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An Upper-Limb Rehabilitation Exoskeleton
System Controlled by MI Recognition Model

With Deep Emphasized Informative
Features in a VR Scene
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Yuxin Peng , Member, IEEE, and Baixi Xing

Abstract— The prevalence of stroke continues to
increase with the global aging. Based on the motor
imagery (MI) brain–computer interface (BCI) paradigm
and virtual reality (VR) technology, we designed and
developed an upper-limb rehabilitation exoskeleton system
(VR-ULE) in the VR scenes for stroke patients. The VR-ULE
system makes use of the MI electroencephalogram (EEG)
recognition model with a convolutional neural network
and squeeze-and-excitation (SE) blocks to obtain the
patient’s motion intentions and control the exoskeleton
to move during rehabilitation training movement. Due to
the individual differences in EEG, the frequency bands
with optimal MI EEG features for each patient are different.
Therefore, the weight of different feature channels is
learned by combining SE blocks to emphasize the useful
information frequency band features. The MI cues in the
VR-based virtual scenes can improve the interhemispheric
balance and the neuroplasticity of patients. It also makes
up for the disadvantages of the current MI-BCIs, such
as single usage scenarios, poor individual adaptability,
and many interfering factors. We designed the offline
training experiment to evaluate the feasibility of the EEG
recognition strategy, and designed the online control
experiment to verify the effectiveness of the VR-ULE
system. The results showed that the MI classification
method with MI cues in the VR scenes improved the
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accuracy of MI classification (86.49% ± 3.02%); all subjects
performed two types of rehabilitation training tasks under
their own models trained in the offline training experiment,
with the highest average completion rates of 86.82% ±

4.66% and 88.48% ± 5.84%. The VR-ULE system can
efficiently help stroke patients with hemiplegia complete
upper-limb rehabilitation training tasks, and provide the
new methods and strategies for BCI-based rehabilitation
devices.

Index Terms— Rehabilitation exoskeleton, brain–comput
-er interface, virtual reality, convolutional neural networks,
squeeze-and-excitation block, motor imagery.

I. INTRODUCTION

THE prevalence of stroke continues to rise with the global
aging. Stroke patients with hemiplegia have neurological

damage caused by the massive death of brain cells, resulting
in varying degrees of upper-limb motion disorders [1].
Rehabilitation exoskeletons based on brain–computer interface
(BCI) technology have become a more common rehabilitation
treatment plan for stroke patients in different rehabilitation
periods [2].

BCI technology realizes communication between the human
brain and external electronic devices by decoding the
features of the electroencephalogram (EEG) in the cerebral
cortex. As a new means of expression and interaction
for motor intention, BCI has been widely used in the
rehabilitation training of stroke patients at different stages [3].
Barsotti et al. [4] designed a set of upper-limb exoskeletons
based on MI-BCI to rehabilitate the grasping ability of
poststroke patients. Soekadar et al. [5] designed a noninvasive
brain/neural hand exoskeleton to assist stroke patients in
daily motions such as eating and drinking. As a bridge for
direct communication between the human brain and external
devices, BCI has been widely used in stroke rehabilitation
treatment [6].

As one of the main paradigms of BCI technology, MI has
been widely used in rehabilitation therapy of cerebral motor
function in stroke patients [7]. Through MI training, the motor
nerve conduction pathways of stroke patients can be repaired
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or reconstructed. The MI of different motions is mapped to
the EEG changes in the corresponding regions of the cerebral
cortex, and decoding different EEG features can distinguish
different motions [8]. For example, in unilateral hand MI,
mu rhythms (8-13 Hz) and beta rhythms (13-30 Hz) of the
motor sensory area on the opposite side of the brain will
decrease in power, while mu rhythms and beta rhythms in
the ipsilateral motor sensory area will increase in power. This
phenomenon is called event-related desynchronization (ERD)
and event-related synchronization (ERS) [7]. BCI technology
uses various computer algorithms to classify these different
ERD/ERS patterns and convert them into control signals for
external devices. Tang et al. [8] proposed a BMI system
based on ERD/ERS and used for upper-limb exoskeleton
control, achieving high classification accuracy. Liu et al. [9]
proposed an ERD/ERS-based BCI control system and verified
its effectiveness by operating a two-arm multi-finger robotic
to complete tasks. Based on ERD/ERS, Li et al. [10] proposed
a BCI hybrid control strategy that combines EEG and EMG
signals to achieve flexible and stable control of the lower limb
dynamic exoskeleton.

Convolutional Neural Networks (CNN) as a representative
algorithm of deep learning have been widely used in
computer vision, natural language processing, and other
fields [11]. Conventional EEG data processing relies on the
experience of researchers for complex data preprocessing and
feature extraction. However, human-operated preprocessing
and feature extraction will reduce the accuracy and reliability
of classification results [11]. And the correlations between
EEGs of different channels are easily ignored during the
feature extraction process [12]. The CNN model can auto-
matically extract features from the original input signal and
obtain deeper and more distinguishable feature information
through local receptive fields, weight sharing, and down-
sampling, which reducing the subjectivity and incompleteness
of feature selection caused by human factors [13], [14], [15].
Amin et al. [16] proposed an attention-based CNN model to
learn the importance of different features of MI data and
obtained good results when they applied it to the BCI IV
2a dataset. Roy [17] proposed a Multi-Scale (MS) CNN
which can extract the distinguishable features of several non-
overlapping canonical frequency bands of EEG signals from
multiple scales for MI-BCI classification. Zhao et al. [18]
proposed a multi-branch 3D-CNN classification strategy and
the 3D representation is generated by transforming EEG
signals into a sequence of 2D array which preserves spatial
distribution of sampling electrodes. Li et al. [19] proposed
an end-to-end EEG decoding framework, which employs raw
multi-channel EEG as inputs, to boost decoding accuracy
by the channel-projection mixed-scale convolutional neural
network aided by amplitude-perturbation data augmentation.
However, due to significant individual differences between
subjects, such as the optimal time period and frequency
band of ERD/ERS changes [20], [21], [22]. It is not good
enough to use conventional recognition methods to perform
shallow temporal or spectral feature learning on MI features.
Therefore, due to the influence of individual differences among
stroke patients, the refinement and weight assignment of deep

features is another research interest that could improve the
accuracy of MI-EEG decoding deep learning models.

Squeeze-and-Excitation Networks (SENet) as a channel-
based attention mechanism, treats each feature channel as a
whole and use global information to automatically “learn”
the importance of different feature channels in the training
process, thereby suppressing the relatively unimportant
features in the training classification process and boosting the
most discriminative and information-rich features to improve
the accuracy of the model [23]. Sun et al. [24] proposed
a CNN with sparse spectrotemporal decomposition (SSD)
for MI-EEG classification, which adopted SE to adaptively
recalibrate the channel direction. Zhang et al. [25] proposed
an orthogonal CNN fused with SE blocks to perform feature
recalibration across different EEG channels. Inspired by SE,
we merged SE blocks into the CNN model, enabling the
model to automatically obtain the weights of each feature
channel (EEG features of different time and frequency bands),
adaptively weighted the feature maps generated by the original
feature fusion layer, and improve the proportion of useful
features in the current task. This approach can solve the
problem of optimal features of EEG signals from different
subjects located in different frequency bands, and train a MI
recognition and classification model with high recognition
accuracy suitable for specific users.

The current rehabilitation strategies based on MI-BCI
mainly improve the MI recognition accuracy of subjects by
improving the feature extraction algorithms and neglecting the
impact of MI signal strength on recognition accuracy [26].
Therefore, in order to maximize the activation of the subjects’
motor nerves and improve their signal strength, virtual
rehabilitation technology combining MI-BCI technology and
virtual reality (VR) technology is applied in the field of stroke
rehabilitation [27]. VR technology has solved the problem of
poor immersion and multiple external environmental inter-
ference factors (sound, light) in conventional rehabilitation
training strategies (by observing cues on computer screens)
[28]. VR technology can provide an immersive training
environment, improve the interhemispheric activation balance
(IHAB) and enhance the cortical connectivity between the
primary sensorimotor cortex (SM1), the primary motor cortex
(M1), and the supplementary motor area (SMA) on both sides
of the subject during motion induction. The VR scene can
provide real-time feedback in each training task, achieve more
comprehensive MI training, improve rehabilitation efficiency,
shorten the rehabilitation period, and enhance the patient’s
initiative and adaptability in rehabilitation [28]. Jang et al. [29]
demonstrated a shift in cortical organization of the affected
limb from the ipsilateral hemisphere to the contralateral
hemisphere after the VR intervention. Mekbib et al. [30]
revealed that unilateral and bilateral limb mirroring exercises
in an immersive virtual environment may stimulate MNs in the
damaged brain areas and may facilitate functional recovery
of the affected upper extremities post-stroke. However, the
current VR approaches use single-scenario rehabilitation,
the inter-individual adaptability is poor [27]. At the same
time, the conventional rehabilitation training strategies lack
visual feedback based on motor intention, but at the neural
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Fig. 1. The architecture diagram of the upper-limb rehabilitation
exoskeleton system (VR-ULE).

mechanism level, visual feedback based on motor intention
can activate the mirror neuron system, promote brain plasticity
changes and functional reorganization, and contribute to the
recovery of motor function [31]. Therefore, we used virtual
character arm motions to cue patients for simulated movements
in VR, and the patient’s mirror neurons were activated.
Then, the patient performed MI, and the computer decoded
the EEG and converted it into control commands for the
virtual character to achieve visual feedback of the motion
intention. Patients continuously adjusted the MI process based
on feedback results.

In this paper, we developed a virtual reality upper-limb
rehabilitation exoskeleton system (VR-ULE). VR-ULE used
an SE block-based CNN model and a VR scene to improve
the MI recognition accuracy of stroke patients. VR-ULE
includes a wearable exoskeleton hardware subsystem and an
MI recognition software subsystem. The wearable exoskeleton
subsystem is used to assist the patient’s limb movement.
The software subsystem for MI recognition is composed
of a VR scenes cues control module, CNN+SE module,
and an online hybrid control module. The VR scenes cues
module is used to provide patients with visual cues and
feedback with mirror operation intention. CNN+SE module
is used to automatically analyze the importance of EEG
features in different time periods and frequency bands. The
SE blocks is used to emphasize important features and
suppress nonimportant features through adaptive weighting.
The online hybrid control module is used to receive the
patient’s MI signals and provide virtual feedback signals in
the early and middle stages of the patient’s motor neuron
rehabilitation. In the later stages of rehabilitation, the online
hybrid control module is used to and control the upper-limb
exoskeleton robotic arm to assist patients in muscle group
strength rehabilitation training. We designed an offline training
experiment to obtain the MI EEG data of different subjects and
trained the CNN+SE classification model. We also designed
an online control experiment to evaluate and validate our
proposed rehabilitation strategy and training system. The
contributions of this study include:

(1) Based on the theory of neural plasticity, we inde-
pendently designed an upper-limb rehabilitation exoskeleton
system for stroke patients at different rehabilitation training
stages to perform active movement and passive movement;

(2) The SE module based on channel attention mechanism
in the CNN model were used to obtain the frequency band

Fig. 2. The lightweight wearable exoskeleton hardware subsystem.

differences of EEG signals between individuals and the
CNN+SE model effectively improved the accuracy of MI
recognition and classification;

(3) Based on the mirror neuron theory, we built three VR
rehabilitation training scenes (lifting dumbbells, tasting fruits,
and feeding pets) with virtual motion guidance to improve
the immersion experience and avoid some environmental
interference factors in conventional screen cues.

II. SE-BASED CLASSIFICATION STRATEGY OF MI
A. System Introduction

The VR-ULE consists of a wearable exoskeleton hardware
subsystem and a MI recognition software subsystem. The
system framework is shown in Fig 1.

The wearable exoskeleton subsystem consists of a self-
designed and developed functional backpack and an upper-
limb exoskeleton robotic arm. The functional backpack is used
to store various hardware control modules, and the upper-limb
exoskeleton robotic arm is used to assist the patient’s limb
movement. The MI recognition software subsystem consists of
a VR scene cue module, a CNN+SE module, and an online
hybrid control module. The VR scene cue module is used
to provide patients with a strongly immersive virtual MI cue
during the CNN+SE model training stage. The CNN+SE
module it is used to amplify the strong-response frequency
band of EEG during the patient’s MI, accurately identify
and classify the patient’s motor intentions. The online hybrid
control module is used to receive the MI signal from patients
during rehabilitation, provide feedback signals in different
periods of the patient’s rehabilitation, and control the motion
of virtual character or upper-limb exoskeleton robotic arm
motion.

1) Wearable Exoskeleton Subsystem: We independently
designed and produced a lightweight wearable exoskeleton
hardware subsystem, as shown in Fig 2. The wearable
exoskeleton hardware subsystem consists of a functional
backpack, an upper-limb exoskeleton robotic arm skeleton,
two power levers, a push lever drive board, a servo motor gear,
a single-chip microcomputer, a power module pack, a lithium
battery, a four-finger bionic hand, a disc damping shaft, and a
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Fig. 3. Exoskeleton degrees of freedom display.

universal joint. Among them, the functional backpack made of
3D printing materials which is light, small, and comfortable.
The inside of the backpack is used to store the push lever
drive board, servo motor gear, single-chip microcomputer,
power module pack, and lithium battery. Nylon shoulder straps
and waist belts can be adjusted according to the patient’s
body shape. The upper-limb exoskeleton arm can simulate
the motion of a healthy arm. Bionic arm skeleton can fit
the patient’s arm, and the power lever can provide motion
thrust to assist the patient’s limb movement, which realized a
series of rehabilitation training motions with five degrees of
freedom, including grasping, wrist flexion, elbow flexion, and
shoulder abduction (Fig 3). The four joints of the exoskeleton
arm are connected by detachable binding screws, which can
be smoothly rotated by simply inserting them into the holes.
The four-finger bionic finger module is located at the end
of the upper-extremity exoskeleton, and the knuckles use the
short-range rope-driven motion mode of the servo motor to
achieve a more natural finger grasping effect. The upper-
limb exoskeleton arm is mounted on the backpack through
the universal joint behind the right shoulder. The backpack
is equipped with a lithium battery (12 V, 2400 mA), a lever
driver board (L298N), and a microcontroller (ESP-WROOM-
32, Shenzhen Yusong Chuangda Electronics Co. Ltd, China).
The entire wearable exoskeleton hardware subsystem is sewn
onto the inner nylon fabric, it is fixed to the patient’s chest
and waist by multiple elastic nylon straps, and all its drive
levers are driven by lever driver board control. The single-
chip microcomputer has a 4-MB storage space, which can
communicate with the computer through WiFi to receive and
convert the MI signal identified and classified by the CNN
model with SE into feedback control signals to control the
motion of the exoskeleton.

2) MI Recognition Software Subsystem: The MI recognition
software subsystem consists of a VR scene cue module, a CNN
module with SE, and an exoskeleton control module. It is used
for the identification, classification, and control signal output
of the patient’s MI signal.

a) VR scene cue module: We designed and built three
types of VR training scenes for MI: lifting dumbbells,
tasting fruits, and feeding pets. These are used to provide
patients with virtual MI cues (Fig 4). While ensuring the
sense of immersion, it increases the interest in rehabilitation

Fig. 4. VR training scene diagram (cue).

training, better stimulates the enthusiasm of patients for
training, improves rehabilitation efficiency, and shortens the
rehabilitation cycle. When a patient wears a VR head-mounted
display (VIVE-P130, HTC, Inc.) for offline MI training, the
VR scene only provides virtual motion cues, but during online
MI training, the patient sees the virtual motion cues and then
imagines the movement. After the MI signal is recognized and
classified by the CNN model, the online hybrid control module
outputs it back to the virtual scene to control the motion of
the virtual characters. If the MI is wrong or fails, the virtual
scene will display the recognition results to provide feedback
to the patient to prompt the patient continuously correct or
strengthen the MI.

b) CNN+SE module: The EEG is a signal with spa-
tiotemporal characteristics, and its feature extraction process
needs to consider temporal and spatial features [32]. Because
there are significant individual differences in the frequency
characteristics and spatial characteristics of EEG signals
among different subjects during MI., by incorporating the
improved SE blocks into the CNN model, it is beneficial to
train a CNN model that meets the specified user, thereby
improving the recognition accuracy of MI. To this end,
we independently designed and built a CNN model with
an embedded SE block for the correct identification and
classification of the patient’s MI signals, as shown in Fig 5.
The entire CNN+SE model consisted of 10 layers: the first
layer was the input layer; the second and third layers were
convolutional layers, which constituted the feature extraction
part; the fourth layer was the feature fusion layer; the
fifth layer was the SE blocks layer, which constituted the
frequency-band channel-weight learning part; the sixth layer
was the feature weighting layer, which was used to weight
the output feature map of the fourth layer; the seventh layer
was the average pooling layer, which was used for down
sampling; the eighth and ninth layers were fully connected
layers; the 10th output layer constituted the classification part;
and the 11th layer was the output layer, which we used to
output the classification result.

c) Description of each network layer of CNN+SE: Input layer
(L1) - 200 22 × 750 matrices of input samples per channel
L N ,T where N is 22, representing 22 EEG channels, and T
is 750, representing the sampling time point in each channel.
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Fig. 5. Framework diagram of MI recognition model. The input EEG signal samples are divided into multiple different frequency bands in multiple
channels, the weight of different feature channels is learned by combining SE blocks to emphasize the useful information frequency band features.

Fig. 6. Overall Control-flow diagram of the VR-ULE system.

Convolutional layer (C2) - This convolutional layer verifies
the input EEG signals through eight convolution kernels of
size [22 × 1] LN,T LN,T and performs spatial convolution.
Eight frequency band channels are extracted to output eight
feature maps of size [1 × 750]. This process can be expressed
as

C2
m( j) = f (

∑i≤22

i=1
L i, j × k2

m + b2
m( j)), (1)

where C2
m( j) is the output feature map of the C2 layer, the

superscript 2 represents the number of layers, the subscript m
represents the mth feature map, j represents the j th neuron

in the feature map, k2
m is the convolution kernel of [22 × 1],

and b2
m( j) is the bias.

Convolutional layer (C3) - This convolutional layer
performs temporal convolution on the input EEG through five
convolution kernels of size [1 × 10]. Eight frequency band
channels are extracted to output 40 [1 × 75] feature maps.
The process can be expressed as

C3
m( j) = f

(∑i≤10

i=1
C2

m(( j − 1) × 10 + i) × k2
m + b2

m ( j)
)

,

(2)

where k2
m is the convolution kernel of [1 × 10] and b2

m ( j) is
the bias.

Feature fusion layer (R4) - This layer splices 40 feature
maps of size [1 × 75] output by the C3 layer of each frequency
band channel to form a [40 × 75] feature map, with a total of
eight feature maps of size [40 × 75]R4Mc output from eight
frequency bands.

SE Blocks layer (SE) - this layer inputs feature maps
R4Mc with the size of [40 × 75 ×8]. In the SE layer, the
squeeze operation is first performed to compress the input
feature map tensor in space, that is, global average pooling
is performed on the input feature maps in turn, and the results
are fully connected. The output is a [1 × 1 ×8] feature map
F5 to achieve the purpose of compressing and integrating
the original 8 feature maps and shielding spatial distribution
information. At the same time, by extracting the overall
information of the eight feature channels, the underlying
network can also obtain the global receptive field. This process
can be expressed as

F5 = F sq (R4Mc) =
1

H × W

H∑
i=1

W∑
j=1

R4Mc (i, j). (3)

Then, the excitation operation is performed to learn the
nonlinear interactions between the eight feature channels and
limit the complexity of the model by using two fully connected
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layers with activation functions and no bias. These two fully-
connected layers are dimensioned down and up, respectively,
to form the structure of a bottleneck. The process can be
expressed as

(F6, R4Mc) = σ (g (F6, R4Mc))=σ (R4M2δ (F6 · R4M1)) .

(4)

i. e, first F5 is multiplied by R4M1 in a fully connected
layer operation, then multiplied by a rectified linear unit
(ReLU) layer to keep the output dimension unchanged. Then
by multiplying the result by R4M2 in a fully connected layer
operation, and then through a ReLU, and so on to R4M8,
a [1 × 1 ×8] feature map is output through the sigmoid
function F6.

Feature weighting layer (R7) - This layer performs channel-
wise multiplication using the weights obtained by the
excitation operation to perform channel-by-channel adaptive
weighting on the original eight feature maps. That is,
it multiplies the eight feature maps in the initial input SE
by the eight weights in F6. Finally, eight feature maps of
size [40 × 75] are obtained to achieve feature weighting. The
process can be expressed as

R̃7Mc = Fscale (R4Mc, F6) = R4Mc · F6. (5)

Pooling layer (R8) - This layer performs average pooling of
the output of the R7 layer in 5 × 5 regions with a stride of 5,
and the output is eight feature maps of size [8 × 15]. Fully
connected layer (F9) - This layer is used as a fully connected
layer. The eight feature maps output by the R8 layer are fully
connected to obtain eight feature maps with a size of [120×1].
This process can be expressed as

F9
m ( j) = f

(∑
R̃7Mc(( j − 1) × 10 + 1) × k9

m + b9
m ( j)

)
,

(6)

where k9
m is the convolution kernel of [1 × 1]; b9

m ( j) is the
bias;

Fully connected layer (F10) - This layer fully connects
the eight feature maps output from the F9 layer to form a
classification part of size [960 × 1], containing 200 neurons:

F10
m ( j) = f (

i≤8∑
i=1

p≤120∑
p=1

F9
i (p) ω10

i (p) + b10( j)), (7)

where ω10
i (p) is the connection weight from the neurons in

the F9 layer to the neurons in the F10 layer, and b10( j) is the
bias.

Output layer (O11) - This layer is the output layer,
containing two neurons, representing a binary classification
problem. The process can be expressed as

O11
m ( j) = f

(i≤200∑
i=1

F10
m (i) ω5 (i) + b5 ( j)

)
, (8)

where ω5 (i) is the connection weight of the neurons in the
F10 layer to the neurons in the O11 layer, and b5 ( j) is the
bias.

Online hybrid control model: The online hybrid control
module converts the classification signal identified by the
MI recognition software subsystem into a VR-scene character
motion control signal or an exoskeleton motion control signal.
First, the VR scene control module in the MI recognition
software subsystem will randomly generate left- and right-
hand MI motion cues, and the stroke patients will then try
MI within a certain time. The trained CNN+SE model will
acquire the subject’s MI EEG data and perform identification
and classification. The classification results are identified by
the online hybrid control module according to the training
task and converted into a continuous control signal output.
The Control-flow diagram of the VR-ULE system is shown
in Fig 6.

III. EXPERIMENT

For the MI classification strategy based on the combination
of VR and SE blocks in our proposed VR-ULE, we designed
offline training experiments and online control experiments to
test the effectiveness of the strategy. In the offline training
experiment, we trained two types of CNN+SE models that
were cued by the conventional experimental scene and the VR
scene for each subject in order to do comparative verification.
In the online control experiment, we first selected the highest-
accuracy classification model trained in the offline experiment
for different subjects. Then, analogous to the rehabilitation
stage of brain motor neurons in the pre-rehabilitation stage
of stroke patients, the subjects will perform MI based on
the VR scene to control the virtual characters to complete
the corresponding virtual tasks. At the same time, analogous
to the upper-limb muscle group strength training stage of
stroke patients in the later stage of rehabilitation, the subjects
independently perform MI according to the task requirements
to achieve different control of the exoskeleton system and
complete corresponding tasks. Finally, the completion results
of the two types of analogy experiments are evaluated. We also
chose three methods, conventional CNN [11], MRA+LDA
[33], and CSP+SVM [34], to train the MI recognition model
on the same training set, and then these models were tested
using the same test set.

A. Subjects and Dataset Preparation
For the experiment, we recruited 20 healthy subjects (age:

22 ± 1.21 years), all right-handed (as assessed by the
Edinburgh Handedness Questionnaire) [35]. At the same time,
we also recruited one mild stroke patient and one moderate
stroke patient to participate in the experiment. All the subjects
participated in the EEG experiment for the first time and
were not told any experimental hypotheses. Each subject
signed an informed consent form before the experiment. The
experimental procedure was reviewed and approved by the
Human Ethics Review Committee of Zhejiang University of
Technology.

EEG signals were acquired with the ActiveTwo64 channel
EEG signal acquisition system (BioSemi, Netherlands).
Twenty-three channels of EEG data (Fz, FC3, FC1, FCz, FC2,
FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2,
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Fig. 7. The offline training experimental scenario is shown in A, where
(a) is training without VR and (b) is training with VR; the timing diagram
of one trial for two types of experiments are shown in B, where (a) is
timing diagram of one trial without VR and (b) is timing diagram of one
trial with VR.

CP4, P1, Pz, P2, POZ) were collected. The reference electrode
was placed at the mastoid of the left ear; the ground electrode
was replaced by two independent electrodes, common-mode
sense (CMS) and driven right leg (DRL). Before placing the
electrodes, a conductive gel was used to reduce the impedance
between the electrodes and the scalp. The sampling frequency
was set to 250 Hz, the cutoff frequency of the high-pass
filter was 0.05 Hz, the cutoff frequency of the low-pass filter
was 200 Hz, and the power frequency notch was 50 Hz. After
placing all the electrodes, the subjects sat in front of the
computer screen and put their hands on the table naturally.
The subjects were asked to avoid blinking and unnecessary
head or body motions as much as possible. The collected data
were divided into a training set, validation set, and test set in
a 3:1:1 ratio.

B. Offline Training Experiment

Each subject needed to complete 200 trials in each
of the non-VR tests and VR tests throughout the offline
training experiment (Fig 7), including 100 imaginary left-hand
movements and 100 right-hand movements. The sequence
diagram of the non-VR test is shown in Fig 7B-a. Each trial
lasted for 8 s. The screen was blank for the first 2 s, and then
a “+” character appeared in the center of the screen to remind
the subjects that the trial was about to start. From 3 s to 6 s, the
“+” character on the screen changed to a randomly generated
leftward or rightward arrow and the subjects imagined their
left-hand movement or the right-hand movement according to
the arrow point. There was a random interval of 2 s to 5 s
between each trial. There was a 3-min rest time between every
20-trial set to avoid fatigue.

The sequence diagram of the VR test is shown in Fig 7B-b.
Each trial lasted for 8 s. The screen was blank for the first
2 s, and then the word “ready!” appeared in the center of
the VR scene to remind the subjects that the trial was about
to start. From 3 s to 6 s, the left- or right-hand movement
randomly appeared in the VR scene. The subjects imagined
their left hand or right-hand movement according to the body
movements in the VR scene. There was a random interval
of 2 s to 5 s between each trial, and there was a 3-min rest
time between every 20-trial set to prevent fatigue. Each subject
was tested with one set of data, including 200 non-VR trials
and 200 VR trials, with seven subjects totaling seven sets of
data and 14 parts.

The data of each subject’s non-VR test and VR test were
cropped, and after removing the data corresponding to the
subjects’ rest period, the EEG data in the frequency band
of 7 Hz to 31 Hz were obtained by filtering, and the
extracted EEG data were further processed for frequency
band separation of 7–10, 10–13, 13–16, 16–19, 19–22, 22–25,
25–28, and 28–31 Hz. At the same time, the window length
of the data segment was defined as 7.5 s. The CNN+SE
preprocessing code intercepted the 3 s after the MI cue as
the model input, so each input sample was composed of a
22-channel × 750-sampling-time-point (3 s time period ×

250 Hz sampling rate) matrix, and each subject finally had
200 matrices of size [22 × 750] corresponding to the non-VR
test and VR test. Finally, 200 matrix data of size [22 × 750]
for each subject’s non-VR test and VR test were randomly
divided into five copies, three of which were used to train
each subject’s MI model, one copy is used as a validation set
for training the model and one of which was used as a test
set for evaluating the trained model. The EEG of the C3 and
C4 channels in all trials of each subject was subjected to the
superposition average calculation (ERD/ERS), which can be
expressed as

E RD
E RS

% =
E EG A − E EG R

E EG R
× 100%. (9)

The sequence diagram and brain topography of ERD/ERS
were observed, and the time period when the ERD/ERS pattern
appeared and ended in each trial was recorded.

We compared this model with three other types models,
CNN, MRA+LDA, and CSP+SVM, which we trained on the
same training set and then used the same test set to test these
models.

C. Online Control Experiment
The online control experiment had two parts: the VR scene

online cue control test and the exoskeleton online control test.
The MI model with high accuracy trained by each subject in
the offline training experiment was used for the control signal
input of the VR scene and the exoskeleton in the online test.
The experimental scenario is shown in Fig 8.

In the online control test of the VR scene, the subjects
did not wear the exoskeleton equipment, only the VR head-
mounted display and the EEG cap, and sat in front of the
screen. The subjects rested their hands on the table. The screen
was used to display the head-mounted display in real-time.
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Fig. 8. The Online control experimental scenario, where (a) is
exoskeleton control test and (b) is VR control test.

In the VR scene, the MI instruction “Please move your left
hand” or “Please move your right hand” appeared once every
10 s. At the same time, the virtual characters in the VR scene
made the same actions to guide the subjects, and the subjects
performed the corresponding MI according to the instructions.
The PC saved the EEG data collected 2 s before and 5.5 s after
the MI instructions. The data processing code preprocessed the
saved data and input it into the MI model trained by the offline
training experiment for classification. The classification result
was converted into a control signal and input to the VR scene
c control module to control the virtual character arm in the
VR scene to move and complete the corresponding task. Each
subject performed 20 MI tasks with the left hand and 20 with
the right hand for each type of scene, so a total of 120 MI
tasks were performed.

In the exoskeleton control test, the subjects wore the
exoskeleton on the right hand and sat in front of the table
with the EEG cap on. The MI EEG signals in the left and right
hands were mapped as control signals for the input exoskeleton
to perform the task action or not, respectively. The subjects
made an MI trial every 8 s according to the task requirements,
and there was a 8-s rest between two trials. All EEG data were
saved in the PC during the test. Similarly, the data processing
code preprocessed the saved data and input them into the
MI model trained by the offline training experiment. The
classification results were converted into control signals and
input to the exoskeleton control module to control the motion
of the exoskeleton. A total of 30 MI trials were designed as
a full test.

IV. RESULTS

A. Public Dataset Results
To verify the effectiveness of the SE blocks in the SE-VR-

based MI classification strategy, we applied it to the public
dataset 1 in BCI Competition IV for model training and
verification, and compared it with CNN, MRA+LDA, and
CSP+SVM. For this dataset, seven subjects selected two types
of movements from the left hand, right hand and foot, and
to perform 100 MI trials. Record the EEG data of 64 EEG
channels for each subject at a sampling rate of 1000 Hz.
More details on the experimental paradigm corresponding
to this dataset can be obtained from the following website:
https://www.bbci.de/competition/iv/desc_1.html.

The classification results of the four MI classification
models for different subjects in the public dataset are shown

TABLE I
CLASSIFICATION ACCURACY OF FOUR CLASSIFICATION MODELS

FOR EACH SUBJECT IN THE PUBLIC DATASET

Fig. 9. ERD/ERS time course from 0 s to 5 s and EEG topography from
0 s to 6 s for left- and right-hand MI of all subjects in all trials.

in Table I. The average classification accuracy of the four
MI classification models was CNN+SE 87.53% ± 1.07%;
CNN 83.32% ± 1.04%; MRA+LDA 84.55% ± 1.62%; and
CSP+SVM 83.02% ± 2.07%.

B. Results of Offline Training Experiment
ERD/ERS Analysis: After the EEG data of the C3 and

C4 channels of each subject in all tests were separated,
the superimposed average calculation of the ERD/ERS
phenomenon was performed [36]. The ERD/ERS sequence
diagram from 0 to 5 s and brain topography from 0 to 6 s
for a single trial is shown in Fig 9. As seen from the Fig,
the ERD/ERS pattern appeared in each trial for a time period
ranging from 3.5 s to 4.5 s.

Analysis of the training results of the non-VR tests and VR
tests: The two types EEG data of each subject were trained in
four classification models, and models with good convergence
were obtained, and the training loss curve of each subject
was recorded. The best-converging model came from subject
06. The training loss curve of top three models is shown
in Fig 10.

Analysis of the classification results of the non-VR tests
and VR tests: After using the four classification models for
training of each subject’s non-VR tests and VR tests EEG
data, the model with the best convergence was selected,
and the classification test was performed. The resulting
classification accuracy is shown in Table II. From the data
in the table, it can be seen that compared with a single
screen cue, the VR scene to provide MI cues obtained higher
classification accuracy with the same classification model, and
CNN+SE achieved higher classification accuracy than CNN,
MRA+LDA, and CSP+SVM (non-VR:78.13% ± 2.60 and
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TABLE II
THE TEST CLASSIFICATION ACCURACY OF EACH SUBJECT’S NON-VR TEST AND VR TEST DATA IN THE FOUR CLASSIFICATION MODELS

Fig. 10. The model training loss curve obtained by the training of top
three classification models on the VR tests data of Subject 06.

VR:86.72% ± 2.99%). In addition, for the CNN+SE model
with VR, the model classification accuracy of two patients
were lower than the average model classification accuracy
of 20 healthy subjects (86.72% ± 2.99%), and the model
recognition accuracy of Patient 1 (86.44%) was higher than
that of Patient 2 (81.94%).

To better evaluate the classification accuracy of the four
classification models, the three average indicators, precision,
recall, and F score, were introduced in Table III. Based on
the data in Table II and Table III, we conducted an ANOVA
on the two types of MI cues (VR or non-VR), four types
of classification models (CNN+SE, CNN, MRA+LDA and
CSP+SVM), and two types of MI classes (Left or Right hand)
to evaluate their interactions and their impact on classification
accuracy. The results indicate that when the confidence level
is set to 95%, there is no interaction between the MI class and
the classification model, and there is no interaction between
the MI cue and the classification model (all p > 0.01). The
classification model has a significant effect on classification

accuracy (F = 63.984, p < 0.01), and the MI cue has a
significant effect on classification accuracy (F = 152.328,
p < 0.01), but the MI class has no significant effect on the
classification accuracy (F = 0.02, p > 0.01).

C. Results of Online Control Experiment
In the online experiment, the task completion rate of each

subject is shown in Table IV. The task success rate was defined
as the percentage of times a task was completed correctly.
It can be seen from the online experimental results that the
success rates of virtual scene tasks 1 (lifting dumbbells) was
higher than virtual scene task 2 (tasting fruits) and 3 (feeding
pets), and the success rate of the exoskeleton control task was
higher than the virtual scene tasks (88.48% ± 5.84%). And
there is no significant difference in the success rate between
the four types of tasks of Patient 1 (87.50%, 85.00%, 80.00%,
86.67%) and the average success rate of the four types of tasks
of 20 healthy subjects (87.00% ± 4.78%, 85.25% ± 4.74%,
80.13% ± 4.71%, 88.83% ± 5. 99%). The success rate of the
four types of tasks of Patient 2 (87.00% ± 4.78%, 85.25% ±

4.74%, 80.13% ± 4.71%, 88.83% ± 5.99%) is lower than the
average success rate of the four types of tasks of 20 healthy
subjects.

V. DISCUSSION

Our designed offline training experiments (MI recognition
and classification model training) and online control exper-
iments (VR-scene character and exoskeleton arm movement
control tasks) fully verify the effectiveness of our proposed
VR-ULE system.

The offline training experiment results show that adding
SE blocks into the CNN can promote the accuracy of
MI EEG classification in public datasets. And we got a
classification accuracy of 77.94% ± 2.65% in our own
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TABLE III
THE TEST CLASSIFICATION PRECISION, RECALL, AND F SCORE OF THE VR TESTS DATA

FOR EACH SUBJECT IN THE FOUR CLASSIFICATION MODELS

measured experimental dataset. The reason is that the CNN
will learn the temporal and spatial features of the subject’s
MI, and the SE blocks performs feature weighting operations
on the EEG data of the subjects in different frequency bands
to learn strong features of the MI EEG frequency band of

each subject. The advantage of this method is that while
avoiding individual differences, the final classification result
of the model will also be output based on the weights of
all frequency bands, avoiding transiently missing a signal in
a band of the subject during the online test affecting the
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TABLE IV
THE SUCCESS RATE OF EACH SUBJECT’S FOUR

TYPES OF ONLINE EXPERIMENTAL TASKS

classification results. Relevant studies have obtained results
consistent with ours. For example, Sun et al. [24] used a deep
learning framework called SSDSE-CNN integrating the SE
blocks for MI-EEG classification, and the highest classification
accuracy obtained was 79.3% ± 6.9%. Li et al. [37] proposed
a novel temporal-spectral-based SE feature fusion network for
MI-EEG decoding, and the highest classification accuracy was
84.49% on the public dataset.

Our offline experimental results also show that when
the subjects tried MI, compared with the boring screen
cues, the use of VR cues was more helpful for training
a network model, with higher classification accuracy. All
four classification models were verified, in which CNN+SE
obtained a classification accuracy of 86.49% ± 3.02%. The
reason is that the VR scene brings the subjects a more
immersive experience, avoids the interference of many external
factors, and makes it easier for the subjects to concentrate,
and the arm movements of the characters in the virtual scene
will guide the subjects to quickly generate corresponding
responses, improving their IHAB while activating connections
between more areas of the cerebral cortex, cueing patients
to produce more pronounced MI EEG features. In related
research on stroke rehabilitation, Sip et al. [38] applied
the Virtual Mirror Hand 1.0 procedure to the treatment of
hand functional recovery after stroke and compared it with
the classic mirror therapy, finding that applying VR to the
rehabilitation of stroke patients was feasible. Nath et al. [39]
developed a VR task library for upper-limb rehabilitation of
poststroke patients and concluded that VR therapy can improve
the clinical symptoms of chronic stroke patients.

Our online control experiments showed that the average
success rate of exoskeleton control task was 88.48% ±

5.84%, which was higher than that of virtual character arm
movement tasks in VR scenes. The reason is that the MI
command in the exoskeleton control task uses real task actions
to improve patients’ perception and motion mechanisms
[40]. Patients can perform more concrete MI based on the

obtained perception experience, which can improve the model
recognition accuracy.

In the offline training experiment, the model classification
accuracy of two patients were lower than the average model
classification accuracy of 20 healthy subjects (86.72% ±

2.99%), and the model recognition accuracy of Patient 1
(86.44%) was higher than that of Patient 2 (81.94%). The
reason is that different degrees of stroke can cause varying
degrees of damage to the patient’s motor neurons, thereby
affecting the patient’s ERD/ERS patterns during MI and reduce
the classification performance [41], [42].

One limitation of this study is that the subjects in our
experiment lack diversity. In future studies, we will conduct
more experiments on stroke patients of different ages, genders,
and rehabilitation stages to verify the effectiveness of our
proposed rehabilitation strategy.

VI. CONCLUSION

In this paper, based on the MI-BCI paradigm and VR
technology, we designed and developed a VR-ULE that
can be used for the rehabilitation of stroke patients with
hemiplegia. The system obtains the patient’s motion intention
through the MI EEG identification strategy based on a
CCN and SE blocks, and it controls the execution of
VR-ULE rehabilitation training actions. The SE module
makes up for the shortcoming that different subjects have
differences in MI frequency domain characteristics. The MI
indication based on the VR scene strengthens the MI EEG
of the subjects and makes up for the shortcomings of the
current MI-BCI rehabilitation strategies, such as a single
rehabilitation scene, poor individual adaptability, and many
external environmental interfering factors. Our results show
that compared with the conventional classification strategy,
the proposed MI EEG recognition method (CNN+SE) can
improve the MI classification accuracy. The VR-ULE system
can more efficiently help stroke patients complete upper-
limb rehabilitation training tasks through a more reasonable
MI identification strategy and an immersive experience of
VR scenes, all of which improve the patients’ autonomous
rehabilitation.
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