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Abstract— Frontotemporal dementia (FTD) is frequently
misdiagnosed as Alzheimer’s disease (AD) due to similar
clinical symptoms. In this study, we constructed frequency-
based multilayer resting-state electroencephalogram (EEG)
networks and extracted representative network features to
improve the differentiation between AD and FTD. When
compared with healthy controls (HC), AD showed primarily
stronger delta-alpha cross-couplings and weaker theta-
sigma cross-couplings. Notably, when comparing the AD
and FTD groups, we found that the AD exhibited stronger
delta-alpha and delta-beta connectivity than the FTD. There-
after, by extracting the representative network features and
then applying these features in the classification between
AD and FTD, an accuracy of 81.1% was achieved. Finally,
a multivariable linear regressive model was built, based
on the differential topologies, and then adopted to predict
the scores of the Mini-Mental State Examination (MMSE)
scale. Accordingly, the predicted and actual measured
scores were indeed significantly correlated with each other
(r = 0.274, p = 0.036). These findings consistently suggest
that frequency-based multilayer resting-state networks can
be utilized for classifying AD and FTD and have potential
applications for clinical diagnosis.

Index Terms— Alzheimer’s disease, Frontotemporal
dementia, classification, resting-state multilayer network.

I. INTRODUCTION

THE prevalence of Alzheimer’s disease (AD) is rapidly
increasing worldwide, with no approved and effective

disease-modifying treatment available, significantly impacting
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the daily functioning and quality of life for patients [1].
AD is the most common form of dementia, characterized
by cognitive impairments in affected individuals that remains
poorly understood [2]. Frontotemporal dementia (FTD), often
misdiagnosed as AD due to similar clinical symptoms, such
as behavioral changes, executive dysfunction, language diffi-
culties, and motor impairments, represents another prevalent
form of dementia that poses significant safety risks for
affected individuals [3]. Decision-making abilities related
to medication management and meal preparation among
individuals with dementia carry potential risks leading to
severe consequences [4]. Therefore, accurate diagnosis of
AD from FTD, along with appropriate symptomatic treat-
ment, play a crucial role in addressing the needs of affected
individuals.

Patients with FTD typically exhibit a more rapid decline
in cognitive function, as well as shorter survival rates from
the time of initial diagnosis, compared to individuals with
AD. These underscore the importance of providing timely and
accurate diagnoses, along with appropriate treatment inter-
ventions [5]. Previous research utilizing structural imaging
has examined episodic memory, grammatical comprehension,
naming abilities, and the relationship between self-appraisal
and grey matter density in FTD and AD patients. That
is, individuals with FTD demonstrated poor self-appraisal
across all cognitive tasks, while those with AD exhib-
ited reduced grey matter density in the subgenual cingulate
region [6]. Meta-cognitive assessment studies have also aimed
to identify cognitive deficits specific to the two types of
dementia. Notably, metacognitive assessments have made sig-
nificant progress in exploring the awareness levels across
AD patients [7]. Furthermore, compared to AD patients,
those with FTD displayed greater monitoring disorders and
were less likely to utilize work experience for subsequent
improvement or accuracy enhancement of monitoring judg-
ments [4]. This supports the utility of metacognition measures
as a means of distinguishing AD and FTD. However, it is
important to acknowledge certain limitations associated with
these methods, such as their costliness, time-consuming nature,
and subjectivity. And more importantly, there is currently
limited neural evidence available for effectively differentiating
between AD and FTD.

In essence, during the resting state, our brain is still activated
and characterized by a specific brain network mode [8],
which has been widely clarified to correlate with brain
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cognition [9]. The resting-state network efficiently character-
izes the allocation of brain resources and aids in distinguishing
patients from healthy controls (HC) clinically [10], [11].
For instance, by adopting the developed convolutional neural
network model to classify individuals with Parkinson’s dis-
ease and HC, based on their resting-state EEG, an accuracy
of 99.2% was achieved [12]. As for AD, previous studies
reported an accuracy of 77% in classifying AD from matched
elderly HC [11], based on the resting-state eyes-closed EEG
rhythms. Compared to elderly HC, those with AD have been
characterized by low power in the posterior alpha rhythm as
well as high power in theta and delta rhythms [13]. EEG
rhythms are important features of collective behavior among
human brain neuronal populations and are closely related to
cognition. Furthermore, EEG is well-tolerated by patients,
unaffected by individual anxiety levels, and can be repeated
over time [14]. In this study, we hypothesized that AD and
FTD may present distinct frequency-based brain networks
in resting-state EEG that also may be neural markers to
differentiate between the two patient groups. Thus, the current
study aims to develop a frequency-based multilayer network
(FMN) framework for effectively differentiating AD and FTD,
based on the resting-state EEG. First, we developed the FMN
to represent the resting-state brain activity of all patients and
controls, in which the relevant bands were defined within
delta (0.5-5 Hz), theta 4-8 Hz), alpha 8-12.5 Hz), sigma
(12.5-15.5 Hz), and beta (15.5-30 Hz). Subsequently, FMN
features were retrieved from the resting-state EEG networks
of all participants and were then employed in distinct clas-
sifying models to accomplish the classification between AD
and FTD.

II. METHODS

A. Dataset
G∗Power 3.1 software was utilized to calculate the sam-

ple size of the used dataset. Using one-way ANOVA as
a statistical method, the parameters were set as effect
size f = 0.45, α = 0.05, 1-β = 0.95, and num-
ber of groups = 3, which showed that the total sam-
ple size should be at least 81. Herein, an open dataset
(https://openneuro.org/datasets/ds004504/versions/1.0.2) com-
prising eye-closed resting-state EEG datasets was utilized to
conduct a specific analysis of distinguishing between AD and
FTD, in which 36 participants (24 females, 66.4 ± 7.9 years
old) were diagnosed with AD, 23 participants (9 females,
63.6 ± 8.2 years old) were diagnosed with FTD, and the
remaining 29 (11 females, 67.9 ± 5.4 years old) served
as HC. The cognitive and neuropsychological status was
evaluated using the internationally recognized Mini-Mental
State Examination (MMSE), which yields scores ranging
from 0 to 30, and lower MMSE scores indicate more pro-
nounced cognitive declines. The average MMSE score for
individuals with AD was found to be 17.75 ± 4.5, while
for FTD, it was recorded as 22.17 ± 8.22, and the HC
consistently exhibited an MMSE score of 30. The duration
of the disease was measured in months, with a median value
of 25 and an interquartile range (IQR) of 24 -28.5 months.
No comorbidities related to dementia were reported within the
AD group.

B. EEG Recording
The recordings were obtained from the 2nd Department of

Neurology at AHEPA General Hospital in Thessaloniki by a
team of experienced neurologists. And a Nihon Kohden EEG
2100 clinical device with 19 electrodes (Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and
O2) was utilized. Each recording followed the clinical protocol
with participants seated and their eyes closed. Prior to the
recording session, the impedance per electrode was maintained
below 5 k�, and the sampling rate was set at 500 Hz. The
recording montages consisted of anterior-posterior bipolar and
referential montages using Cz as the common reference. The
received recordings adhered to specific amplifier parameters:
sensitivity set at 10uV/mm, time constant at 0.3 s, and
high-frequency filter set at 70 Hz. Each recording lasted
13.5 minutes for the AD group (a range of [5.1, 21.3] min),
12 minutes for the FTD group (a range of [7.9, 16.9] min), and
13.8 for the HC group (a range of [12.5, 16.5] min). In total,
485.5 minutes of AD, 276.5 minutes of FTD, and 402 minutes
of HC recordings were obtained.

C. Resting-State EEG Preprocessing
The preprocessing pipeline of the resting-state EEG signals

was as follows. A Butterworth band-pass filter 0.5-45 Hz
was adopted, and the signals were re-referenced to A1-A2.
Then, the Artifact Subspace Reconstruction routine (ASR) was
applied to correct an EEG artifact, removing bad data periods
that exceeded the maximum acceptable 0.5-second window
standard deviation of 17. Next, the Independent Component
Analysis (ICA) was conducted to classify “eye artifacts” or
“jaw artifacts” which were automatically rejected. 5-s data
segmentation and artifact trial removal (± 150 µV serve as
threshold) was also applied herein. After preprocessing, the
number of remaining segments (trials) was 146.56 ± 34.05 for
the AD group, 128.65 ± 39.46 for the FTD group, and
149.70 ± 16.56 for the HC group.

D. Resting-State Multilayer Network Analysis
Analysis procedures for resting-state EEG data were pre-

sented in Fig.1. First, we constructed resting-state multilayer
networks in five bands (i.e., delta, theta, alpha, sigma, and
beta) based on 5-second-long preprocessed segments. And
for all participants, these networks were constructed based
on the intra- and cross-frequency couplings, in which the
corresponding measurements of inter-electrode couplings were
accomplished by adopting phase-locking value (PLV) [15].
The PLV is skilled in capturing the non-linear phase syn-
chronization, and relying on this, PLV effectively quantifies
the phase synchronization between two brain regions [16],
as well as evaluates the association between brain network
linkage and cognition [15], [17], [18]. Therefore, following
the protocols adopted in the above studies, the PLV was also
used to estimate the phase-synchronization and then construct
the network. The Hilbert transform (HT) was employed to
establish the analytical signal H(t), which allowed us to
evaluate the instantaneous phases ϕx (t) and ϕy(t) of two given
time series x(t) and y(t),{

Hx (t) = x(t) + i H Tx (t)
Hy(t) = y(t) + i H Ty(t)

(1)
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Fig. 1. Analysis procedures for resting-state EEG data. (a) Resting-
state multilayer brain network construction, (b) properties of functional
network estimation, and (c) feature section and classification.

where HTx (t) and HTy(t) are the HT of the time series, x(t)
and y(t), which are formulated as:

H Tx (t) =
1
π

P.V .

∫
∞

−∞

x(t ′)
t − t ′

dt ′

H Ty(t) =
1
π

P.V .

∫
∞

−∞

y(t ′)
t − t ′

dt ′
(2)

where the P.V. represents the Cauchy principal value. The
analytical signal phases of ϕx (t) and ϕy(t) are as follows,

ϕx = arctan
H Tx (t)

x(t)

ϕy = arctan
H Ty(t)

y(t)

(3)

Here, PLV can be expressed as follows,

w plv
=

∣∣∣∣∣∣ 1
N

N−1∑
j=0

ei(ϕx ( j1t)−ϕy( j1t))

∣∣∣∣∣∣ (4)

where w plv is the connection weight estimated by PLV, t is
the time point, 1t denotes the sampling period, j denotes the
j-th sample point and N is the sample number of each signal.

For each participant, a weighted adjacency matrix, with
a dimension of 19 × 19, was first computed per segment
per band, and across all segments, the matrices were then
averaged to obtain a final matrix per band. The brain network
was constructed by assigning the wP LV (weighted phase
locking value) as the corresponding edge between each pair of
electrodes. To quantitatively assess the characteristics of the
PLV network, multiple metrics including clustering coefficient
(Clu), local efficiency (Le), global efficiency (Ge), character-
istic path length (L), and participation coefficient (Pc) were
measured. They are formulated as follows,

Clu =
1
N

∑
i∈θ

∑
j,l∈θ (wi jwilw j j )

1/3∑
j∈wi j

(
∑

j∈θ wi j − 1)
(5)

Le =
1
N

∑
i∈θ

∑
j,l∈θ, j ̸=i (wi jwil [d jl(θi )]

−1)1/3∑
j∈θ wi j (

∑
j∈θ wi j − 1)

(6)

Ge =
1
N
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i j

N − 1
(7)
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1
N

∑
i∈θ

L i =
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(8)

Pc =
1
N

∑
i∈θ
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1
N

∑
i∈θ

(1 −

∑
m

(
dm

i
di

)

2

) (9)

where wi j is the coherence value between i and j, N represents
the node number, and θ is the set of all nodes. The SPSS
statistics 17.0 was utilized in the current work to explore the
network differences among AD, FTD, and HC.

E. Feature Selection Analysis
In the present study, three categories were employed to

achieve feature extraction: intra-frequency coupling, cross-
frequency coupling, and graph features. And a total of
4470 metrics were obtained for subsequent investigation.
Concretely, cross-frequency phase-to-phase synchronization,
a form of cross-frequency coupling, was used to define the
balance between information integration and segregation. Tra-
ditional functional connectivity within each band was adopted
as an intra-frequency feature. Feature selection plays a crucial
role in determining the output by automatically identifying the
most relevant characteristics. Statistical tests were applied to
select features that exhibited the strongest relationship with the
output variable, and herein, the analysis of variance (ANOVA)
F-value statistics was employed for feature selection.

F. Classification Among the Three Groups
The classification performances of 12 machine learning

(ML) algorithms, including k-nearest neighbor (KNN) and
Gaussian Naive Bayes (GNB), support vector machine (SVM),
random forest (RF), gradient boosting (GB), decision tree
(DT), extra tree (ET), light gradient boosting machine (light
GBM), cat boost, Ada boost, extreme gradient boosting
(XGBoost), and ridge classifier, were evaluated on three classi-
fication problems: AD vs. FTD, AD vs. HC, and FTD vs. HC.
Additionally, for each ML algorithm, a 5-fold cross-validation
testing was employed, in which, the whole dataset is divided
into five roughly equal folds. And during each iteration, four
folds are used as the training set while the remaining fold is
used as the testing set. The model is trained on the training
set and evaluated on the testing set. This process is repeated
five times with each fold serving as the testing set once.

Multiple metrics, including accuracy, precision, recall,
F1 score and AUC score, that evaluate the classification
performances were calculated for each classification case.
Concretely, assuming AUC score represents the area under
ROC curve which plots true positive rate against false positive
rate, and the formulas defining other metrics are as follows:

Accuracy =
T P + T N

T P + T N + F P + F N
(10)

Precision =
T P

T P + F P
(11)

Recall =
T P

T P + F N
(12)

F1score =
2 × Precision × Recall

Precison + Recall
(13)
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where TP indicates the positive group of being correctly
classified, TN indicates the negative group of being cor-
rectly classified, FP indicates the positive group of being
wrongly classified, and FN indicates the negative group of
being wrongly classified.

G. The MMSE Prediction Based on Multiple Linear
Regression Model

Eventually, to achieve the prediction of individual MMSE
scores, by utilizing resting-state PLV and five network proper-
ties as variable, the multiple linear regression model was con-
structed. Thereinto, the key parameters of the multiple linear
regression model comprise independent variables, dependent
variable, and coefficients. Specifically, the dependent variable
is the score on the Mini-Mental State Examination (MMSE),
which serves as a measure of cognitive function. The inde-
pendent variables consist of 45 selected features chosen using
the ANOVA F-value statistical method, primarily encompass-
ing cross-frequency characteristics. These features primarily
encompass cross-frequency characteristics. Each independent
variable is associated with a coefficient that reflects its impact
on the dependent variable, and related coefficients for each
independent variable in the model are then estimated linearly
accordingly. Herein, to accurately assess its predictive capac-
ity, the leave-one-out cross-validation (LOOCV) strategy was
employed [19], where every time one subject would be left out
as the testing sample. Assuming N participants were involved,
within each LOOCV iteration, N -1 samples were utilized for
training while the remaining 1 sample was utilized for testing.
After evaluating the regression coefficient for each variable,
a prediction model was built based on current N -1 samples and
further utilized to predict individual MMSE score in the test
set. This process would be repeated N times until all samples
served as testing set for one time. Thereafter, prediction perfor-
mance was measured by calculating the correlation coefficient
between actual and predicted MMSE scores through Pearson’s
correlation analysis, while root mean square error (RMSE) was
calculated to measure prediction error,

RM SE =

√√√√ 1
N

N∑
t=1

(X t − Yt )2 (14)

where N denotes the participant size. X and Y are the actual
and predicted MMSE scores, respectively. Here, a smaller
RMSE accounts for a better prediction.

III. RESULTS

A. Differential Resting-State Networks in Five Bands
The within- and cross-frequency coupling differences in the

resting-state networks among AD, FTD, and HC are displayed
in Fig. 2. As illustrated, it can be observed that there were
stronger delta-alpha couplings in the AD group compared to
the HC group (p < 0.05, FDR corrected), while in terms of
theta-sigma coupling, the HC group exhibited stronger cross-
frequency linkages than the AD group. Regarding potential
differences between HC and FTD, stronger linkages were
found in the HC group for both intra-alpha and theta-sigma
couplings. Furthermore, when comparing the two patient
groups (AD vs. FTD), the AD demonstrated stronger values
in delta-alpha and delta-beta coupling, compared to the FTD.

Fig. 2. Differential resting-state networks among AD, FTD, and HC
within and across five bands. The red block denotes the stronger
linkages in A than in B, and the blue block denotes the opposite.

Fig. 3. Differences in network properties among AD, FTD, and HC. ∗

represents p < 0.05; ∗∗ represents p < 0.01.

B. Resting-State Network Properties Difference Among
AD, FTD, and HC

Based on the multilayer networks constructed by the intra-
and cross-frequency coupling, for each participant, the corre-
sponding resting-state network properties were then calculated.
And any potential difference among the three groups was
statistically investigated and presented in Fig. 3. From Fig. 3,
it can be observed that compared to the FTD, the HC exhibited
higher Clu, Ge, Le, and lower Pc and Cpl (t = 2.754,
2.252, 2.460, −2.908, and −2.765, respectively; p < 0.05).
Additionally, the Clu of AD was higher than that of FTD (t =

1.713, p < 0.05), while both Pc and Cpl of AD were higher
than those of HC (t= 2.726 and 1.961, respectively; p < 0.05).

C. Classification Among AD, FTD, and HC Based on
Resting-State Multilayer Network Topologies and
Properties

To improve classification performance and reduce compu-
tational complexity, the ANOVA F-value statistical method
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TABLE I
CLASSIFICATION PERFORMANCE AMONG AD, FTD, AND HC BASED

ON MULTILAYER RESTING-STATE NETWORKS

was used to select features. Herein, the classification algorithm
used was GNB, and to ensure the most satisfying performance,
varying numbers of features were selected to accomplish the
classification of AD and FTD; after applying the ANOVA
F-value statistical method, we found that the GBN classifier
can obtain the highest accuracy when the number of features
is 45. Based on multiple metrics of multilayer resting-state net-
works (i.e., within- and cross-frequency coupling and network
properties), we further classified individuals into three groups:
AD, FTD, and HC. A comprehensive approach was employed
to select an appropriate ML model, in which all 4470 features
were utilized as inputs for twelve ML methods. Thereafter, the
classification results are listed in Table I, relying on selected
features and a 5-fold cross-validation technique. Multiple mea-
surements (i.e., accuracy, precision, recall, F1 score, and AUC
score) were calculated to further evaluate the performance of
these ML methods. Just as displayed in Table I, Naive Bayes
achieved the best performance, with classification accuracies
of 0.811/0.862/0.847, precisions of 0.712/0.823/0.870, recall
rates of 0.810/0.900/0.867, F1 scores of 0.789/0.860/0844 and
AUC scores of 0.901/0.907/0.907 among AD /FTD, AD /HC,
and FTD /HC, respectively.

D. MMSE Prediction Based on Multilayer
Resting-State Networks

Through the ANOVA, the difference in MMSE was ana-
lyzed among the three groups (i.e., AD, FTD, and HC), which
did reveal significant differences (F = 119.735, p < 0.001).
Concretely, the MMSE of AD (17.75 ± 4.50) was lower than
that of FTD (22.17 ± 2.64), and the MMSE of FTD was
lower than that of HC (30.00 ± 0.00). Given the observed
differences in resting-state networks among AD, FTD, and
HC, these features can thus potentially serve as features for

Fig. 4. The relationship between actual (X-axis) and predicted (Y-axis)
MMSE scores. The blue-filled circles are the participants.

predicting an individual’s MMSE score. Fig. 4 illustrates the
relationship between predicted and actual scores, where the
X -axis represents the actual scores and the Y -axis represents
the predicted scores. There is a Pearson’s correlation coeffi-
cient of 0.274 (p = 0.036) between the predicted and actual
MMSE scores, along with an RMSE of 8.03%.

IV. DISCUSSION

The resting-state brain serves as a cornerstone for various
cognitive tasks [20], including attention and cognition control
[21], [22]. Abnormal activity in the resting brain is associated
with clinical psychiatric disorders such as depression, atten-
tion deficit hyperactivity disorder, and anxiety [23]. In this
study, we observed stronger delta-alpha couplings within the
resting-state network in AD compared to HC. Previous studies
have demonstrated that alpha activity is linked to individ-
ual behavioral performance [24], cognitive preparedness, and
attentional arousal [25], [26]. And delta oscillation has also
been found to correlate with human attention, reward pre-
diction, and motivation during task performance [27], [28].
Furthermore, a previous study revealed increased spectral
power and coherence analysis of delta activity in AD compared
to HC [29]. Therefore, it can be inferred that AD patients
exhibit hyperactivity within the delta-alpha bands due to a lack
of task-related attention. This lack of concentration impairs
their ability to complete tasks successfully. Importantly, our
current findings indicate that patients with AD display stronger
delta-alpha couplings compared to those with FTD. This
suggests that enhanced synchronization within these bands
may reflect an abnormal pre-configuration of related brain
resources that are essential for human cognition tasks involv-
ing attentional arousal. Moreover, it may serve as a valuable
index for differentiating between AD and FTD based on the
frequency information derived from multilayer EEG networks.

During the frequency coupling analysis, our study found that
the HC exhibited stronger theta-sigma couplings, compared
to both AD and FTD. The theta band is strongly associated
with memory encoding of concrete cognitive tasks [30], and
modulation of memory-dependent theta activation is linked
to EEG synchronization among a distributed network [31].
Our study further revealed that increased theta-sigma syn-
chronization played an essential role in healthy individuals
for preparing for subsequent cognitive tasks. This suggests



4526 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

that theta-sigma synchronization forms a global EEG net-
work among memory-related areas, contributing to the flexible
formation of the global network. However, AD or FTD
patients showed obvious memory loss and an inability to
respond flexibly to daily life events. The properties result
of multiple networks also confirmed this finding by showing
higher Clu, Ge, Le, and lower Pc and Cpl corresponded with
the HC, compared to patient groups, reflecting an increase
in information processing efficiency of healthy brains [24].
Regarding differences between HC and FTD, we reported
stronger resting-state network linkages in the alpha band for
the HC as well. In general, the alpha band is thought to
be associated with attentional arousal as well as cognitive
preparedness [25] involving information processing speed,
working memory, and inhibition [25], [32], [33]. Therefore,
network activity in intra-alpha and theta-sigma bands may
preconfigure crucial cognitive resources for subsequent events
revealing the potential of the brain for efficiently processing
information.

The EEG has become an effective diagnostic tool in most
cases of dementia, including AD and FTD. Previous related
classification studies have adopted ML methods to provide an
insight for early dementia diagnosis, showing the accuracy
of 78.5% for AD/HC with decision trees and 86.3% for
FTD/HC with random forests [34], [35]. In the current study,
based on the multilayer network features, including within-
and cross-frequency coupling and network properties, an auto-
mated framework was further developed for classifying AD,
FTD, and HC. Just as listed in Table I, Gaussian Naive Bayes
(GNB) achieved the most satisfying performance in terms of
accuracy, precision, and other indexes. It is noteworthy that
GNB demonstrates significantly higher classification accuracy
than other classification algorithms when it comes to accu-
rately classifying AD and FTD. This indicates that GNB has
better adaptability and classification capability in dealing with
the specific features of these two diseases. Additionally, most
input features conform to the normal distribution based on
Shapiro-Wilk normality test (p > 0.05), which aligns with the
assumption of GNB that the probability distribution of features
follows a normal distribution. Therefore, compared to other
algorithms, GNB is better able to describe the relationships
between features, resulting in higher classification accuracy.
Meanwhile, concerning the model complexity, the parameter
estimation of GNB is relatively simple, that is, we only need
to calculate the mean and variance of each category on each
feature. Thus, its data processing speed is fast, and the process
of training and prediction can be completed quickly. Addi-
tionally, other literature has also highlighted the advantages
of GNB in early detection and classification of cancers [36],
as well as monitoring human activity [37]. In fact, the dif-
ferences in network topologies and properties coincided with
those presented in Figs 2 and 3. In essence, frequency-based
multilayer networks present good learning and generaliza-
tion capabilities due to their simple modular structure that
leads to parallel flexible brain architecture [38]. And further,
these topological features have been utilized as effective
classification indices for different cognitive conditions (e.g.,
emotion recognition) and clinical patients (e.g., psychogenic
nonepileptic seizures and epilepsy) [17], [39], [40], [41].
Motivated by close relationships between resting-state indexes

(i.e., topologies and properties) of the multilayer networks and
individual MMSE scores, multiple linear regression analysis
was performed to build a model for predicting their MMSE
scores. The results depicted in Fig. 4 did exhibit clinical
efficacy in predicting the mental status of patients based on
our developed multiple linear regression model. In fact, the
cognitive state of the subjects can be better reflected during
their involvement in specific tasks. However, given this is a
public-available dataset, the task EEG was not reported. Thus,
based on resting-state EEG, the frequency-based multilayer
networks were constructed, and related representative network
features were extracted to differentiate between AD and FTD.
In future studies, we would combine the cognitive tasks to
conduct an in-depth analysis, to explore the mechanism under-
lying the variability between AD and FTD, thus promoting
the transference of these cognitive findings to daily diagnoses
clinically. Another possible limitation of the current study was
that the sample size was constant in this open dataset, and the
sample size indeed influenced the findings to some degree.
In our future work, more subjects will be considered for the
related clinical studies.

In conclusion, our findings clarified the crucial role of
a frequency-based multilayer resting-state network in differ-
entiating AD and FTD. And by utilizing related network
topologies and properties as variables, the proposed frame-
work can reliably predict an individual’s cognitive and
neuropsychological state. Collectively, these findings deepen
our understanding of AD and FTD from the perspective of
resting-state multilayer networks and may offer a potential
physiological biomarker for distinguishing AD and FTD in
clinical settings.
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