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Abstract— Decoding the user’s natural grasp
intent enhances the application of wearable robots,
improving the daily lives of individuals with disabilities.
Electroencephalogram (EEG) and eye movements are two
natural representations when users generate grasp intent
in their minds, with current studies decoding human intent
by fusing EEG and eye movement signals. However, the
neural correlation between these two signals remains
unclear. Thus, this paper aims to explore the consistency
between EEG and eye movement in natural grasping
intention estimation. Specifically, six grasp intent pairs are
decoded by combining feature vectors and utilizing the
optimal classifier. Extensive experimental results indicate
that the coupling between the EEG and eye movements
intent patterns remains intact when the user generates a
natural grasp intent, and concurrently, the EEG pattern
is consistent with the eye movements pattern across the
task pairs. Moreover, the findings reveal a solid connection
between EEG and eye movements even when taking into
account cortical EEG (originating from the visual cortex or
motor cortex) and the presence of a suboptimal classifier.
Overall, this work uncovers the coupling correlation
between EEG and eye movements and provides a reference
for intention estimation.

Index Terms— EEG, eye movements, intent, feature
extraction, recognition.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) creates a commu-
nication link between the human brain and external

devices [1], [2], aiming to enhance intent perception in many
applications. Decoding natural grasping intentions empow-
ers the control of wearable robots, such as prostheses and
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exoskeletons for individuals with disabilities [3], [4], [5],
subsequently boosting BCI naturalness and enhancing their
daily lives.

The Electroencephalogram (EEG) and eye movements are
two natural representations occurring when the user generates
the grasp intent in their mind [6], [7], [8]. Specifically, the
intent towards grasping the target object is mainly expressed
through the mind’s thought and the visual perception of
the eye. For example, when people want to eat something,
they tend to look at it and have grasping thoughts in
their brains. Therefore, the users’ intentions can be inferred
from EEG and eye movements, which have already been
successfully used to control prosthetic limbs or assistive
robots [9], [10], [11], [12].

The EEG and eye movement features have been used
to identify different intention forms due to their respective
strengths and characteristics [13], [14]. The rich spatial infor-
mation of eye movements is often related to the target position,
e.g., visual search and behavior analysis [15], [16]. Moreover,
the brain has a distinct EEG for different events [17] and
is used to classify different event-related states, such as the
typical steady-state visual evoked potential (SSVEP) [18]
and motor imagery (MI) of the body [19], [20]. Therefore,
the degree of freedom of BCI is increased by combining
the EEG-generated command with the eye movement spatial
information. For instance, Kim et al. [21] utilized EEG and
eye movements to control a drone’s flight, where the EEG
controlled its ascent and descent, and the eye movements
controlled the flight directions (forward, backward, left, and
right). Meena et al. [22] built the BCI system called Gaze-MI,
which combined data from the EEG and eye movements into
eight control commands to make interaction much easier.

Meanwhile, the same intention can be recognized by eye
movements and EEG due to the coupling between the brain
and eye in neural connections [23]. It should be noted that
EEG can be decoded into positional information similar to
eye movement signals [24]. For instance, using a BCI setup,
Wodlinger et al. [25] demonstrated a continuous translation
and orientation control of a prosthetic limb by a person
with tetraplegia. Similarly, eye movements are directly related
to cognitive intentions and can be decoded into commands
similar to EEG [26], [27]. Therefore, the same intent can be
decoded by fusing EEG and eye movements [28], [29].

At present, eye movements and EEG intentions have been
decoded in rigorous experimental conditions and applied
to control robots. However, the neural correlation between
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Fig. 1. Four typical grasping-related intents. (a) Gaze at a Target with
Grasp Intent (Gaze Grasp), (b) Gaze at a Target without Grasp Intent
(Gaze No-Grasp), (c) Not Gaze at a Target with Grasp Intent (No-Gaze
Grasp), and (d) Not Gaze at a Target without Grasp Intent (No-Gaze No-
Grasp).

EEG and eye movement remains unknown. Motivated by
this research gap, this paper studies the consistency of EEG
and eye movement by decoding the natural grasping intent
based on feature fusion. Thus, this work provides a valuable
reference for intention estimation.

The structure of this paper unfolds as such: Section II
delineates the specifics of the experiments, along with data
extraction and synchronization procedures. Section III elab-
orates on the methodologies adopted for estimating intent
via EEG and eye movement. The ensuing Section IV show-
cases the corresponding experimental outcomes. Discussions
of these results, complemented by insights into potential
avenues for future research, are covered in Section V. The
paper culminates with conclusions in Section VI.

II. EEG AND EYE MOVEMENTS EXPERIMENTS

A. Research Goal
To decipher the inherent intent behind grasping through

feature fusion and delve into the consistency between EEG
and eye movements, we designed an experiment centered on
natural grasp intentions. In this experiment, we decoded the
intent across six potential task pairs, drawing insights from
both EEG and eye movement data.

B. Research Design
The grasping intent towards the target object is primarily

expressed through the brain’s cognition and the eye’s visual
perception. Therefore, the natural grasping intent can be sum-
marized as the following four typical grasping-related intents
illustrated in Fig. 1.

a) Gaze at a Target with Grasp Intent (Gaze Grasp). The
user typically obtains the environmental information first and
generates the grasp intent through the brain’s processing, such
as grabbing objects that suddenly appear.

b) Gaze at a Target without Grasp Intent (Gaze No-Grasp).
The user only looks at the object but does not have the
intention to grasp it, such as during a visual search.

c) Not Gaze at a Target with Grasp Intent (No-Gaze Grasp).
The user first generates the grasping intent in mind and then
obtains the information about the object through their vision.
For example, the intention of drinking water occurs, and the
user picks up the cup through visual perception.

d) Not Gaze at a Target without Grasp Intent (No-Gaze No-
Grasp). The user neither looks at the target object nor generates
a grasping intent, such as doing something unrelated to the
target object.

These four typical grasping-related intentions represent the
possible intentions for the target objects and can be extended
to visually guided intention recognition tasks. Therefore, this
paper decodes these four intents using EEG and eye movement
features and explores the neural correlation between these
features.

C. Procedure
The tasks were performed without visual guidance and

stimulation to explore the natural intent expression of EEG
and eye movements, minimizing any impact on the experi-
mental results. As a result, the subjects were guided by voice
prompts. The experiment was conducted in a quiet room,
with participants seated 50 cm away from the target object
(tennis ball). They performed the four typical grasping-related
intents presented in Section II-B in a randomly alternated
order. By gazing at the object and generating imagery grasping
intent in their brain, the subjects carried out the task without
physically moving their bodies.

Each participant performed 4 tasks randomly in each
session, with each task conducted 10 times. Therefore, in
5 sessions, each participant performed 200 trials in total. After
the onset of the voice cue, the subjects randomly performed
an imaginary grasping task for 4 s, as illustrated in Fig. 2.
In the case of the Gazing at Target condition, the subjects
were instructed to gaze at the tennis ball on the table, while
in the case of the Not Gazing at Target condition, the subjects
chose freely where to gaze, either on the wall or the table.
In the Grasp Intent conditions, the subjects were instructed
to generate the intention to grasp the tennis ball using motor
imagery.

D. Participants and Apparatus
Nine healthy participants (six males and three females,

21×25 years old) were recruited to participate in the experi-
ment. They have normal or corrected to normal vision. All
experiments were approved by the Sustech Medical Ethics
Committee (approval number: 20210009, date: 2021/3/2). The
participants were informed about the study procedure and
signed the consent form before the experiment. They were
asked to wear EEG and eye-tracking devices and make nec-
essary adjustments until the data could be reliably recorded.

An actiCHamp amplifier and actiCAP active electrodes
(Brain Products, Germany) encompassing the entire head were
used to record the EEG signals (see Fig. 3). The impedances
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Fig. 2. Diagram of the trial and task setup: Each trial commenced with
a 2-second auditory cue, followed by the execution of one of the four
grasping-related tasks. Subsequently, the user was prompted by a voice
to rest for 4 seconds.

Fig. 3. Electrode positions corresponding to the 32 electrode locations
symmetrically placed to cover the entire head. The vision-related EEG is
distributed in dark green areas, and the motor-related EEG is distributed
in light green areas.

of the reference EEG electrodes remained below 15 Kohms.
Utilizing the Tobii glasses 2 (Tobii, Canada), the eye move-
ments were recorded at a 40 Hz sampling rate.

E. Data Extraction and Synchronization
To capture grasping-related intentions through eye move-

ment and EEG data, a data flow framework has been
designed for the extraction and synchronization of these

Fig. 4. The data extraction and synchronization flow framework of
EEG and eye movement. The eye movement, EEG, task flow, and
synchronization data are presented in orange, green, blue, and red,
respectively.

metrics (Fig. 4). Specifically, the eye trackers and EEG devices
collected the eye movements and EEG, and the data were
labeled by synchronizing the markers of the task flow. Through
segmenting the task process, eye movement and EEG data
corresponding to 200 imaginative grasping tasks, each with a
duration of 4 seconds, were accurately extracted.

III. INTENT ESTIMATION METHOD

A. EEG Data Preprocessing and Feature Extraction
Raw EEG data include loud noises, such as blinking and

electromyography (EMG). Therefore, prior to feature extrac-
tion, BrainVison (BrainProduct, USA) was used for off-line
preprocessing of EEG data to reduce noise and improve signal-
to-noise ratio. In this study, the recorded EEG signals were
band-pass filtered between 0.5×40 Hz using a 4th-order But-
terworth filter. Additionally, independent component analysis
was used to remove electrooculogram (EOG) or EMG.

The main objective of the feature extraction phase is to
extract significant features from the data that can effectively
characterize EEG fragments. Therefore, different EEG features
were extracted and combined to improve classification per-
formance. Below is a detailed explanation of each extracted
feature.

1) Standard deviation (SD). This feature helps compare the
different dispersion of the various EEG data samples from
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their means and reflects the EEG signal fluctuation in distinct
intent. SD is defined as follows:

SD =

√√√√ 1
N

n=1∑
N

(X (n) − µX )2, (1)

where µX is the mean value of the signal.
2) Spectral entropy (SE). SE depicts the uniformity of

EEG power spectrum distribution and can reflect the nonlinear
characteristics of EEG. It can be calculated using power
spectral density (PSD):

SE = −

f =0∑
fn

P SD( f ) log2(P SD( f )), (2)

where fn denotes the half of the sampling frequency and P SD
denotes the normalized power spectral density.

3) Fractal dimension (FD). The EEG signal is treated as a
geometric figure by the fractal dimension, and its correlation
and evolutionary characteristics are assessed by quantifying
the fractional space occupied. FD provides a method to esti-
mate the complexity of nonlinear EEG signals. The resulting
calculations are as follows:

F D =
logn

10
log10 n + log10(n/(n + 0.4 × N ))

, (3)

where fN is the number of sign changes in the signal’s deriva-
tive and fn is the length of the sequence, which is calculated
by subtracting the digital signal’s effect on consecutive series.

4) Hjorth parameters were developed to calculate the
complexity of EEG signals in the time domain to reflect
event-related changes in the brain. Hjorth consists of three
parameters: activity, mobility, and complexity, which are
described below:

Activi t y = Var(y(t)) (4)

Mobili t y =

√√√√Var
(

dy(t)
dt

)
Var(y(t))

(5)

Complexi ty =

Mobility
(

dy(t)
dt

)
Mobility (y(t))

, (6)

where y(t) is the signal and the power, mean frequency,
and standard deviation of the power spectrum, respectively,
are represented by the activity, mobility, and complexity
parameters.

5) Wavelet feature (WF). Wavelet transform captures the
time-frequency (TF) domain of EEG signals. In wavelet
decomposition, TF transformation is performed for each time
point and each frequency resolution of the original signal.
In this paper, wavelet decomposition is used to decompose
signals in the theta (3-8 Hz), alpha (9-12 Hz), beta (13-30 Hz),
and gamma (31-40 Hz) bands as follows:

E j =

k=1∑
N

(
D j (k)2

)
, (7)

where k is the number of wavelet coefficients and D j are the
detail coefficients of the jth level of wavelet decomposition
that correspond to the EEG band j .

TABLE I
CONDITIONS AND TASK PAIRS

Each feature was computed using task data lasting 4 seconds
from a non-overlapping window. Subsequently, a discerning
feature set, encompassing [SD, SE, FD, Hjorth, WF], was
standardized to serve as the feature vector for EEG decoding.
Combining various feature types, such as those from the time
domain, frequency domain, and time-frequency domain, inher-
ently increases data dimensionality. This enhanced dimen-
sionality typically leads to improved classification accuracy
[30], [31], [32]. Consequently, event-related natural grasping
intentions can be decoded with high precision.

B. Eye Movements Data Preprocessing and Feature
Extraction

The eye movements reflect the user’s intent and consist of
the fixation pattern and pupil size. Changes in pupil diameter
are closely related to visual concentration processing and the
user’s cognitive psychology [33], [34]. The average pupil
diameter represents the average cognitive level of the users,
while a diameter variance can represent the change in the
users’ intents and reflect the characteristics of the cognitive
level over time. Therefore, the pupil’s mean diameter (MD)
and amplitude change (AC) were selected as the pupil features.

The fixation pattern helps the user gather visual information
about the environment by keeping the visual gaze in one
position. Therefore, it can be used to analyze the visual
cognitive processes and reflect intent about the target object.
Rapid eye movements, called saccades (S), can shift focus
from one area to another, which helps a user better understand
environmental information. Each feature was derived from 4-
second task data taken from a non-overlapping window. The
[MD, AC, S] set was then standardized and used as the feature
vector for decoding eye movements to discern natural grasping
intentions.

C. Evaluation Metrics
Upon synchronization and extraction, eye movement and

EEG data were randomly divided into training and testing
datasets at a 4:3 ratio. We devised six distinct binary classifiers
with the goal of investigating the performance of all six
possible task pairings, as illustrated in Table I. The reported
accuracy was calculated using the following formula:

accuracy =
T P + T N

T P + F P + T N + F N
× 100%, (8)

where T P, T N , F P , and F N represent the total sample of the
true positive, true negative, false positive, and false negative,
respectively.
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TABLE II
CLASSIFICATION PERFORMANCE COMPARISON OF VARIOUS

CLASSIFIERS, INCLUDING RANDOM FOREST CLASSIFIER (RFC),
K-NEAREST NEIGHBORS (KNN), SUPPORT VECTOR MACHINE (SVM),
LINEAR DISCRIMINANT ANALYSIS (LDA), AND LOGISTIC REGRESSION

(LR), EVALUATED FOR BOTH EYE MOVEMENT AND EEG DECODING

In this research, the Paired t-test was utilized to discern
notable differences in classification efficacy between EEG
and eye movements. The Pearson correlation coefficient was
leveraged to evaluate the interrelation of eye movement and
EEG over the six designated task pairs. Moreover, during
the investigation of coherence between eye movements, visual
cortex EEG, and motor cortex EEG, a one-way ANOVA was
employed to underline the pronounced disparities among them.

IV. RESULTS

A. Classifier Performance in Intent Decoding

The classification performance of various classifiers, includ-
ing Random Forest Classifier (RFC), K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Linear Discriminant
Analysis (LDA), and Logistic Regression (LR), was evaluated
for both eye movement and EEG decoding. The average
performance of several classifiers across these six task pairs
was compared in the Table II. Therefore, LR (CE EG = 85%)
and RFC (CEY E = 84%) were identified as the optimal
classifiers for EEG and eye movement, respectively. The other
classifiers are referred to as suboptimal classifiers. Here, CE EG
represents the classification accuracy of EEG and CEY E repre-
sents the classification accuracy of eye movements. Regardless
of decoding for eye movements or EEG, suboptimal classifiers

Fig. 5. Performance of the EEG and eye movements in the natural
grasp intent estimation. a) P value of the Paired t-test between the
EEG and eye movements for all 6 task pairs and b) Grand-average
classification of EEG and eye movements accuracy for all 6 task pairs.

also have a relatively high classification accuracy, decreasing
by less than 10% compared to the optimal classifier.

B. Coupling Correlation Between EEG and Eye
Movements

The classification performance of EEG and eye move-
ments for each task pair was assessed using Paired t-test
analysis, as illustrated in Fig. 5. The experimental outcomes
demonstrated that both EEG and eye movements achieve
a remarkably consistent accuracy for each task pair during
the natural grasp intent estimation. Moreover, no statistically
significant differences were observed in eye movement and
EEG performance among the nine subjects for all possible
tasks (P = 0.332, t = −0.979).

The experimental results demonstrated that the Pearson
correlation coefficient between eye movement and EEG for
all task pairs across the nine subjects was 0.81 (P < 0.01),
suggesting that EEG and eye movement exhibit an inherent
coupling in task recognition. We also report Pearson cor-
relation coefficients for eye movement and EEG for each
subject, as illustrated in Fig. 6. Most subjects had Pearson
correlation coefficients greater than 0.8, except for s2 (0.75)
and s3 (0.77). Taken together, these findings indicate that
the coupling between EEG and eye movement intent patterns
remains consistent and strong.

The coupling of eye movement and EEG remains con-
sistent across the six task pairs, even when the decoding
performance of one signal decreases. Table III displays the
consistency performance of the EEG under the suboptimal
classifier (KNN) and the eye movement under the optimal
classifier (RFC) for the six task pairs of nine subjects. Here,
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Fig. 6. Classification accuracy of EEG and eye movements across six task pairs for nine subjects, with corresponding Pearson correlation
coefficients (corr) between eye movements and EEG. Green represents EEG, and blue represents eye movement. The six tasks in the Roman
numerals of the x-axis are: I: Gaze Grasp vs. No-Gaze Grasp; II: Gaze No-Grasp vs. No-Gaze No-Grasp; III: Gaze Grasp vs. Gaze No-Grasp; IV:
No-Gaze Grasp vs. No-Gaze No-Grasp; V: Gaze No-Grasp vs. No-Gaze Grasp; VI: Gaze Grasp vs. No-Gaze No-Grasp.

TABLE III
THE CONSISTENCY PERFORMANCE OF THE EEG UNDER THE SUBOPTIMAL CLASSIFIER (KNN) AND THE EYE MOVEMENT UNDER THE OPTIMAL

CLASSIFIER (RFC) FOR THE SIX TASK PAIRS OF NINE SUBJECTS. HERE, Sij REPRESENTS THE EYE MOVEMENT OR EEG OF A SUBJECT, WHERE

i DENOTES THE SUBJECT INDEX (RANGING FROM 1 TO 9), AND j DENOTES THE SIGNAL TYPE, EITHER G (EEG) OR Y (EYE). CORR

REPRESENTS THE PEARSON CORRELATION COEFFICIENT BETWEEN EYE MOVEMENT AND EEG FOR SIX TASK PAIRS. SIX TASKS IN ROMAN

NUMERALS ARE: I: GAZE GRASP VS. NO-GAZE GRASP; II: GAZE NO-GRASP VS. NO-GAZE NO-GRASP; III: GAZE GRASP VS. GAZE NO-GRASP;
IV: NO-GAZE GRASP VS. NO-GAZE NO-GRASP; V: GAZE NO-GRASP VS. NO-GAZE GRASP; VI: GAZE GRASP VS. NO-GAZE NO-GRASP

Si j represents the eye movement or EEG of a subject, where
i denotes the subject index (ranging from 1 to 9), and j
denotes the signal type, either g (EEG) or y (eye). The KNN
classifier performance of EEG is 8.6% lower compared to
that of REG, as illustrated in Table II. The average Pearson
correlation coefficient between eye movement and EEG for
all task pairs across the nine subjects was 0.80 (P < 0.01).
A majority of the subjects exhibited strong coupling between
EEG and eye movement in the decoding of natural grasp
intent.

In the section, the classification accuracies for the six
tasks, using EEG channel inputs from the visual cortex or
motor cortex (see Fig.3) with those using eye movement
is analysed by ANOVA, as shown in Fig. 7. Experimental
findings reveal that when recognizing using partial EEG data
(from the visual cortex or motor cortex) in comparison to
whole-channel EEG, the outcomes are slightly less robust than
with eye movements. Nonetheless, for the majority of task
pairs, the performances of eye movements and EEG from
different regions align consistently (P > 0.05). It’s evident
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Fig. 7. Classification accuracies for the six tasks, comparing the performance using EEG channel inputs from the visual cortex and motor cortex
with those using eye movement-related features. The boxplots display the distribution of classification accuracies for six task pairs. Asterisks denote
significant effects at *P < 0.05, **P < 0.01, and ***P < 0.001. “ns” stands for “not significant,” indicating there’s no statistical difference.

that visual-related intentions manifest differently in EEG and
eye movements. This distinction is most pronounced in the
Gaze Grasp vs. No-Gaze Grasp and Gaze No-Grasp vs. No-
Gaze Grasp comparisons, where EEG from the visual region
demonstrates greater consistency than from the motor region.

C. Gaze and Grasp Intent Decoding Performance
Gaze intent detection comprises the Gaze Grasp vs. No-

Gaze Grasp task pair and the Gaze No-Grasp vs. No-Gaze
No-Grasp task pair. Although eye movement serves as an evi-
dent detection signal, EEG can also offer the same judgment
in this condition. Specifically, no significant difference was
observed between EEG and eye movements in gaze intent
detection (P = 0.93 for Gaze Grasp vs. No-Gaze Grasp
and P = 0.23 for Gaze No-Grasp vs. No-Gaze No-Grasp,
respectively). For the grasp intent conditions, the classification
accuracy of Gazing at Target vs. Not Gazing at Target reached
83.1% (EEG) and 83.2% (eye movements) across all subjects.
For the no-grasp intent conditions, the classification accuracy
of Gazing at Target vs. Not Gazing at a Target for all subjects
reached 91.9% (EEG) and 93.1% (eye movements), which
is approximately 10% higher than Gaze Grasp vs. No-Gaze
Grasp condition. Overall, all subjects achieved an impressive
classification accuracy in Gaze intent detection. Moreover, eye
movement and EEG have statistically significant differences
between the two Gaze intent task pairs (Fig. 8).

The grasp intent detection is analyzed for the four Grasp
Intent vs. No-Grasp Intent task pairs (see Table I). Considering
the Gaze Grasp task pairs, i.e., Gaze Grasp vs. Gaze No-Grasp
and Gaze Grasp vs. No-Gaze No-Grasp, both eye movement
and EEG show statistically significant differences between

the two Gaze Grasp task pairs (Fig. 8). For the Gaze Grasp
vs. Gaze No-Grasp task pair, the average decoding ability
is relatively poor (CE EG = 65.7% and CEY E = 59%, and
all subjects reached a significantly low accuracy in the six
task pairs, as shown in Fig. 6. For the Gaze Grasp vs. No-
Gaze No-Grasp task pair, the classification accuracy across
all subjects reached 92% (EEG) and 93.4% (eye movements),
which is approximately 30% higher than Gaze Grasp vs. Gaze
No-Grasp. In this condition, gazing at the object significantly
affects the detection of grasp intent for both EEG and eye
movement. Regarding the No-Gaze Grasp task pairs, i.e.,
No-Gaze Grasp vs. Gaze No-Grasp and No-Gaze Grasp vs.
No-Gaze No-Grasp, no statistically significant differences are
observed between the two Gaze Grasp task pairs. Both EEG
and eye movement achieve excellent performance in these
conditions.

V. DISCUSSION

In this research, we thoroughly examined the coupling
correlation between EEG and eye movement decoding in
the context of gaze and grasp intent detection. Our findings
reveal a robust neural association between these two signals,
paving the way for novel insights into intent recognition
during natural grasp tasks. This discovery holds promising
implications for neuroprosthetics, rehabilitation, and human-
machine interaction.

The observed consistency in performance between EEG and
eye movement decoding across all subjects demonstrates that
both modalities offer reliable information for accurate intent
recognition. Furthermore, a Pearson correlation coefficient of
0.819 for all task pairs underscores the inherent coupling
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Fig. 8. Statistically significant differences between the task pairs’ accuracy are assessed after multiple comparisons correction using the False
Discovery Rate (FDR) method, with an α = 0.05. The performance of EEG is presented in the left table, while the eye movements’ performance is
shown in the right table. The pairs with statistically significant differences are highlighted in orange circles.

between these two modalities, implying that they may share
common underlying neural processes during gaze and grasp
intent tasks. Our study also emphasizes the potential of
employing suboptimal classifiers, such as KNN, to achieve
strong coupling between EEG and eye movement decoding
in natural grasp intent tasks. The results suggest that even
with a lower-performing classifier, the majority of subjects still
displayed robust coupling between the two modalities. This
finding indicates that the intrinsic connection between EEG
and eye movement signals is resilient enough to withstand
variations in classification algorithms, which could hold sig-
nificant implications for the development of real-world intent
recognition systems.

Several limitations exist in the current work. First, the con-
sistency between EEG and eye movements is reflected in the
decoding ability of human intent. Consequently, the decoding
capabilities depend on hardware and classification algorithms.
As sensor technology and algorithms evolve, the accuracy of
eye movement or EEG classification will improve. This may
potentially lead to changes in the consistency between eye
movement and EEG during natural grasping. However, our
experiment demonstrates a certain degree of robustness in eye
movement and EEG, even when using suboptimal classifiers.
Second, the experimental results may be influenced by various
factors. Although speech stimulation reduced visually-related
interference, it still affected EEG signals to some extent. The
target’s shape, color, and other characteristics may impact
the user’s eye movements or EEG, such as grasp position
characteristics (e.g., the handle of a water cup) because there
are differences in gaze patterns and brain responses to different
objects. These factors may affect the decoding performance of
natural grasp intent.

In future research, we plan to explore several avenues
to build upon the current findings and address unanswered
questions. We aim to investigate and visualize the EEG and
eye movement representations at the feature layer to better
understand the relationship between the internal connection
and feature fusion performance. Additionally, we will conduct
a comparative analysis of the performance of feature layer

fusion and decision fusion techniques to determine the optimal
approach for enhancing the theoretical reference of EEG and
eye movement fusion. By pursuing these research directions,
we hope to advance our understanding of the interplay between
EEG and eye movement signals and unlock their full poten-
tial in developing more accurate and reliable brain-computer
interfaces.

VI. CONCLUSION

In conclusion, this study has made significant strides in
uncovering the coupling correlation between EEG and eye
movement signals during natural grasp intent estimation.
By decoding six grasp intent pairs using a combination of
feature vectors and an optimal classifier, our findings have
demonstrated that the consistency between EEG and eye
movement patterns is maintained when a user generates a
natural grasp intent. Furthermorethe results indicate a robust
connection between EEG and eye movements even when
considering cortical EEG (from the visual cortex or motor
cortex) and a suboptimal classifier. These insights have impor-
tant implications for the development of wearable robotic
applications, with the potential to improve the daily lives of
individuals with disabilities. By enhancing our understanding
of the neural correlation between EEG and eye movement
signals, our work provides a valuable reference for future
studies on intention estimation and lays the foundation for
more accurate and reliable brain-computer interfaces.
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