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Abstract— The brain-computer interface (BCI) based on
the steady-state visual evoked potential (SSVEP) has drawn
widespread attention due to its high communication speed
and low individual variability. However, there is still a need
to enhance the comfort of SSVEP-BCI, especially consid-
ering the assurance of its effectiveness. This study aims
to achieve a perfect balance between comfort and effec-
tiveness by reducing the pixel density of SSVEP stimuli.
Three experiments were conducted to determine the most
suitable presentation form (flickering square vs. flicker-
ing checkerboard), pixel distribution pattern (random vs.
uniform), and pixel density value (100%, 90%, 80%, 70%,
60%, 40%, 20%). Subjects’ electroencephalogram (EEG)
and fatigue scores were recorded, while comfort and effec-
tiveness were measured by fatigue score and classification
accuracy, respectively. The results showed that the flicker-
ing square with random pixel distribution achieved a lower
fatigue score and higher accuracy. EEG responses induced
by stimuli with a square-random presentation mode were
then compared across various pixel densities. In both
offline and online tests, the fatigue score decreased as
the pixel density decreased. Strikingly, when the pixel den-
sity was above 60%, the accuracies of low-pixel-density
SSVEP were all satisfactory (>90%) and showed no sig-
nificant difference with that of the conventional 100%-pixel
density. These results support the feasibility of using
60%-pixel density with a square-random presentation mode
to improve the comfort of SSVEP-BCI, thereby promoting
its practical applications in communication and control.
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I. INTRODUCTION

THE brain-computer interface (BCI) provides a direct com-
munication pathway between the central nervous system

and external devices [1], [2]. It encompasses both invasive
and noninvasive measures. Among the noninvasive BCIs, the
one based on steady-state visual evoked potential (SSVEP) has
drawn widespread attention owing to its high communication
speed, minimal training required, and low individual variability
[3], [4], [5]. In SSVEP-BCI, two critical aspects are the encod-
ing and decoding methods, which correspond to the paradigm
and algorithms, respectively. Past decades have witnessed
unprecedented progress of SSVEP decoding: the information
transfer rate (ITR) has increased by approximately three times
since the introduction of canonical correlation analysis (CCA)
with individual calibration data and task-related component
analysis (TRCA). Moreover, the accuracy has increased by
close to 10% with the introduction of filter-bank technology
[6], [7], [8], [9]. However, despite significant progress in
decoding, there have been few studies exploring how to
achieve the perfect balance between effectiveness and comfort
in SSVEP-BCI from the encoding perspective. This limitation
hampers its further development and potential improvements.

Current encoding studies on SSVEP-BCI have primarily
focused on improving effectiveness (decoding accuracy) by
adjusting stimuli to trigger larger electroencephalogram (EEG)
responses, and enhancing comfort by using high-frequency
(>30 Hz) flicker stimulation. Common stimulus-adjusting
methods include magnifying stimuli size [10], [11], [12],
enhancing luminance contrast [13], [14], [15], and chang-
ing the color [16], [17]. What they have in common is
the significant enhancement of stimulus intensity perceived
by the subjects. However, increasing stimulus intensity can
lead to significant fatigue reported by subjects, making it
challenging to use the system for extended periods. The lack
of comfort has become a major challenge for SSVEP-BCI
[18], [19], [20]. A recently widespread studied solution is the
adoption of high-frequency SSVEP (>30 Hz, HF-SSVEP).
Except for replacing the traditional low-frequency flickers
with high-frequency ones, recent studies further developed
time-frequency, frequency-phase, space-frequency, and time-
space-frequency strategies to optimize both comfort and
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effectiveness of HF-SSVEP [21], [22], [23], [24]. However,
high-frequency SSVEP, especially above 40 Hz, still faces
challenges as the responses may not be robust and could be
too small to decode. Therefore, it is of vital importance to
a develop new encoding strategy that can achieve a better
balance between comfort and effectiveness of SSVEP.

Reducing the pixel density of stimuli appears to be a promis-
ing method for achieving a perfect balance between comfort
and effectiveness of SSVEP-BCI. By decreasing the number of
luminous pixels, the stimulus intensity is reduced, which can
alleviate subjects’ fatigue. Interestingly, this reduction in pixel
density may not affect the strength of neural responses induced
by SSVEP, meaning effectiveness may remain constant even
as pixel density decreases. The proposal for this approach
is based on the center-periphery antagonism effect of retina
[25], [26], [27]. Bipolar and ganglion cells in the second and
third layers of the retina have center-periphery antagonism
receptive fields, which react oppositely to stimuli located at the
center and periphery of the receptive field. A macroscopical
manifestation of this effect is that the boundaries between
light and dark tend to induce larger responses [28], [29]. Con-
sequently, reducing pixel density creates more discrete areas
with increased boundaries, potentially triggering larger neural
responses. This boundary-related enhancement is expected to
counter the decrease caused by intensity reduction.

Although this proposal seems theoretically reasonable, there
is a lack of studies investigating the feasibility of low-pixel-
density stimuli in optimizing SSVEP-BCI, and many critical
parameters remain unknown. There are at least three problems
that need investigating about the low-pixel-density SSVEP.
Firstly, it remains unclear whether the response enhancement
induced by the center-periphery antagonism effect makes sense
in the SSVEP paradigm. Additionally, the proper range of
pixel density that can satisfy both comfort and effectiveness
need further investigation. Secondly, it is uncertain whether
the common stimulus presentation form (flickering square
vs. flickering checkerboard) and pixel distribution pattern
(random vs. uniform) have an impact on low-pixel-density
SSVEP. Thirdly, the effectiveness of low-pixel-density SSVEP
in an online test requires evaluation. To address these ques-
tions, this study conducted three experiments. In the first
experiment, we found that flickering square with a random
pixel distribution (i.e., square-random) was a more suitable
presentation mode for low-pixel-density SSVEP. The second
experiment confirmed that a pixel density range of 60% to
90% was suitable. Finally, the third experiment compared the
online performance induced by 100%-, 80%-, 60%-, 40%-
and 20%-pixel-density SSVEP stimuli, and showed that the
60%-pixel-density condition achieved an online accuracy of
90.10±8.44%, which was almost the same as that of 100%.
Moreover, it demonstrated much better comfort than 100%.
These findings present a new encoding strategy for effectively
balancing the comfort and effectiveness of SSVEP-BCI.

II. MATERIALS AND METHODS

A. Participants
This study included three experiments, each involving dif-

ferent numbers of subjects: 14, 20, and 12 participants, aged

between 18 and 23 years, and all right-handed. Among them,
5 females, 8 females, and 6 females participated in experi-
ment 1, 2 and 3, respectively. All participants had normal or
corrected-to-normal vision, were free from psychological or
neurological disorders, and had sufficient rest before the exper-
iments. Experimental procedures involving human subjects
were approved by the Institutional Review Board at Tianjin
University. All possible consequences of the experiment were
explained, and written informed consent was obtained from
each subject.

B. Design of the Experimental Paradigm
Experiment 1 aimed to investigate three factors related to

low-pixel-density SSVEP stimuli, including two presentation
forms (flickering square vs. flickering checkerboard), two dis-
tribution patterns (random vs. uniform), and five levels of pixel
density (100%, 80%, 60%, 40%, 20%). As Fig. 1(a) shows,
the screen was divided into 2 × 4 parts, with a flickering
square (left) or flickering checkerboard (right) located in each
part, and each target occupying 180 × 180 pixels. The two
chosen presentation forms are commonly used in SSVEP-BCI.
Fig. 1(b) shows examples of stimuli with different pixel
densities, distribution patterns, and presentation forms. The
100%-pixel-density stimulus and background were set to white
and black, corresponding to the RBG value of (255, 255, 255)
and (0, 0, 0), respectively. Here, pixel density was defined
as the ratio of flickering pixels (i.e., white pixels) to the
total pixels in the stimulus. The lower the pixel density, the
weaker the stimulus would be. Moreover, it is believed that
visual perception is affected by the distribution pattern of
pixels. Thus, this study compared EEG responses induced by
two typical distribution patterns: random and uniform. In the
uniform pattern, the flickering pixels were regularly arranged,
maintaining consistent pixel density throughout the stimulus.
On the other hand, in the random pattern, the flickering pixels
were randomly assigned to different locations and remained
consistent in a single trial, which was kept changed across
trials as well as subjects. But the length difference of light-dark
boundaries brought about by this change were statistically
controllable. The experiment employed eight frequencies, i.e.,
8Hz, 9Hz, 10Hz, 11Hz, 12Hz, 13Hz, 14Hz, 15Hz. The stimu-
lus interface was displayed on a 24-inch monitor with a screen
resolution (pixels) of 1920×1080 and a refresh rate of 240 Hz.

Fig.2 illustrates experiment procedures. A target instruction
was cued by a green border before each stimulus lasting
1000ms. EEG responses induced by distinct pixel-density
stimuli were compared in four stimulus-presenting modes:
square-uniform, square-random, checkerboard-uniform and
checkerboard-random (4 modes × 5 pixel densities = 20 types
in total). The modes of stimuli and their frequencies were con-
ducted randomly. Each condition (20 types × 8 frequencies)
consisted of five trials. In the subsequent classification, four
trials were used for training and five-fold cross-validation was
performed.

Based on experiment 1, experiment 2 only included the
square flicker with random distribution. Pixel densities of
100%, 90%, 80%, 70%, 60%, 40% and 20% were selected.
The intervals of pixel density higher than 60% were reduced,
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Fig. 1. Stimulus parameter settings. (a) Two presentation forms (square
flicker vs. checkerboard flip). (b) Two distribution patterns (random vs.
uniform), five levels of pixel density (100%, 80%, 60%, 40%, 20%).

Fig. 2. Experiment procedures. (a) Procedures of experiment 2
(1 block): an offline test for finding a proper pixel-density range. (b) Pro-
cedures of experiment 3 (1 block): an online test comparing 100%-,
60%-, 40%- and 20%-pixel density.

aiming to find a more detailed and appropriate range of pixel
density. Moreover, due to that SSVEP performance decreased
significantly when the pixel density was below 60%, no further
attention was given to that range. Each condition was tested in
ten trials. In the subsequent classification, nine trials were used
for training and ten-fold cross-validation was performed. The
procedures of a block in experimen2 are showed in Fig. 2(a).

Experiment 3 involved an online test to investigate the
effect of the low-pixel-density encoding strategy. The per-

formances related to 100%-, 80%-, 60%-, 40%-, 20%-pixel
density stimuli were compared in square flicker with random
distribution. Four periods were included in the online test:
model construction, visual stimulation, data processing, and
instruction feedback. Specifically, subjects were first asked
to conduct an offline SSVEP test. The procedure for the
offline test was consistent with Experiment 2. 10 trials were
obtained for each condition to establish the corresponding
template. The online SSVEP experiment then commenced,
during which eight target frequencies randomly appeared.
Detailed procedures are shown in Fig. 2(b). Classification
results were displayed on the screen and lasted for 500 ms.
There were 10 trials for each frequency at each pixel density.

C. Subjective Fatigue Rating
Comfort was measured using a fatigue score, which partic-

ipants provided at the end of each experiment. A ten-point
scale was used to quantify the subjective level of fatigue
experienced. Subjects were asked to rate each pixel density
according to their subjective feelings. The score had to be an
integer between 1 and 10. In particular, 1 indicated the lowest
perceived fatigue, and 10 indicated the highest. Consequently,
a higher score represented a greater sense of fatigue (i.e., less
comfort). Finally, the subjective scores of all subjects were
averaged under each pixel density for comparison.

D. EEG Recording and Pre-Processing
EEG signals from 64 electrodes were recorded by a

NeuroScan Synamps2 system at a sample rate of 1000 Hz,
with the impedance of each electrode being less than 10 K�.
The electrodes were positioned on the scalp according to the
International 10-20 system, with the prefrontal lobe and the
top of head serving as ground and reference, respectively.

Considering the latency of the visual nervous system con-
duction signal following the stimulus presentation, the data
were extracted from 140 ms post-stimulus onset, and a total
of 1000 ms of data were extracted for further analyses. The
data were then filtered using infinite impulse response (IIR)
bandpass filters with cutoff frequencies of 5 Hz and 90 Hz,
and a notch filter at 50 Hz.

E. Classification Algorithm
The task-related component analysis (TRCA) and its ensem-

bled version (eTRCA), along with the filter-bank technology,
were used for classification. All results were calculated after
leave-one-out cross-validation.

1) TRCA
TRCA is a classical algorithm for decoding SSVEP
signals that was first proposed by Tanaka et al. [30],
[31] for extracting task-related components (TRCs) in
functional near-infrared imaging (fNIRS) data. In 2018,
Nakanishi et al. [6] found TRCA effectively improved
the signal-to-noise ratio and suppressed spontaneous EEG
activities by maximizing repeatability between multi-
ple trials in SSVEP. Different from the conventional
SSVEP decoding algorithm, the signal template of TRCA
is not restricted to artificially constructed models with
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sinusoidal waveforms. Instead, TRCs consider individual
variability information, making it theoretically applica-
ble for decoding any characteristic signal with a stable
waveform or time-phase-locked characteristics.
Let Ne, Nt , Nc, Np denote the number of stimulus
frequencies, trials, channels, and sampling points, respec-
tively. For EEG dataset χ ∈ RNe×Nt ×Nc×Np preprocessed
with band-pass filtering (i.e. zero-mean normalization),
the i th trial data of k th stimulus is denoted as Xi

k ∈

RNc×Np . The one-dimensional spatial filter ω̂k ∈ R1×Nc

can be calculated using the following equation:

ω̂k = argmax
ωk
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Since X̄k can represent the pure evoked feature signal
to some extent when training samples are relatively
sufficient, the objective function (2) can be rewritten as:
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(4)

The equation (4) shows that the objective function of
TRCA aims to find a projection vector that maximizes the
ratio of feature signal energy to the original signal energy,
while preserving the time-frequency characteristics of
the signal itself, which is the theoretical basis for the
excellent performance of TRCA. The spatial filtering is
applied to the single-trial test signal Y ∈ RNc×Np and
the category is determined by the Pearson correlation
coefficient.

ρk = corr
(
ωk Xk, ωkY

)
(5)

k̂ = max
k

{ρk | k = 1, 2, . . . , Ne} (6)

2) Filter-Bank Technology
The filter bank (FB) technique enhances the classification
performance of SSVEP-based BCIs by exploiting the
fundamental frequency and higher harmonics of SSVEP
signals in different filter passbands. Chen et al. [7]
first proposed to apply the FB technique to the CCA
algorithm and optimized the sub-band design and the
weighting scheme of the sub-band features. The FB
technique integrates band-specific classification features

to effectively utilize SSVEP EEG information, and many
studies have demonstrated its effectiveness in improving
various algorithms [32], [33], [34], [35], [36], [37], [38].
The FB technology filtered the training signal within dif-
ferent frequency ranges (i.e., sub-bands), and then trains
separate models for the signal in each sub-band. Each
sub-band typically has different lower cut-off frequencies
and the same upper cut-off frequency (e.g., 90 Hz).
During testing, the single-trial test signals are processed
using each sub-band model and the sub-band features are
computed. The total features are then obtained by linearly
combining the sub-band features.

ρ̂k =

∑Nb

m=1
α(m) ·

(
ρm

k
)2

, α(m) = m−1.25
+ 0.25 (7)

where m is the index of filter subbands, Nb is the number
of subbands, and ρm

k denotes the subband discriminant.
Please refer to [7] for details about the weights α (m) and
the filtering bandwidth.

3) Ensemble learning technology
Ensemble learning technology generally enhances fea-
ture recognition efficiency by expanding the dimen-
sions of data or comprehensively utilizing multidi-
mensional information. Nakanishi et al. [6] proposed
the ensemble-TRCA (eTRCA) algorithm based on the
common-shared spatial filters of low-frequency SSVEP
signals. This property was further confirmed in a study
by Wong et al. in 2020 [39] that the energy distribution of
stimulus-evoked SSVEP signals over a certain frequency
range is essentially the same across the scalp. Therefore,
the information obtained from covariance matrices corre-
sponding to the signal evoked by other stimuli can also
contribute to the training of the target stimulus model.
eTRCA enhances the spatial dimensional information
of the data by integrating multiple classes of exclusive
spatial filters, ultimately performing high-dimensional
template matching based on the two-dimensional Pearson
correlation coefficient as:

Ŵ =

[
ω̂1

T , ω̂2
T , . . . , ω̂Ne

T
]T

∈ RNe×Nc ,

ρk = corr
(
Ŵ Xk, ŴY

)
(8)

F. Performance Evaluation
1) Amplitude and Signal to Noise Ratio (SNR) of SSVEPs

EEG signals from nine occipital electrodes, namely Pz,
PO5, PO3, POZ, PO4, PO6, Oz, O1, O2, were selected.
Fast Fourier Transform (FFT) was applied to compute the
amplitude at the corresponding target frequency. SNR in
decibels (dB) was defined as the ratio of y( f ) to the
value of the 20 neighboring frequencies, 0.24 refers to
the shortest distance between two spectral lines in the
spectrum diagram.

SNR

= 20 log10
y( f )∑10

k=1[y( f − 0.24 × k) + y( f + 0.24 × k)]

(9)
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2) ITR of SSVEP-BCI Researchers often use ITR as a
comprehensive index to evaluate the performance of a
BCI system. ITR was originally used to measure the
communication and calculation rate of the system in the
field of communication, and was introduced into the field
of BCI by Wolpaw et al. [40]. the specific calculation
formula is

I T R =
60
T

[
log2 N + p log2 p + (1 − p) log2

(
1 − p
N − 1

)]
(10)

where N represents the number of targets, p is the average
classification accuracy of all targets, and T is the target
selection time, which refers to the total time including
eye shift time, the delay of the human visual pathway
and the actual duration of the stimulus, which amounted
to 1.9 s. The number of targets (i.e., N ) was 8 in this
study.

G. Statistical Analyses
Statistical analyses were performed using SPSS software

(IBM SPSS Statistics, IBM). Two-way repeated-measures
analysis of variance (ANOVA) was used to test the interac-
tive effect of presentation forms and distribution pattern on
SSVEP classification accuracy and subjective fatigue score in
experiment1. Paired t-tests were used to explore whether there
were significant differences in amplitude, SNR, classification
accuracy and subjective fatigue score between 100%-pixel
density and other lower pixel densities in experiment2 and 3,
with an alpha level set at 0.05.

III. RESULT

A. Square-Random Stimulus-Presenting Mode Was
More Suitable for Low-Pixel SSVEP

One of the main objectives of experiment 1 was to
explore the most suitable stimulus presentation form (flicker-
ing square vs. flickering checkerboard) and pixel distribution
pattern (random vs. uniform) for low-pixel-density SSVEP.
The level of comfort was first studied by measuring the
fatigue score. As shown in Fig. 3 (a), in square-random (S-
R), square-uniform (S-U), checkerboard-random (C-R), and
checkerboard-uniform (C-U) conditions, the fatigue score
decreased with the reduction of pixel density. Paired compar-
isons between any two pixel densities under each condition
were listed in TABLE II (left), which preliminarily verified the
feasibility of low pixel density in improving user comfort. The
interactive effect between presentation form and distribution
pattern was then tested under each pixel density. As shown
in TABLE I (upper), the checkerboard presentation form
achieved a smaller fatigue score than the square presentation
form, and the random distribution pattern exhibited a lower
fatigue score than the uniform distribution under some pixel-
density conditions.

This study further compared the SSVEP classification accu-
racy calculated by TRCA, a typical SSVEP decoding method.
As shown in Fig. 3(b) and TABLE I (lower), the accuracy
of flickering square form was approximately 30% higher than

Fig. 3. Average subjective fatigue scores (a) and Average classification
accuracy based on the TRCA algorithm (b). Square-uniform, square-
random, checkerboard-uniform, and checkerboard-random are S-U, S-
R, C-U, and C-R, respectively. Error bars indicate standard deviations
(SD).

TABLE I
THE INTERACTIVE EFFECT BETWEEN PRESENTATION FORM AND

DISTRIBUTION PATTERN

that of checkerboard under all the pixel densities (p <0.001).
The random distribution pattern had higher accuracy than
the uniform distribution, but the difference was significant
only at 40%-pixel density (p = 0.042). Taking both comfort
and effectiveness into account, we found that random pixel
distribution achieved a lower fatigue score and higher accuracy
than the uniform distribution, while the flickering square had a
slightly higher fatigue score but much higher accuracy than the
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TABLE II
THE SIGNIFICANT DIFFERENCES AMONG DISTINCT PIXEL DENSITIES UNDER S-U, S-R, C-U, C-R CONDITIONS

Fig. 4. The amplitude and SNR of SSVEP in experiment 2. (a) Average
amplitude at the fundamental and second harmonics, (b) the third and
fourth harmonics of SSVEP. (c) Average SNR at the fundamental and
second, (d) the third and fourth harmonics of SSVEP. The error bars
indicate SD. (e) SNR topographies under distinct pixel densities.

checkerboard form. Thus, the flickering square with random
pixel distribution (S-R) was identified as a more suitable
stimulus-presenting mode for low-pixel-density SSVEP.

Strikingly, in the S-R condition, the classification accuracy
initially increased, reaching its peak at 80%-pixel density with
an accuracy of 91.25±8.75%, and then decreased as the pixel

TABLE III
PAIRED T RESULTS BETWEEN DIFFERENT PIXEL DENSITIES FOR

EXPERIMENT 2

density was further reduced. However, due to the multitude of
factors involved in experiment 1 (such as presentation form,
distribution pattern, pixel density, etc.), it was challenging to
thoroughly investigate the influences of pixel densities with
smaller percentage intervals. Moreover, experiment 1 required
a considerable amount of time to complete which might have
an impact on the subjects’ performance. To gain a more com-
prehensive understanding of low-pixel-density SSVEP, another
experiment was conducted.

B. 60%-90% Is the Ideal Range for Low-Pixel-Density
SSVEP

Experiment 2 included seven densities (100%, 90%, 80%,
70%, 60%, 40%, 20%), with each condition having an
increased number of trials (i.e., 10) compared to experiment
1.

The amplitudes at the fundamental, second, third, and fourth
harmonics of the target frequency were analyzed. As shown
in Fig. 4(a), there is a decreasing trend as the pixel density
decreases at fundamental frequency. Evident amplitude reduc-
tions were found at 60%-, 40%-, and 20%-pixel densities
compared to that of 100%, with corresponding p values listed
in TABLE III (left). However, as Fig. 4(a) and (b) showed,
at the harmonics of target frequency, the amplitudes first
decreased and then increased. In particular, the amplitudes at
60%-pixel density (second: 0.57±0.30 µV; third: 0.25±0.11
µV; fourth: 0.15±0.05 µV) were almost the same as those at
100% (second: 0.65±0.29 µV; third: 0.23±0.08 µV; fourth:
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0.13±0.05 µV) (significant difference, second: p = 0.260;
third: p = 0.255; fourth:p = 0.057). Furthermore, in SNR
analyses, as Fig. 4(c) and (d) showed, we found that at 60%-
pixel density, the SNR of the second harmonic frequency
(8.06±2.53 dB) was almost the same as that of 100%-pixel
density (8.41±2.74 dB). Moreover, it was even similar as
the SNR of the fundamental frequency (8.35±2.57 dB). The
SNR significant differences between any two pixel-densities
in the fundamental, second, third, fourth harmonics of the
frequency condition are listed in TABLE III (right). SNR
topographies depicted in Fig. 4 (e) showed that SNR enhance-
ment primarily occurred in occipital brain area, which is a
typical area responding to visual stimuli. Evidently, at both
fundamental and harmonics frequencies, stimuli with 60%-
to 90%-pixel density exhibited very similar or even higher
SNR topographies compared to those of 100%-pixel density.
On the other hand, when pixel density is below 60%, SNRs
significantly decreased. Amplitude and SNR analyses indicate
that the range of 60% to 90% is potentially more suitable range
for low-pixel-density SSVEP.

In this study, both the fatigue score and classification
accuracy were analyzed, as depicted in Fig. 5. As pixel
density decreased, the fatigue score showed a significant
decrease, whereas the classification accuracy remained rela-
tively constant until the pixel density dropped below 60%.
Specifically, the conventional pixel density (100%) had a
significantly higher fatigue score compared to all the low
pixel densities (100% vs. 90%: p = 0.002; other paired
comparisons: p < 0.001). Regarding classification accuracy,
the values were as follows for different pixel densities:
94.13±7.39%, 93.38±11.20%, 91.93±10.22%, 91.31±9.75%,
91.06±10.17%, 87.56±14.53%, 86.68±11.50% for the pixel
density of 100%, 90%, 80%, 70%, 60%, 40%, 20%, respec-
tively. Notably, in the range of 60% to 90% low-pixel density,
there was no significant difference in accuracy compared to
the 100%-pixel density. However, the accuracies of 40%- and
20%-pixel density were significantly lower than that of 100%
(40% vs. 100%: p = 0.022; 20% vs. 100%: p = 0.009).
Moreover, subjects with poor classification accuracy showed a
more obvious decline at 40%- and 20%- pixel density, and the
overall trend was still in line with the average results. These
results further verify the feasibility of using 60%- to 90%-
pixel density stimuli to optimize SSVEP-BCI. Therefore, a
60%-pixel density SSVEP achieved both lower fatigue scores
and a high classification accuracy, making it a promising
choice for SSVEP-BCI applications.

The above classification accuracy was obtained by using
the TRCA method. As recent advances in algorithmic meth-
ods have enhanced the decoding performance for weak
stimuli, this study also used improved TRCA algorithms
(FB-TRCA, eTRCA, FB-eTRCA) to decode the responses
induced by low-pixel-density SSVEP. An interesting finding
is that the advanced algorithms show improved decoding
performance under lower pixel density conditions. Specifically,
for 100%-pixel density, there is little difference among the
four algorithms, which were 94.13±7.39%, 95.06±6.22%,
94.05±7.53% and 94.31±7.13%, respectively. When the pixel
density decreases to 80% or less, a noticeable trend in accuracy

Fig. 5. Average classification accuracy based on TRCA under square-
random stimulus-presenting mode and average subjective fatigue
scores of 20 subjects in experiment 2. Error bars indicate SD. Asterisks
indicate a significant difference between each pair by paired samples
t-test (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

Fig. 6. Performance of four classification algorithms (TRCA, FB-TRCA,
eTRCA, FB-eTRCA) under different pixel densities in experiment 2.
Error bars indicate SD. Asterisks indicate a significant difference
between each pair by paired samples t-test (∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001).

emerges, with TRCA<FB-TRCA<eTRCA<FB-eTRCA. This
trend indicates that FB-eTRCA can achieved better decoding
accuracy. At 60%-pixel density, the accuracies of TRCA and
its advanced algorithms were 91.06±10.17%, 93.94±6.39%,
94.25±6.40% and 95.50±5.55%, respectively. The accuracy
of FB-TRCA, eTRCA, FB-eTRCA was 2.87%, 3.19%, 4.44%
higher than that of TRCA (TRCA vs. FB-TRCA: p = 0.044,
TRCA vs. eTRCA: p = 0.023, TRCA vs. FB-eTRCA: p =

0.015). At 40%-pixel density, FB-TRCA, eTRCA, FB-eTRCA
was 4.56%, 3.75%, 6.25% higher than the TRCA (TRCA
vs. FB-TRCA: p = 0.004, TRCA vs. eTRCA: p = 0.002,
TRCA vs. FB-eTRCA: p = 0.003). Similarly, at 20%-pixel
density, the corresponding improved accuracies were 3.06%,
3.44%, and 4.81% (TRCA vs. FB-TRCA: p = 0.027, TRCA
vs. eTRCA: p = 0.004, TRCA vs. FB-eTRCA: p = 0.004).
These results indicate that the classification accuracy can be
further improved by using more effective decoding methods.

C. SSVEP With 60%-Pixel Density Achieved Satisfactory
Performance in Online Test

According to the above results, this study selected a
square-random presentation pattern with distinct pixel
densities (100%, 80%, 60%, 40%, 20%) for the online
test, and FB-eTRCA was used as the decoding method.
As shown in Fig. 7, the fatigue scores were 8.75±1.37,
6.58±1.83, 5.58±1.62, 4.08±1.67, and 3.25±2.18, indicating
a decrease in fatigue as the pixel density reduced (100%
vs. 80%: p < 0.01; 100% vs. 60%: p < 0.001; 100% vs.
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Fig. 7. Average accuracy and fatigue score of 12 subjects in online
experiment. Error bars indicate SD. Asterisks indicate a significant
difference between each pair by paired samples t-test (∗p < 0.05, ∗∗p
< 0.01, ∗∗∗p < 0.001).

40%: p < 0.001; 100% vs. 20%: p < 0.001). The online
accuracy was 92.71±7.63%, 91.15±10.26%, 90.10±8.44%,
83.85±15.62%, and 81.25±15.14% for 100%-, 80%-, 60%,
40%, 20%-pixel-density SSVEP, respectively. There was
no significant difference between 60%-, 80%- and 100%-
pixel density (100% vs. 80%: p = 0.167, 100% vs. 60%:
p = 0.148), but accuracy of 40%- and 20%-pixel density
decreased significantly (100% vs. 40%: p = 0.004; 100%
vs. 20%: p = 0.003). The ITR was also calculated and
compared, resulting in values of 78.37±15.45 bits/min,
76.02±18.88 bits/min, 73.12±16.11 bits/min,
64.26±24.61 bits/min, 59.48±22.96 bits/min, respectively.
The ITR statistical analysis between any two pixel-densities
showed similar trends to the accuracy results. Therefore,
the online test verified that the SSVEP with 60%-pixel
density can significantly improve comfort while maintaining
effectiveness, making it an appropriate pixel density choice.

IV. DISCUSSION

The current study aimed to achieve a perfect balance
between comfort and effectiveness of SSVEP-BCI by reducing
the pixel density of stimuli. We found that stimuli with 60%-
pixel density and a square-uniform presentation-distribution
mode achieved significantly better comfort scores while main-
taining almost the same classification accuracy as that of
100%-pixel density in both the offline and online tests. These
results confirmed the feasibility of improving the comfort of
SSVEP by using stimuli with 60%-pixel density, providing
new insights for optimizing SSVEP-BCI.

One novel aspect of this study is the manipulation of
pixel density. It’s essential to differentiate pixel density from
contrast, as they are two distinct concepts. Contrast refers
to the difference between the highest and lowest grayscale
values in an image [14]. It is a physical quantity related to
optical systems and can be expressed in terms of maximum
brightness difference, reflecting the ability to resolve between
light and dark areas in an image [13], [15]. On the other hand,
pixel density refers to the proportion of luminous pixels within
each unit area of the image, reflecting the richness of detailed
information in an image. Lowering pixel density reduces the
number of luminous pixels without altering the brightness

settings or the contrast of the stimuli. Interestingly, reducing
pixel density increases the number of boundaries between
light and dark areas in the stimuli, potentially contributing
to enhanced neural responses, as discussed in introduction
section. One study [41] designed ON and OFF grid stimulation
paradigms based on the ON-OFF cell conduction pathway to
explore the effect of contrast, and designed to remove weak
stimuli by reducing the relative light intensity of the flickering
region to the background grid, but this is fundamentally
different from our study. In our experiment, the variable was
pixel density, whereas the contrast was always the same.

Stimuli with low-pixel density improved SSVEP comfort by
decreasing overall intensity. In the traditional view, it might
lead to decreased neural responses, negatively impacting the
BCI effectiveness. However, this study observed no significant
amplitude, SNR or classification accuracy difference between
100%- and other low-pixel densities (90%-, 80%-, 70%-,
60%-pixel density). This novel observation confirms that the
boundary-related enhancement caused by the center-periphery
antagonism effect indeed works in the SSVEP paradigm,
benefiting comfort without compromising effectiveness. Fur-
thermore, this study identified 60% as the most suitable pixel
density for achieving the ideal balance between comfort and
effectiveness. This result could potentially be explained by
the differences in boundary length between light and dark
pixels within a stimulus. In our simulation calculations, the
boundaries within a single stimulus were calculated under
distinct pixel density conditions, results revealed the total
length of boundary first increases and then decreases with the
reduction of pixel density, peaking in the range of 40%-∼60%-
pixel density. This indicates that within the range of 100% to
60%-pixel density, the stimulus intensity decreases, but there
is an increase in the total length of light-dark boundaries,
counteracting the reduced neural responses caused by intensity
reduction. However, when stimulus intensity is less than 60%,
the length of the light-dark boundary also decreases, making
it difficult to resist the intensity-related decreases, leading to
an overall decrease in the SSVEP response.

There might be another factor contributing to why the
60%-pixel density balanced the comfort and effectiveness
of SSVEP-BCI. In the typical SSVEP paradigm, subjects
need to focus on the target stimulus while ignoring other
stimuli that simultaneously flicker at different frequencies.
The center-periphery antagonistic effect of the retina discussed
above mainly works to process the target stimulus when
sufficient attentional resources are allocated to it. However,
this effect may not be as effective in dealing with other
non-target stimuli [42], leading to neural responses induced
by non-target stimuli mainly relying on the stimulus intensity.
Consequently, from an overall stimulation interface perspec-
tive, as pixel density decreases, the intensity of all stimuli
is reduced, while the retinal response to the target stimulus
remains largely unchanged, and responses induced by other
non-target stimuli decrease. According to the definition of
SNR, the target frequency is regarded as the signal, which
remains unchanged, while other frequencies are regarded
as noise, which decreases with the reduction in pixel den-
sity. This reduction in pixel density effectively improves the
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signal-to-noise ratio, as supported by the SNR results shown in
Fig. 4. This study revealed that the presentation form (square
vs. checkerboard) had an impact on the performance of low-
pixel-density SSVEP-BCI, where the classification accuracy
of checkerboard was significantly lower than that of flickering
square. This observation may be attributed to the different
spatial frequencies and stimuli phases. To be specific, previous
findings by Ming et al. [43] and Waytowich et al. [44]
indicated that the SSVEP accuracy fluctuated as the spatial
frequency of checkerboard increased; in particular, the accu-
racy decreased from 0 (i.e., square) to about 0.3 cycle/◦ spatial
frequency. The 3×3 checkerboard used in this study had a spa-
tial frequency of 0.263 cycle/◦, explaining the lower accuracy
of checkerboard compared to square, and consistent with these
findings. Moreover, the lower accuracy of checkerboard might
also be explained by phase inversion. Previous studies have
demonstrated that SSVEP response is a superimposed response
of the primary visual cortex to several stimuli received at
the same time [45]. Here, in the checkerboard paradigm,
a small grid of a checkerboard (there were nine grids in a
checkerboard) was surrounded by other grids that had a phase
difference of π from its initial phase. This implies that the
neural response induced by a checkerboard essentially contains
two kinds of responses: one induced by the grids with an initial
phase of 0, and others induced by the grids with π phase.
These two responses with opposite phases may cancel each
other out, leading to a smaller response than that induced by
a square.

This study also found that the random distribution pattern
achieved better SSVEP performance and higher comfort scores
than uniform patterns. This observation may be explained by
the difference in the angle of view between the two patterns.
The angle of view can be calculated as follows:

β = 2arctan(
D

2 ∗ L
) (11)

where D is the side length of the stimulation, L is the distance
between the subject’s eyes and the display, which is fixed
at 50cm in the experiment. A 24-inch monitor was used,
which was 53.15 cm in length and 29.90 cm in width, and
the resolution was 1920∗1080. Thus, the side length of a
single pixel was 0.276852mm, the corresponding angle of
view was about 0.03◦. As we all known, the least angle
of view that human beings can constrainedly discriminate
is 0.017◦, 0.03◦ is already a very small angle of view that
is not easy enough for subjects to clearly discriminate the
boundaries between dark and light [46], which resulted in a
reduction of boundaries that can be perceived by subjects.
If so, the increased boundaries caused by low-pixel density
would not work effectively to induce larger neural responses.
However, in random distribution pattern, some pixels gathered
to make up a part of stimuli, the corresponding angle of view
usually much larger than 0.03◦, making boundaries easier to
discriminate. The boundaries that easier for discrimination
could account for the higher comfort and accuracy related to
random distribution pattern.

This study provides valuable insights for future research
in two aspects. First, as decoding algorithms advance, the

pixel density required to perfectly balance the comfort
and effectiveness of SSVEP can be lower. In this study,
we compared the decoding performance of TRCA, which is
the most classical for SSVEP decoding, and another three
improved methods, including FB-TRCA, eTRCA and FB-
eTRCA. On one hand, the introduction of FB-technology
can improve classification performance, especially at low
pixel density. As pixel density reduces, TRCA performance
decreases due to the energy reduction of the fundamental
frequency, and the SD between subjects also increases (100%-
20%: SD=7.39%, 11.96%, 10.22%, 9.75%, 10.17%, 14.53%,
11.50%). The introduction of FB-technology enables better
utilization of SSVEP harmonic information, resulting in higher
accuracies at low-pixel densities. On the other hand, the
introduction of ensemble learning enhances the stability of
the algorithm and the utilization rate of different types of data
information, demonstrating superior decoding accuracy. These
results further indicated the urgent need for a more advanced
decoding algorithm capable of extracting useful information
from very weak or small SSVEP responses. Second, while
this study focused on neural responses and decoding accuracy
under low-pixel-density and low-frequency conditions, the
feasibility of low-pixel-density SSVEP-BCI remains unknown
at higher stimulation frequency. Combining the advantages of
both low-pixel-density and high-frequency SSVEP could lead
to more advanced SSVEP-BCI with higher ITR and lower
fatigue.

V. CONCLUSION

This study proposed a novel low-pixel-density encoding
paradigm to improve the comfort of SSVEP-BCI while main-
taining system effectiveness. The flickering square with a
random pixel distribution proved to be a more suitable pre-
sentation pattern of stimuli, and 60% was identified as the
optimal pixel density for achieving the perfect balance between
comfort and effectiveness. These results contribute to the
advancement of more natural BCI.
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