intentions [133]. To advance bimanual coordination
to brain-machine interaction, Handelman et al. [134] explored
completing a bimanual self-feeding task by manipulating
and coordinating two Modular Prosthetic Limbs based on
implanted microelectrode arrays and shared control. In future
work, more studies on decoding bilateral movements online
and validating them in real-time systems and with target users
are requisite.

E. Fusion Techniques of Data, Model, and System
To develop a natural BCI using EEG signals, the decoding

performance is vital. Nevertheless, the EEG signals are
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TABLE I
RESEARCH STUDIES ON EEG-BASED MOTOR BCIs OF UPPER-LIMB MOVEMENTS IN RECENT FIVE YEARS

nonstationary and have a low signal-to-noise ratio, which
severely limits their decoding performance. Though many
techniques have strived to solve this problem, because of the
inherent limitations of EEG data, it is not enough to improve
the decoding performance only by optimizing the decoding
algorithm. In this case, applying the fusion techniques can be
an alternative solution.

From the perspective of data, it is feasible to fuse the
EEG signals with prior information [135] or other signals
[116]. For the fusion with the prior information, for example,
different decoding models can be switched according to the
participants’ states, such as being attentive or distracted, and
this strategy could ease the influence of the human state’s
changing on movement decoding. Besides, the EEG data can
be fused with other physiological signals, e.g., EMG/EOG
signals and eye tracking data, or non-physiological signals,
e.g., computer vision or position sensor data, to enhance
the decoding performance, if available. For example, for
the participants with little residual motor ability, though the
complete movement intentions can hardly be captured from
EMG signals, utilizing EMG signals to detect the movement
onset is feasible [40]. Then, EEG signals can be used for
continuous movement intentions’ decoding, and this strategy

can effectively reduce the false alarm rate of the decoding
model.

From the perspective of the decoding model, the fusion
of features can help the model learn the neural information
associated with different aspects of brain activation patterns,
e.g., fusing the MRCPs with ERS/D oscillations [129].
Besides, ensemble learning can enhance BCI performance by
fusing different decoding algorithms [136].

Moreover, when developing the application systems,
intelligent assistive systems or shared controllers can be
applied to alleviate the users’ control burden by fusing human
intelligence with machine intelligence. Introducing the shared
controller, e.g., fuzzy controller, model predictive controller,
and sliding mode controller, can improve the systems’ stability,
robustness, and safety. For example, Wang et al. [137]
proposed a shared control model to fuse machine intelligence
and human intention automatically. Besides, a hybrid BCI
based on multiple brain signals can be effective by making
up for the shortcomings of one kind of BCI, such as the
combinations of MI with error-related potentials (ErRP) and
P300 as the control signals of a robotic arm [138], and MI
training combined with ErRP to improve BCI performance
[139].
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In all, though the state-of-the-art performance of EEG-based
motor BCIs is limited, this does not mean that the BCIs
cannot be applied in practice. In fact, motor BCIs have unique
values in translating movement intentions from brain signals
directly. EEG recording way is also creditable for its high
temporal resolution, safety, portability, low cost, etc. Thus,
the EEG-based motor BCIs are of high value for real-time
movement intentions’ decoding. One solution for promoting
them into practical applications is the fusion techniques,
including fusing EEG signals with other biomedical or non-
physiological signals, fusing the BCIs with prior information,
feature fusion, and ensemble learning, developing intelligent
assistive systems and shared controllers in application systems,
and using the hybrid BCIs.

VII. CONCLUSION

In this review, we introduced state-of-the-art research on
EEG-based upper-limb motor BCIs, including the experimen-
tal paradigms, neural correlates, movement decoding, and its
application systems. Moreover, with advances in decoding
techniques, research on EEG-based motor BCIs should no
longer just focus on whether motor-related information can be
decoded from EEG signals, but be committed to developing
more natural and practical motor BCIs. To this end, we give
several prospective insights on how to promote it, e.g.,
designing motor BCIs with natural paradigms and tasks,
establishing and validating the systems with target users,
developing multi-limbs BCI, considering distraction effects
in practical application, and utilizing fusion techniques to
improve the BCI or hybrid-BCI systems’ performance. In all,
we expect more progress in advancing motor BCIs to a more
natural and practical scenario in future studies.
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