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Abstract— As a significant aspect of cognition, attention
has been extensively studied and numerous measurements
have been developed based on brain signal processing.
Although existing attentional state classification meth-
ods have achieved good accuracy by extracting a variety
of handcrafted features, spatial features have not been
fully explored. This paper proposes an attentional state
classification method based on Riemannian manifold to
utilize spatial information. Based on the concept of Rie-
mannian manifold of symmetric positive definite (SPD)
matrix, the proposed method exploits the structure of
covariance matrix to extract spatial features instead of
using spatial filters. Specifically, Riemannian distances
from intra-class Riemannian means are extracted as fea-
tures for their robustness. To fully extend the potential of
electroencephalograph (EEG) signal, both amplitude and
phase information is utilized. In addition, to solve the
variance of frequency bands, a filter bank is employed to
process the signal of different frequency bands separately.
Finally, features are fed into a support vector machine with
a polynomial kernel to obtain classification results. The
proposed attentional state classification using amplitude
and phase feature extraction method based on filter bank
and Riemannian manifold (AP-FBRM) method is evaluated
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on two open datasets including EEG data of 29 and 26 sub-
jects. According to the experimental results, the optimal
set of filter bank and the optimal technique to extract fea-
tures containing both amplitude and phase information are
determined. The proposed method respectively achieves
accuracies of 88.06% and 80.00% and outperforms 8 base-
line methods, which manifests that the proposed method
creates an efficient way to recognize attentional state.

Index Terms— Attentional state classification, brain–
computer interfaces (BCI), Riemannian manifold, EEG, filter
bank.

I. INTRODUCTION

COGNITION is a high-level brain process, which includes
multiple forms of knowing and awareness, such as con-

ceiving, judging, imagining, attention, and problem solving
[1]. Among them, attention refers to the ability to position
ourselves towards relevant stimuli and consequently respond to
it, which underlies almost every task in daily life [2]. It plays a
vital role in education, public safety, medical care, and social
production [3]. Lack of attentional ability leads to diseases
such as attention deficit hyperactivity disorder (ADHD) and
other mental problems [4], [5]. Given the importance of
attention, it is of great significance to measure attentional
states. Existing subjective methods, such as questionnaires
and psychological tests help to measure the attentional state
of a person [6], [7]. However, these tools are sometimes
unreliable for unclear memory and dishonesty of subjects.
To figure out this problem, a variety of measurements based
on physiological signals which are definite and trustworthy
emerged to measure the attentional state [8].

As a harmless and convenient way to record brain activity,
EEG has been widely used to measure attention and other
cognition processes [9], [10]. Existing studies have made con-
tributions to revealing the connections between EEG signals
and attentional states. For example, the reductions of alpha
activity accompanied by increases in beta band fluctuations
can indicate increases in attentional approach tendencies and
vigilance [11], [12], [13]. Other researchers provide evidence
that an increase in spectral power of EEG slow-wave activ-
ity (theta band) is related to attenuated attentional control
[14], [15]. In addition, spatial selective visual attention and
visual information processing are verified to modulate spec-
tral gamma band power and increased gamma oscillations
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are concurrent with visual attentional perception [16]. Other
researchers distinguish different attentional states using event
related potential (ERP) signal [17] since the absence of mind
will lead to the absence of ERP signal while watching visual
stimuli.

Based on the direct relationship between EEG signals and
attentional states, a large amount of feature extraction methods
have been excogitated to realize attention state classification.
Spectral power of each channel is extracted as the feature to
realize attention state estimation [18]. Dynamical microstate of
local and global duration is extracted as an effective feature
for attention recognition [19]. Li et al. applied correlation
analysis to extract features related to anxiety level using a
5-point Likert scale [20]. Various features including band
ratios, cognition index, entropies, and functional connectivity
metrics are selected by a couple of feature selection techniques
[21]. Different kinds of classifiers are employed to obtain
better accuracy for the cognition classification such as support
vector machine (SVM) [22], k-nearest neighbour (kNN) [23],
and linear discriminant analysis (LDA) [24].

Although methods based on aforementioned handcrafted
features have achieved good accuracy, spatial information,
which matters for most cognition classification tasks such
as motion imaginary (MI) based BCI [25], has not been
fully utilized to realize attentional state classification. Rie-
mannian geometry methods exploit the spatial covariance
structure and generate smooth manifolds from intrinsically
nonlinear data spaces [26], and thus utilize spatial informa-
tion of EEG data. In [27], two Riemannian manifolds-based
MI classification methods are proposed. The first method
compares the Riemannian distance to mean of each class,
while the second method projects the covariance matrices
onto the tangent space and performs an LDA for classifica-
tion. The latter method achieves an accuracy improvement
of 5% compared to the common spatial pattern (CSP)
method. Researchers in [28] combine Riemannian geometry
method with sparse optimization to extract robust spatial
features, which outperforms the CSP-based method with
improvements of 9.9% and 12.4% on two datasets. These
comparable performances of methods based on Rieman-
nian manifold prove it an efficient way to extract spatial
information.

However, most Riemannian methods consider only the
amplitude of EEG signals in the problem formulation. The
potential information embedded in the phase and the frequency
domains of EEG signals is ignored. To solve this problem,
a novel algorithm also based on Riemannian analysis is
proposed in this paper to enhance attention state detection. Dif-
ferent from the conventional counterparts, the new algorithm
constructs a series of independent Riemannian manifolds to
extract information from the frequency and the phase domains.
Specifically, a bank of filters is utilized to split the original
broadband EEG signal into separate subband components, and
subsequently for each subband two Riemannian manifolds
are constructed to respectively account for the amplitude and
the phase features. The proposed algorithm is thus named
joint amplitude and phase feature extraction method based
on filter bank and Riemannian manifold (AP-FBRM), and

the main contributions of this paper can be concluded as
follows.

• Firstly, an attentional state classification method based on
Riemannian manifold is proposed, in which the covari-
ance matrices are exploited for spatial information and
Riemannian distances from intra-class Riemannian means
are innovatively extracted as features for its robustness to
noise.

• Secondly, to fully tap the potential of EEG signals, both
the frequency and the phase domains are considered.
A filter bank is employed to characterize the different
features that lie in different subbands. In addition, the
Hilbert transform is utilized to compute the phase angle of
original EEG signals, and three techniques are proposed
to extract features containing both amplitude and phase
information.

• Thirdly, the proposed method is validated and compared
with multiple baselines on two open datasets which
respectively comprises 29 and 26 subjects and distin-
guishes two different attentional states. The effectiveness
of the proposed method is verified by its outperformance.

The rest of the paper is organized as follows. The proposed
attentional state classification method using amplitude and
phase feature extraction based on filter bank and Riemannian
manifold is described in Section II. In Section III, the dataset,
the experimental setup used in this paper, and the experimental
results are introduced. Next, discussions of the proposed
work are given in Section IV and the conclusion is made in
Section V finally.

II. METHODS

A. Riemannian Geometry
Riemannian geometry-based methods have already been

introduced to figure out BCI problems [29]. It is denoted that
P(n) = {P ∈ S(n), uT Pu > 0, ∀u ∈ Rn

} is the space of n-
dimensional real symmetric positive definite (SPD) matrices
where S(n) is the space of n-dimensional real symmetric
matrices. The eigenvalues of the SPD matrix are real and posi-
tive. SPD matrices with n dimensions can form a differentiable
Riemannian manifold with a dimension of n(n + 1)/2.

1) Riemannian Distance: The Riemmanian distance is
defined as the minimum length of all paths between two
points on the Riemannian manifold. As mentioned, each point
on the Riemannian manifold is an SPD matrix. Thus, the
Riemannian distance of two SPD matrices P1 and P2 in P(n)

is mathematically given by [27]

δR(P1, P2) = ||logm(P−1
1 P2)||F =

( n∑
i=1

log2λi

)1/2

, (1)

where λi , i ∈ [1 : n] stands for the eigenvalues of the matrix
P−1

1 P2 and || ∗ ||F denotes the Frobenius norm. It should be
mentioned that the operation symbol logm is the logarithm of
a matrix. For an SPD matrix P, the logm(P) can be solved
by the diagonalization of matrix P: logm(P) = V log(3)V−1

where 3 is a diagonal matrix of eigenvalues of P and V is a
matrix of eigenvectors of P so that only logarithm operation
for the diagonal elements need to be done.



4404 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 1. Tangent space TP of the manifold PΩ at point P.

2) Tangent Space: Given a point P of a Riemannian mani-
fold P�, a tangent space TP is defined by tangent vectors at P.
Any other point Q on P� can be projected to the tangent space
TP according to the logarithmic mapping K = LogmP(Q) [30]

LogmP(Q) = K = P
1
2 logm(P−

1
2 QP−

1
2 )P

1
2 . (2)

Inversely, K can be projected back to the Riemannian manifold
by the exponential mapping

ExpmP(K) = Q = P
1
2 expm(P−

1
2 KP−

1
2 )P

1
2 , (3)

where logm and expm denote the logarithmic and exponential
operations for a matrix. As shown in Fig. 1, the Riemannian
path is projected as a Euclidean path, which reminds us that
we can calculate the Riemannian mean by calculating the
arithmetic mean in the tangent space and projecting it back
to the Riemannian manifold using the Riemannian exponen-
tial mapping. The detailed process will be described in the
following.

3) Riemmanian Mean: The Riemannian mean of N (N ≥

1) given SPD matrices (P1, P2, . . . , PN ) is another significant
definition that is closely associated with Riemannian distance,
which is defined as

P = arg min
P

N∑
i=1

δ2
R(P, Pi ). (4)

Therefore, the Riemannian mean is also an SPD matrix that
minimizes the sum of squares of Riemannian distances of a
set of SPD matrices [31]. While the Riemannian mean exists
uniquely, no closed-form solution can be obtained thus it is
necessary to resolve an optimization problem. To solve this
equation, an iterative algorithm is employed [29], which is
shown in Algorithm 1.

4) Feature Extraction on the Riemannian Manifold: The
covariance matrices are symmetric positive definite so that
they can be treated as points on the Riemannian manifold.
One covariance matrix V ∈ RC×C can be computed by

V =
1

T − 1
XXT , (5)

where X ∈ RC×T is a single trial of EEG data, where C
denotes the number of electrodes channels and T is the number
of time samples of one trial.

Algorithm 1 Computation of Riemannian Mean
Input: N SPD matrices P1, P2, · · · , PN ∈ Rn×n ,

the iterative threshold ϵ.
Output: The Riemannian Mean P of N SPD matrices.

1: Initialize P(1) = I ∈ Rn×n

2: while ∥S∥F > ϵ do
3: Compute the mean S =

1
N
∑N

i=1 LogmP(t)(Pi ) of N
SPD matrices projected into the tangent space;

4: Refresh the P(t+1) = ExpmP(t)
(S) by projecting the S

back to manifold.
5: end while

Considering that in Euclidean space, we straightly calculate
the Euclidean distance to measure the difference between two
points in this space. Similarly, the Riemannian distance is able
to measure the difference between two covariance matrices,
which are two points on the Riemannian manifold. In this
paper, we assume that the features related to the attentional
state exist in the Riemannian distance from the intra-class
Riemannian mean and are separable directly. Conditioned on
this assumption, we extract the Riemannian distances from
intra-class Riemannian means as features for each covariance
matrix of EEG data. Specifically, given trials data for the
objective class {�1, �2} representing two different attentional
states, we calculate two intra-class Riemannian means firstly

V�d = arg min
V

∑
V�d

i ∈�d

δ2
R(V, V�d

i ), d = 1, 2, (6)

where V�d denotes the Riemannian mean of d-th class.
Considering that we focus on the binary attentional state
classification problem, there are two intra-class means so that
d = 1, 2. For the covariance matrix V∗ of an unlabeled EEG
data, two Riemannian distances from the two means are taken
as two features {t1, t2

}:

td
= δR(V∗, V�d ), d = 1, 2. (7)

B. Feature Extraction Using Amplitude and Phase
Information

To develop the latent capacity of recorded EEG data,
we extract the phase information as features for classifica-
tion. Following the previous work [32], Hilbert transform is
conducted to gain the phase information. For a multi-channel
collected EEG signal X(t) = [x1(t), x2(t), . . . , xC (t)]T with
a dimension of C × T , the Hilbert transform is realized by

x̂(t) = H(x) = x(t) ∗
1
π t

=
1
π

∫
∞

−∞

x(τ )

τ − t
dτ, (8)

where ∗ is the convolution operation. Therefore, the analytic
signal is given by

8(t) = x(t) + j · x̂(t) = A(t) exp( j · φ(t)), (9)

where j is the imaginary unit, A(t) is the amplitude and φ(t)
is the phase angle, which can be demodulated by the Hilbert
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Fig. 2. The framework of the proposed AP-FBRM attentional state classification method.

transform [33]  A(t) =

√
x2(t) + x̂2(t),

φ(t) = arctan
x̂(t)
x(t)

.
(10)

Consequently, both amplitude and phase information are
acquired by the transformation above. In our paper, we pro-
posed three techniques to extract both amplitude and phase
information, which are respectively to extract x(t) and φ(t),
to extract x(t) and x̂(t), and to extract x(t) and 8(t) for
both amplitude and phase information. In the subsequent text,
we choose to use x̃(t) as a representation of either φ(t), x̂(t) or
8(t) to introduce our proposed method. Later we will compare
the results of various techniques.

C. Joint Amplitude and Phase Feature Extraction
Method Based on Filter Bank and Riemannian Manifold

In our study, we propose a joint amplitude and phase
feature extraction method based on filter bank and Riemannian
manifold (AP-FBRM), which is shown in Fig. 2. The detailed
processes of the training stage and the test stage are shown
in Algorithm 2 and Algorithm 3. As known, the core of the
filter bank is to process the signal and to extract features of
different frequency bands respectively in order to overcome the
variance of frequency bands. Suppose the i-th trial of training
data Xi ∈ RC×T of N trails, we implement M filters to obtain
the signal of various frequency bands

{Xi,1, Xi,2, . . . , Xi,M } ∈ RC×T . (11)

Let Xi, j be the i-th trial of training data filtered by the j-th
bandpass filter, we extract the amplitude and phase information
following equation (8) and we obtain

{Xi, j , X̃i, j } ∈ RC×T , (12)

Algorithm 2 The Proposed AP-FBRM Attentional State Clas-
sification Method in the Training Stage

Input: N trials of training EEG data Xi ∈ RC×T , i =

1, 2, . . . , N belonging to two classes [�1, �2];
Input: corresponding class labels z ∈ RN .
Output: Intra-class Riemannian means of the training data

[V�1
j , V�2

j , Ṽ�1
j , Ṽ�2

j ], j = 1, 2, . . . , M ;
Output: a trained classifier.

1: Implement a filter bank with M filters to obtain EEG
signals in various frequency bands [Xi,1, Xi,2, . . . , Xi,M ]

with i = 1, 2, . . . , N ;
2: Extract the amplitude and phase information [Xi, j , X̃i, j ]

for X i, j with i = 1, 2, . . . , N and j = 1, 2, . . . , M ;
3: Calculate the covariance matrix [Vi, j , Ṽi, j ] with i =

1, 2, . . . , N and j = 1, 2, . . . , M ;
4: Calculate the intra-class Riemannian means

[V�1
j , V�2

j , Ṽ�1
j , Ṽ�2

j ] following equation (7), with
j = 1, 2, . . . , M ;

5: Extract the distances from intra-class means as features
vi, j = [t1

i, j , t2
i, j , t̃1

i, j , t̃2
i, j ]

T with i = 1, 2, . . . N and j =

1, 2, . . . , M ;
6: Train the classifier with feature vestors v and labels z.

where X̃i, j is computed as mentioned in equation (9) and (10).
Next, the covariance matrices of {Xi, j , X̃i, j } are calculated as
instructed by equation (5) so we get

{Vi, j , Ṽi, j } ∈ RC×C . (13)

Following the feature extraction method on the Rie-
mannian manifold mentioned above, for j-th frequency
band four intra-class Riemannian means of two objective
classes {�1, �2} are acquired by equation (4) which are
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Algorithm 3 The Proposed AP-FBRM Attentional State Clas-
sification Method in the Test Stage

Input: Single trial of unlabeled EEG data X ∈ RC×T ;
Input: Intra-class Riemannian means of the training data

[V�1
j , V�2

j , Ṽ�1
j , Ṽ�2

j ], j = 1, 2, · · · , M ;
Input: a trained classifier.
Output: The predicted label zX for X.

1: Implement a filter bank with M filters to obtain EEG
signal in various frequency band [X1, X2, · · · , XM ];

2: Extract the amplitude and phase information [X j , X̃ j ] for
X j with j = 1, 2, · · · , M ;

3: Calculate the covariance matrix [V j , Ṽ j ] with j =

1, 2, · · · , M ;
4: Extract the distance from four intra-class means

[V�1
j , V�2

j , Ṽ�1
j , Ṽ�2

j ] as features v j = [t1
j , t2

j , t̃1
j , t̃2

j ]
T for

X j with j = 1, 2, · · · , M ;
5: Feed the feature vectors v j into the trained classifier to

obtain the predicted label zX for X.

{V�1
j , V�2

j , Ṽ�1
j , Ṽ�2

j }. Thus, for {Vi, j , Ṽi, j } ∈ RC×C , Rie-
mannian distances from the four means are constructed as
features

{t1
i, j , t2

i, j , t̃1
i, j , t̃2

i, j } ∈ R, (14)

where

td
i, j = δR(Vi, j , V�d

j ), (15)

t̃d
i, j = δR(Ṽi, j , Ṽ�d

j ), (16)

with d = 1, 2 in consideration of the case of our binary
attentional classification. Finally, for one unlabeled trial EEG
data Xi , the number of features in total is

N f eatures(Xi ) = 4 · M, (17)

where M denotes the number of filters in the filter bank.

D. Support Vector Machine
Support vector machine (SVM) is one of the most popular

classifiers in cognitive classification tasks [22]. SVM is oper-
ated with a straightforward principle to seek a hyperplane as
a decision boundary to maximize the distances between the
positive and negative samples in the feature space [34]. Due
to the strong classification ability, in our paper, we take SVM
as the classifier.

Given input data D = {d1, d2, . . . , dn} and a binary learning
target y ∈ {−1, 1}, the features of input data constitute a
feature space. If the decision boundary ωT d +b of the feature
space exists with a normal vector ω and an intercept b, SVM
is devoted to finding a hyperplane to maximize the margin
between two classes. To solve the problem, SVM can be
transformed into an optimization problem

min
ω,b

1
2
∥ω∥

2
+ c

n∑
i=1

ξi , (18)

s.t. yi (ω
T di + b) ≥ 1 − ξi , ξi ≥ 0, (19)

where ξ is called the relaxation variable and c denotes a hyper-
parameter penalty coefficient. With the relaxation variable, the
SVM finds a hyperplane that bears minor classification errors
to get rid of overfitting to some extent. In this paper, a c-SVC
is used, in which the penalty parameter c is set to 2. And a
polynomial kernel is implemented, whose kernel function is
given as k(u, v) = ( 1

2 uT v)3 where u, v represent two feature
vectors in the original space. All other settings remain default.

III. EXPERIMENTS AND RESULTS

A. Dataset Description
An open-access dataset [35] provided by Shin et al.

is used in our experiments. This dataset contains both EEG
and near-infrared spectroscopy (NIRS) signals collected from
twenty-nine healthy subjects, from which we only take EEG
data for validation in our study. Hence, we simply introduced
EEG dataset in the subsequent text.

In this dataset, thirty-channel EEG signals are recorded
by a multichannel BrainAmp EEG amplifier produced by
Brain Products GmbH, Gilching, Germany. The sampling rate
is 1000 Hz with electrodes placed in terms of the international
10-5 system: AFp1, AFp2, AFF1h, AFF2h, AFF5h, AFF6h,
F3, F4, F7, F8, FCC3h, FCC4h, FCC5h, FCC6h, T7, T8, Cz,
CCP3h,CCP4h, CCP5h, CCP6h, Pz, P3, P4, P7, P8, PPO1h,
PPO2h,POO1, POO2 and Fz for ground electrode.

During the data acquisition experiments, subjects are asked
to take part in two tasks, which are respectively motor imagery
and mental arithmetic. For our experiments, we only use
signals from the mental arithmetic task to realize attentional
state classification. The mental arithmetic task is composed of
two sessions of a task session and a baseline session. In each
session, subjects first take a 1-minute rest for preparation and
then take 20 times tasks repeatedly with a resting period with
a random length from 15 to 17 seconds.

In a single trial of the mental arithmetic task, an instruction
is shown on the screen, which is a subtraction formula for
example ’923-9’. Subjects are required to remember the num-
bers within 2 seconds. Once the beep sounds, the instruction
disappears and the subjects are expected to mentally compute
the subtraction of the one-digit number from the previous
result and repeat the process. For the baseline session, subjects
need to take a rest without thinking. Subjects are asked to
sit still during the recording to avoid motion artifacts. The
task and baseline periods are both finished with a beep and a
“STOP” instruction.

B. Experimental Setup
Given the source EEG data recorded from subjects,

a common average re-reference is first conducted. Next, the
re-referenced data is bandpass filtered to 0.5-50 Hz with a
fourth-order of Chebyshev type II filter.

The data is downsampled to 200 Hz and we segment the
data of the task stage into 2-second data epochs, which is
shown in Fig. 3. For the EEG signal recorded in the mental
arithmetic task, we labeled it as attentional data, and the
data from the baseline session is labeled as inattentional
data. Thirty channels data is used for validation. In order to
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TABLE I
DESIGN OF FILTER BANKS IN THE AP-FBRM METHOD

Fig. 3. Schematic diagram of the mental arithmetic of the dataset and
segmented epochs used for validation.

remove the electrooculogram (EOG) artifacts, an automatic
toolbox [36], which is based on independent component anal-
ysis (ICA), is employed to remove the ocular artifacts. The
experiments, including the pre-processing are conducted using
MATLAB R2020b. All experimental results are obtained by a
10 × 10 cross-validation.

C. Effectiveness Validation of Feature Distribution
In the preceding part of the text, we assumed that the

features related to the attentional state exist in the Riemannian
distance from the intra-class Riemannian mean so we choose
the Riemannian distance as feature. Now we are supposed
to validate the effectiveness of the Riemannian distance first.
To get an intuitive validation, we adopt a visualization tool
t-distributed stochastic neighbor embedding (t-SNE) [37] to
visualize the distribution of features. It is shown in Fig. 4
that the visualization result of the Riemannian distance fea-
tures extracted from only time-domain signal x(t) within
the frequency band 4-32 Hz without filter bank operation.
In addition, to compare the effectiveness of our proposed
AP-FBRM feature extraction method, the proposed features
following Algorithm 3 are presented using t-SNE in the
same figure. As shown in Fig. 4, the features of attentional

and non-attentional states present different distributions, which
preliminarily validates the effectiveness of the Riemannian dis-
tance as a feature extraction method. Moreover, to compare the
visualization effect between AP-FBRM and the conventional
counterpart which overlooks the frequency and phase-domain
information, we calculate the normalized Laplacian scores
[38] as an indicator. Combining the numerical results and
visualization results, we may observe improvements for some
of the subjects such as subject 8, 9, 24 and 27, while
for most of the subjects, the visualization improvements are
not obvious. Considering that what Fig. 4 shows is only
the embedding of the original features which is subject to
inevitable information loss, more rigorous validations are
required and will be presented later. Noticeably, for subject
12 and subject 20, the purple and yellow dots almost mix
together and cannot be separated easily, which is later revealed
by the poor classification accuracies for the two subjects.

D. Effects of Filter Banks
To study the effects of the set of filter banks, experiments

are conducted to compare the effectiveness of filter banks
on our proposed AP-FBRM method. It should be noted that
here we adopt x(t) and 8(t) to extract both amplitude and
phase information. The filter bank we used is comprised of
filters with same bandwidth and fixed frequency stepsizes.
By varying the bandwidth and stepsize as shown in Table I,
a series of different filter banks are produced and tested.
The frequency range we consider in this study is 4-32 Hz.
Therefore the number of filters is determined by the setting
of the filter bank. In order to seek the best bandwidth for the
filter bank, the bandwidth we choose is 4n Hz, where n =

1, 2, · · · , 5 for a fixed frequency stepsize 4 Hz. In addition,
to explore the effect of stepsize of the filter bank, we choose
stepsize 4m Hz, where m = 0.5, 1, 2, 3 for a fixed bandwidth
4 Hz. In the experiments, a second-order Butterworth filter
is utilized to realize the filter banks. The results of various
filter banks are displayed in Fig. 5. The numerical result of
the average accuracies are represented in Table II. As we can
see, with a fixed stepsize, the classification decreases with the
increase of the bandwidth. The maximum accuracy 88.06%
appears when n = 1. For a fixed bandwidth, the accuracy first
increases and then decreases as the stepsize becomes bigger.
The average accuracy reaches the highest value when m = 1.
Therefore, we take n = 1 and m = 1 as the default experiment
set in the rest of this paper.
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Fig. 4. Visualization of feature distribution of 29 subjects. Green and red clusters denoted the Riemannian distance features extracted from only
time-domain signal x(t) within the frequency band 4-32 Hz without filter bank operation, and purple and yellow clusters represent features extracted
by the proposed AP-FBRM feature extraction method.

Fig. 5. Classification accuracy of different sets of filter banks for all
the 29 subjects. The x-axis indicates the set of n and m defined in
TABLE I, while the y-axis indicates the classification accuracy. Gray thin
lines denote the accuracies of each individual subject, and the red thick
lines denote the average accuracies of 29 subjects.

E. Effects of Phase Information

It is also necessary to validate the effect of phase informa-
tion in the proposed attentional classification method. We first
compare the results under two situations which are respec-
tively that we extract only amplitude information A(t), and
only phase information φ(t). Moreover, as mentioned before,
we compare different techniques to extract both amplitude
and phase information to determine the optimal phase infor-
mation extraction technique. Three proposed techniques are
respectively to extract x(t) and φ(t), x(t) and x̂(t), and to

TABLE II
AVERAGE ACCURACY FOR DIFFERENT SET OF n AND m

extract x(t) and 8(t) which all contain both amplitude and
phase information. To facilitate the following introduction,
each of the above techniques is assigned a unique index as
shown in Table III. The accuracies using various amplitude
and phase information techniques are displayed in Fig. 6.
It should be noted that the accuracy is projected to the color bar
above. For each subject, the technique which achieves the best
classification accuracy is highlighted with a red box. It can be
observed that most of the red boxes are located in the dashed
box, which is the area of the proposed techniques. Specifically,
for 26 out of all the 29 subjects, the feature extraction
technique achieving the best accuracy is one of three proposed
techniques, which extract features containing both amplitude
and phase information. Average classification accuracies are
shown in Fig. 7. It can be observed that only extracting phase
information achieves better results than the validated chance
level 56.7%, which is defined in [39]. It preliminarily proves
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Fig. 6. Classification accuracy of different techniques to extract amplitude and phase information for all the 29 subjects. Squares in red boxes are
the technique achieving the best classification accuracy for each subject. Squares in dash line are the results of 3 proposed techniques to extract
both information. The x-axis indicates the index of subjects, while the y-axis indicates the index of techniques, which are respectively to extract A(t),
to extract φ(t), and other 3 techniques we proposed to extract both information: to extract x(t) and φ(t), to extract x(t) and x̂(t), and to extract x(t) and
8(t) according to equation (9) for an EEG signal.

TABLE III
INDEX OF TECHNIQUES AND CORRESPONDING FEATURES EXTRACTED CONTAINING AMPLITUDE AND PHASE INFORMATION

Fig. 7. Average classification accuracy of different techniques to extract
both amplitude and phase information for all the 29 subjects. Bars with
dark blue are three proposed techniques.

the effectiveness of phase information. The combination of
amplitude and phase information reveals much more profi-
ciency than only extracting amplitude information. Among
the three proposed techniques, the best result is achieved by
technique 5 which extracts x(t) and 8(t). The superiority
of technique 5 is statistically verified (better than technique
3 with p < 0.001, and better than technique 4 with p < 0.1).

F. Comparison With AP-FBCSP
To further analyze the proposed AP-FBRM method,

we compare the performance of the AP-FBRM and the
filter bank common spatial filtering (FBCSP) method [40].
The FBCSP method is a traditional method with a filter

bank and spatial filtering for EEG classification. In this
way, the proposed AP-FBRM method is kind of similar
to the FBCSP method. Therefore, the FBCSP method is
utilized as a baseline to validate the effectiveness of our
Riemannian geometry-based method in the place of a spatial
filter. It is unfair to compare the traditional FBCSP with the
proposed AP-FBRM because the phase information is not
used by the traditional FBCSP. Therefore, we improve it by
extracting both amplitude and phase information. We call the
improved FBCSP as AP-FBCSP. To ensure the fairness of
the comparison, the set of the filter bank and the number of
features in both methods keep the same. The classification
accuracy of 29 subjects is shown in Table IV. Three pro-
posed amplitude and phase information extraction techniques
indexed 3, 4, 5 in Table. III are used to compare. As we
can see, for 25 out of 29 subjects, the proposed AP-FBRM
achieves the best result. And no matter what technique is
used, the proposed method achieves higher average accuracy
than the AP-FBCSP method (p < 0.001). For some subjects
like subject 17 and subject 21, the proposed Riemannian
geometry-based method achieves significant improvements,
which are 14.33% and 10.66%. Therefore, it is obvious
that our Riemannian geometry-based method performs better
than the CSP-based method, which validates the proposed
Riemannian frame suits well in the attentional classification
scene. For AP-FBRM, technique 5 turns out to be the best
choice for 20 out of the 29 subjects and achieves the highest
average detection accuracy of 88.06%. Comparatively, for AP-
FBCSP, technique 3 achieves the best classification result of
82.97%. Therefore, the proposed AP-FBRM method achieves
an improvement of 5.09% compared with AP-FBCSP.

G. Comparison With Existing Studies
In order to further analyze the performance of the proposed

AP-FBRM method, we compare the results of the AP-FBRM
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TABLE IV
CLASSIFICATION ACCURACY (IN PERCENTAGE) USING PROPOSED

AP-FBRM METHOD AND AP-FBCSP METHOD WITH THREE

PROPOSED TECHNIQUES WHERE THE

BEST RESULTS ARE MARKED IN BOLDFACE

with other existing methods. To exclude the dependence of
the data and verify the generalization performance of the
proposed method, the comparison is also done on another
dataset [41], which contains 26 subjects. In this dataset,
three cognitive tasks are contained, from which we only
take EEG data recorded during the word generation (WG)
task for validation. In the WG task, subjects are asked to
continuously think of words beginning with the letter that was
previously given, while in the baseline task, they are asked to
sit still without thinking. Data during WG task is labeled as
attentional data, while that during the baseline task is labeled
as inattentional data. The EEG data is also segmented into
2-second epochs and 28 channels data is used for validation.
A wide range of different methods are taken as baselines in this
paper to make the comparison solid. Eight methods in total,
which respectively represent typical spatial analysis, machine
learning, Riemannian tangent space analysis, etc. are selected.
A brief introduction of these eight methods is given as follows.

CSP [42]: Common Spatial Pattern (CSP) is an effective
algorithm to construct optimal spatial filters for binary EEG
classification.

FBCSP [40]: Filter Bank Common Spatial Pattern
(FBCSP). The combination of the filter bank and CSP

TABLE V
CLASSIFICATION ACCURACY (IN PERCENTAGE) USING PROPOSED

AP-FBRM METHOD AND EXISTING METHODS WHERE THE BEST

RESULTS ARE MARKED IN BOLDFACE

algorithm is proposed to address the problem of operational
frequency band variance for EEG classification.

HSS-ELM [43]: Inspired by the extreme learning machine
(ELM), a hierarchical semi-supervised extreme learning
machine (HSS-ELM) is proposed to extract high-level features
using ELM.

CSP-shrinkageLDA [35]: A method combining CSP and
shringkageLDA is utilized to classify EEG data in different
states: mental arithmetic and rest stage, which achieve good
results.

TSLDA [27]: Tangent space LDA (TSLDA) projects covari-
ance matrices into Riemannian tangent space. A feature
selection method is performed and an LDA is utilized for
classification.

CCSP [44]: Correlation-based CSP (CCSP) utilizes time
correlation between various classes of signals as the prior
information and generates a regularization term, which out-
performs the traditional CSP.

LR-TSTL [45]: Logistic regression with tangent space-based
transfer learning (LR-TSTL) is proposed for motor imagery
(MI)-based BCI classification problems. Tangent space fea-
tures are extracted and then classified by logistic regression
model.

AP-FBCSP: AP-FBCSP is an extension of FBCSP by inte-
grating phase domain information, which is proposed in this
paper. More details are described in the previous subsection.
We choose the best classification accuracy of the AP-FBCSP
method of various techniques as the comparison result.

Table V shows the classification accuracy using the pro-
posed AP-FBRM method compared with existing methods,
where dataset I is provided in [35] while dataset II is provided
in [41]. Compared with existing methods (CSP, FBCSP, HSS-
ELM, CSP-shrinkage LDA, TSLDA, CCSP, LR-TSTL), the
proposed AP-FBRM method achieves the best classification
accuracies (p < 0.001), which validates the effectiveness of
our method. Moreover, the accuracy improvements of 5.09%
and 5.15% compared with the AP-FBCSP method mean that
our Riemannian geometry-based method performs better than
CSP-based method, which reflects the significance of the
framework on the basis of the Riemannian manifold. Further-
more, the application of filter bank and phase information not
only explores the potential of EEG data but also increases
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the number of features leading to better classification results,
which can be observed by comparing the accuracies of CSP
(77.23% and 68.90%), FBCSP (79.05% and 72.94%) and AP-
FBCSP (82.97% and 74.85%) methods.

IV. DISCUSSIONS

The proposed AP-FBRM method takes Riemannian dis-
tances from intra-class Riemannian means as robust features,
which substitutes for traditional spatial filtering such as CSP.
No parameters need to be set in the Riemannian distance
calculation. By combining filter bank and extraction of phase
information, the proposed AP-FBRM method extracts robust
features. Taking the phase information into consideration
extends the usage of the EEG data. By adopting the filter
bank, the problem of variance of different frequency bands is
solved. The proposed method achieves good accuracy using a
polynomial kernel SVM classifier. The obtained results appear
satisfactory in comparison with existing methods.

We validate the effectiveness of the proposed method
through experiments. Using the visualization tool t-SNE, Fig. 4
shows the feature distribution of the simple Riemannian dis-
tance and features extracted by the proposed method. The
distribution validates the effective features lying in the Rie-
mannian distance, which our method relies on. To further
validate the effect of the filter bank, we design various filter
banks and decide the optimal filter bank set (n = 1, m = 1)
according to the experimental results. Fig. 5 shows that how
the classification accuracy changes with the set of the filter
bank. To validate the effect of phase information, we compare
the classification results of only amplitude information, only
phase information, and both information. It can be easily
observed in Fig. 6 that both information achieved significant
improvement. And the optimal technique to extract both infor-
mation is to extract x(t) and 8(t) for the proposed method.

To further analyze the proposed Riemannian geometry-
based method, we first extend the FBCSP method with the
three proposed techniques extracting amplitude and phase
information and we denote the new method AP-FBCSP.
We compare it with our proposed method. Table IV presents
the classification accuracies of each subject using three tech-
niques. The proposed method achieved a 5.09% improvement
over the AP-FBCSP method, which reflects the advantage of
the Riemannian geometry-based method.

The comparison with existing methods is shown in Table V.
The proposed method outperforms other methods. Moreover,
the relationship of the classification accuracies of CSP, FBCSP,
and AP-FBCSP is: CSP<FBCSP<AP-FBCSP. It also reflects
the effectiveness of the filter bank and the proposed phase
feature extraction techniques.

In this article, we extract Riemannian distance as the feature,
which is a simple and effective feature [46]. However, taking
Riemannian distance as the feature is confronted with the
problem of low dimensionality, and therefore many pow-
erful classification algorithms cannot be implemented [47].
To figure out this problem, tangent space features are extracted.
Covariance matrices are mapped into the tangent space which
is located at the Riemannian mean [48]. The upper triangle
elements of these matrices can be extracted as tangent space

features with a dimensionality of n(n + 1)/2 [27], where
n denotes the dimension of the covariance matrices. The
features can then be fed into classifiers to realize classification.
However, the high dimensionality of the tangent space features
incurs another problem, which is a significantly high demand
for training data [27]. In this article, by constructing multiple
Riemannian manifolds to extract spatial, frequency and phase
information, we attempt to figure out the dimension problem
by extracting Riemannian distances from multiple manifolds.
In this way, powerful classifiers can be utilized, such as SVM
used in this article. Finally, the proposed method is compared
with TSLDA [27] and LR-TSTL [45] methods, which are
based on tangent space features and achieved improvements
of 9.47% and 8.04% on two datasets. The satisfactory results
prove that the proposed method provides a feasible way to
utilize the Riemannian distance as the feature.

Although the proposed method achieves satisfactory results,
there are still some aspects that need to be pointed out. First,
the proposed method takes Riemannian distances as features
while the number of features corresponding to one Riemannian
mean is one, which is fixed. It means that the number of
features of Riemannian distance is less flexible compared with
CSP. Therefore we solve this problem by combining filter
bank and extracting phase information. However, it leads to
the second problem. Calculating a Riemannian mean is a
time-consuming process thus the proposed method bears more
computational cost. Further study should focus on reducing
the computation complexity, such as using some metrics
approximating the Riemannian mean.

V. CONCLUSION

A novel AP-FBRM method was proposed in this study
and we extended the application scenario to attentional state
classification. Unlike existing methods, we utilized the spatial
features of EEG data instead of the handcrafted features. The
Riemannian geometry-based feature extraction method was
employed to extract spatial information. Specifically, the pro-
posed method extracted Riemannian distances from intra-class
Riemannian means as features for its robustness to noise.
In addition, to fully utilize EEG data, both amplitude and phase
information were extracted through three proposed techniques.
Furthermore, by combining the filter bank, the problem of
variance of frequency bands was solved. Features extracted
were fed into a polynomial kernel support vector machine
to obtain the classification result. Experimental results on
two open datasets validated the effectiveness of the proposed
method. It achieved the accuracies of 88.06 ± 5.30% and
80.00 ± 6.69% on two datasets which outperformed existing
methods.
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