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Exploring Spatio-Spectral Electroencephalogram
Modulations of Imbuing Emotional Intent

During Active Piano Playing
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Abstract— Imbuing emotional intent serves as a crucial
modulator of music improvisation during active musical
instrument playing. However, most improvisation-related
neural endeavors have been gained without considering
the emotional context. This study attempts to exploit
reproducible spatio-spectral electroencephalogram (EEG)
oscillations of emotional intent using a data-driven inde-
pendent component analysis framework in an ecological
multiday piano playing experiment. Through the four-day
32-ch EEG dataset of 10 professional players, we showed
that EEG patterns were substantially affected by both intra-
and inter-individual variability underlying the emotional
intent of the dichotomized valence (positive vs. negative)
and arousal (high vs. low) categories. Less than half (3–4) of
the 10 participants analogously exhibited day-reproducible
(≥ three days) spectral modulations at the right frontal
beta in response to the valence contrast as well as the
frontal central gamma and the superior parietal alpha to the
arousal counterpart. In particular, the frontal engagement
facilitates a better understanding of the frontal cortex
(e.g., dorsolateral prefrontal cortex and anterior cingulate
cortex) and its role in intervening emotional processes
and expressing spectral signatures that are relatively
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resistant to natural EEG variability. Such ecologically
vivid EEG findings may lead to better understanding
of the development of a brain-computer music interface
infrastructure capable of guiding the training, performance,
and appreciation for emotional improvisatory status or
actuating music interaction via emotional context.

Index Terms— Music improvisation, emotional intent,
electroencephalogram, independent component analysis,
electroencephalogram variability, brain-computer music
interface.

I. INTRODUCTION

MUSIC improvisation is regarded as a highly complex
form of creative human behavior. Musicians are

required to simultaneously generate and evaluate melody,
harmony, and rhythm in real time, and keep track of the
overarching structure of past events that unfolded up to the
present moment, while executing precisely coordinated and
nuanced motor movements to physically play a musical instru-
ment. At a professional level, music improvisation has been
considered a separately acquired musical skill that requires
deliberate practice to develop [1]. Given the challenges of
managing multiple sensory inputs and motor control, music
improvisation indicates a high fluency of access between
perceptual, emotional, or cognitive processes such as feedback
and error correction and a domain-specific (music) knowl-
edge base consisting of hierarchal structures retrieved from
long-term memory [1]. Thus, improvisation neuroscience may
shed light on the neural underpinnings of cognitive and motor
control in creative thought and music production. Particu-
larly, exploring the neurophysiological evidence for musical
intent during music improvisation facilitates the development
of brain-computer music interfaces (BCMIs) plausibly for
realistic training, performance, or other musically interactive
contexts beneficial to people regardless of musical expertise.
Most of the first BCMI systems were designed for persons with
limited ability to move their bodies, enabling them to interact
and communicate in real time with others by manipulating
changes in their online brain activity [2]. BCMI systems have
also been developed as standalone or collaborative musical
instruments that have opened up a growing number of novel
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and unique modes of music interaction for musicians and
non-musicians alike [3].

Functional magnetic resonance imaging (fMRI) studies
have observed the modulation of activity and functional
connectivity in the premotor and prefrontal areas during
music improvisation, such as the dorsolateral prefrontal cortex
(DLPFC). Bengtsson et al. [4] recruited classical concert
pianists and found increased DLPFC activity in free improvisa-
tion conditions compared to reproducing improvisation from
memory. Limb and Braun [5] investigated spontaneous jazz
improvisation conditions compared to either scale playing or
playing from memory conditions in professional jazz pianists
and found deactivation of the DLPFC during the spontaneous
improvisation task. Some studies have explored the aspect of
emotional intent in active improvisation. Pinho et al. [6] found
decreased DLPFC activity in professional pianists improvising
based on specific emotional cues, such as happy/fearful, but
increased activity in the same region when the improvisation
was based on specific pitch sets. McPherson et al. [7] recruited
professional jazz pianists and similarly found deactivation
in the DLPFC during improvisation with emotional intent,
notably observing more widespread deactivation during posi-
tive conditions compared to ambiguous or negative conditions.
The aforementioned fMRI studies suggest that DLPFC mod-
ulation may indicate immersion in the creative task of music
improvisation with or without emotional intent.

Recent wearable electroencephalogram (EEG) sensing
technology may provide an ecologically valid capability
to study the neural correlates of music contexts [8], [9],
[10], [11]. Musical improvisation and its associations with
brain networks presumably do not compromise, as an fMRI
scanner requires a restricted body posture and movement
as well as noticeable acoustic noise accompanying measure-
ment (i.e., remaining supine in a noisy scanner). Exploited
music improvisation-driven EEG signatures may facilitate
the deployment of BCMI applications in real life settings.
Analogous to many fMRI studies, several EEG studies have
revealed the relevant spectral oscillations of distinct frequency
bands in the frontal region. Dolan et al. [12] found alpha and
beta spectral power noticeably differed over the regions near
to DLPFC and anterior cingulate cortex (ACC), respectively,
in the engagement of prepared versus improvised performance
modes. Another measure of brain entropy and signal complex-
ity by Dolan et al. [13] later showed that the prepared perfor-
mance was associated with more power at low frequencies
(delta, theta, and alpha bands), whereas the improvised mode
raised more active high-frequency activation (beta and gamma
bands). While considering the factor of musical/training expe-
rience, Dikaya and Skirtach [14] reported that experienced
musicians exhibited higher right frontal alpha activity during
improvisation as compared to amateurs. Lopata et al. [15] anal-
ogously reported that skilled musicians with formal musical
improvisation training had more right frontal alpha activity
versus those with informal training. Rosen et al. [16] examined
EEG spectral power differences for jazz guitarists improvising
to novel chord sequences. High-frequency activity within the
beta and gamma ranges was observed in a comparison of
low- and high-quality improvisation. Taking into consideration

the sensor-level analysis that was concerned with the volume
conduction issue [17], Sasaki et al. [18] employed a source-
level analysis, e.g. as independent component analysis (ICA),
and revealed spatio-spectral EEG oscillations in guitarists
during an improvisation condition when compared to a scale
playing condition. They observed greater activity in theta,
alpha, and beta frequency bands in a host of locations,
including the medial frontal cortex (MFC), middle frontal
gyrus anterior cingulate, polar medial prefrontal cortex, pre-
motor cortex, pre- and postcentral gyrus, superior temporal
gyrus, inferior parietal lobule, and temporal-parietal junction,
which are suggested to be involved in coordinating planned
sequences of movement through monitoring and feedback of
sensory states in relation to internal plans and goals. These
improvision-induced EEG signatures further facilitated the
construction of a machine learning classification technique
for a BCMI applicable neurofeedback training to improve
creativity. Complementary to the sole experimental design of
music improvisation, Pousson et al. [19] recently addressed the
neural oscillations of imbuing emotional intent during piano
playing. The sensor-level EEG spectral dynamics exhibited
a widespread spectral distinction in several frequency bands
between distressed/excited and neutral/depressed/relaxed play-
ing predominantly over the frontal and parieto-occipital
channels.

The aforementioned improvisation neuroscience endeavors
have considerably evidenced brain region-specific (e.g., frontal
regions) and spectral band-specific (e.g., alpha and beta)
activity intervened in highly complex music improvisation.
However, imbuing emotional intent is considered as an ecolog-
ically crucial modulator in creative music production [7], [20].
Only a few studies [6], [7], [19] further elucidate its interplay
in brain modulation during active improvisation. Most crit-
ically, emotional experience is well acknowledged to behave
distinctively for an individual across time and between individ-
uals. Such salient intra- and inter-individual variability in brain
activity considerably impede the deployment of a real-world
application [9], [21], [22]. Towards a BCMI-deployable infras-
tructure, this study attempts to exploit spatio-spectral EEG
modulations of emotional intents using a data-driven source-
level ICA given a multiday dataset collected by an active
piano-playing task. To the best of our knowledge, most EEG
studies contribute to the design without the aspect of emotional
intent [12], [13], [14], [15], [16] or without multiday data
collection [18]. This study is the first attempt to appraise
a representative set of relatively day-/individual-reproducible
and emotion-relevant EEG signatures with an active setting
of musical instrument playing. By considering both intra-
and inter-individual EEG variability, this study may lead to
better understanding of emotion-driven BCMI modeling in
real-world deployment.

II. MATERIALS AND METHODS

A. EEG Dataset
This study employed the EEG dataset collected by [19] to

explore reliable spatio-spectral EEG oscillations of emotional
intent during music improvisation. The following paragraphs
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Fig. 1. Setting of EEG recording during piano playing at the Jazeps
Vitols Latvian Music Academy in Riga.

briefly describe the experimental protocol and EEG recording
settings used to collect the dataset. Ten healthy right-handed
participants (8 female and 2 male; age: 24.7 ± 6.5 years
(mean ± standard deviation (STD)) participated in emotional
piano playing for a total of four days paced over approxi-
mately two months. The participants played the piano regularly
either as part of their profession or academic training for
18.4 ± 6.2 years (min: 5 years). None of them received
academic jazz training or was known to improvise regularly
on the piano. The experimental protocol was approved by the
Rı̄ga Stradin, š University Research Ethics Committee.

In the piano-playing task, participants were instructed to
play the same musical score while intentionally expressing
one of five emotional intents, including excited, distressed,
depressed, relaxed, and neutral states, based on the valence-
arousal emotion model [23]. The score was self-composed
by the author to be sufficiently simple for an experienced
piano player to pick up quickly and create expressive vari-
ations. An extended pentatonic scale was chosen to evade the
tendency of Western classical music to gravitate towards the
tonic through subdominant and dominant tensions as a means
to convey intent [24]. Each participant underwent 10 blocks
of 5-trial runs for every day’s session (i.e., 50 trials per day),
and each trial was randomly assigned to one of the five target
emotion intents. Following an initial 15-sec resting state in
each trial, the participant was required to play mechanically
(regarded as baseline) for 30 s and then play expressively for
another 30 s with an intended emotion that was instructed at
the beginning. For emotional performance, participants were
allowed to use tempo, rhythm, articulation, embellishment,
and other expressive cues to express the target intent. Finally,
they rated their performance on a nine-point scale for both
emotional valence and arousal categories (from negative/low to
positive/high) regarding how well they felt their performance
reflected the intended target emotion.

The data collection took place in a room within the Jazeps
Vitols Latvian Music Academy in Riga, Latvia (see Fig. 1),
where the participants regularly practiced and rehearsed.
A 32-channel Enobio system was used to record EEG signals.
The electrode placement adhered to the International 10–20
system and used common mode sense (CMS) and driven

right leg (DRL) electrodes connected to the right earlobe for
electrical grounding. The system sampled the EEG signals
at 500 Hz and at a bandwidth of 0 – 125 Hz with a 50 Hz
notch filter to remove power line noise.

Accordingly, each participant collected 50 75-sec trial seg-
ments composed of a 15-sec resting state, a 30-sec mechanical
play, and a 30-sec emotional play for each day session. The
four-day dataset contained 2,000 piano playing trials (i.e.,
10 participants × 4 days × 50 trials) and offered this study
to investigate realistic cross-day and cross-participant spatio-
spectral EEG oscillations of emotional intent during piano
improvisation.

B. Exploring Day-Stationary Spatio-Spectral EEG
Oscillations

To derive representative EEG modulations, this study first
explored day-stationary spatio-spectral EEG oscillations in
each individual given four-day sessions and then summarized
the consistency of personalized outcomes among 10 subjects
for appraising their neurophysiological validity. The following
analytical framework was adopted for the objective,
including artifact suppression, EEG source decomposition
and clustering, and inter-participant commonality. EEG
data analysis and visualization were performed using the
EEGLab toolbox/scripts (Delorme and Makeig [25]) and
MATLAB functions/scripts (The Mathworks, Inc., Natick,
MA, USA). The details of the processing procedures and
their implementation are as follows.

In this study, we initially applied a band-pass filter
(1–50 Hz) to suppress the artifacts. Artifact subspace recon-
struction (ASR) [26], [27] was then employed to compensate
high-variance artifacts plausibly accompanied by naturalistic
piano playing (the user-defined threshold of the standard
deviation was set to 20), which preserved the signal quality
for the subsequent ICA procedure. An extended infomax ICA
algorithm was run on each ASR-processed single-day session
and was assumed to separate EEG signals into spatially static
and temporally independent components (ICs) [17]. Through
the DIPFIT routine [28], a best-fitting single equivalent current
dipole was calculated to estimate the source location of each
IC using a boundary element head model co-registered to the
MNI brain template (Montreal Neurological Institute, MNI,
Quebec, Canada). Only the IC associated with the dipoles
located within the brain that explained more than 85% of the
variance in their scalp maps (i.e., residual variance < 15%)
were further considered. Note that 85% is a popular setting
to ensure the physiological plausibility of an IC as referred to
[29]. The remaining ICs were visually inspected in terms of a
scalp map and power spectrum to isolate interpretable cortical
sources. Given 30 ICs (excluding two reference channels), this
procedure returned 41.9 ± 8.5 ICs (mean ± STD) for the
four-day session of each individual (i.e., 10.5 ± 2.1 ICs per
single-day session).

Next, this study employed a semi-automatic IC clustering
procedure [9], [10], [22] to explore relatively time-stationary
ICs across four days in an individual. A k-means clustering
algorithm was first used to aggregate the available ICs into
different clusters according to the attributes of their power
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spectral density, scalp maps, and dipole locations. Outlier ICs
were then re-assigned to another suitable cluster or a separate
cluster if their distances to the cluster centroids exceeded three
STDs. Based on the derived IC clusters, this study further
summarized inter-day reproducibility [9] and dipolarity [30].
The reproducibility defines the percentage of day sessions con-
sistently contributing an analogous IC to a target cluster in an
individual (D/4, D= the number of day sessions with the IC).
The dipolarity refers to the mean percentage of the DIPFIT
data variance corresponding to the recruited ICs, reflecting
the single-dipole fitting efficacy per cluster. That is, an IC
cluster with 100% inter-day reproducibility and 100% dipo-
larity indicates its perfect presence for all four days as well as
its capability of neuropsychological assessment. Particularly,
we empirically treated the IC reproducibility as a threshold
to further quantify the percentage of participants consistently
exhibiting a preferable day-reproducible IC, forming a term
of inter-participant IC commonality. This procedure allows us
to focus on a representative set of relatively reproducible ICs
across days and participants and to elucidate their roles in
emotional modulations sequentially.

C. Statistical Assessment of Spatio-Spectral EEG and
Emotional Intent

To assess the spatio-spectral EEG correlates of emotional
intent upon the explored day-reproducible ICs, a short-time
Fourier transform with a 50% overlapped 2-s Hamming win-
dow was applied to calculate the logarithmic power spectra
of each of the derived ICs in five frequency bands: delta
(1 – 3 Hz), theta (4 – 7 Hz), alpha (8 – 13 Hz), beta
(14 – 30 Hz), and gamma (31 – 50 Hz). For a trial segment,
the preceding 30-sec mechanical play period was treated as
a baseline to normalize the 30-sec emotional play segment;
that is, subtracting the baseline mean power and dividing
by its standard deviation. Noteworthily, instead of a resting
baseline commonly used for data normalization, the selection
of the mechanical play is intended to suppress the spec-
tral oscillations resulting from piano playing but emphasizes
the alterations associated with distinctive emotional intents.
Such the task normalization based on a non-resting pre-
task period can also be found in [31] and [32]. Some BCI
studies have also demonstrated the effectiveness of a pre-
ferred baseline normalization or alignment pipeline to obviate
data discrepancies between sessions or subjects and thereby
enhance predictive model generalizability given substantial
EEG variability [33], [34]. The normalized 30-sec spectral
time series was then averaged to represent EEG fluctua-
tions in band power for an emotional play. In addition, the
self-reported valence and arousal ratings were dichotomized
for each trial, given the threshold at the nine-point scale (i.e.,
< 5 for negative valence/low arousal labels and > 5 for
positive valence/high arousal labels). The dichotomization
yielded 18.5 ± 2.7 (mean ± STD) and 20.9 ± 2.2 trials for
positive and negative valence, respectively, and 26.6 ± 3.8
and 19.7 ± 3.9 trials for high and low arousal, respec-
tively, per day session for each participant. As such, the
cross-day emotion-annotated EEG samples of an individual
facilitated the statistical assessment of spatio-spectral EEG

Fig. 2. Self-evaluated valence and arousal responses for each of
the five target emotion descriptors over four days. Geometric shapes
represent days: square – 1st day, triangle – 2nd day, rhombus – 3rd day,
circle – 4th day.

and emotion intent for each day-reproducible IC. Owing to
a label imbalance over four days, an unpaired t-test was
used to test the statistical significance of EEG differences
in the dichotomized valence and arousal categories for each
individual. The Benjamini–Hochberg procedure [35] was fur-
ther applied to correct the resultant p-values by controlling
the false discovery rate (FDR) due to multiple comparisons
among day-reproducible ICs, frequency bands, and subjects.
The FDR-corrected p-values are named as pfdr hereafter.
After repeating the statistical assessment for each participant,
this study defined the inter-participant emotion commonality
to summarize how consistently day-reproducible EEG corre-
lates of emotional intent existed across participants. That is,
the percentage of participants with analogous spatio-spectral
oscillations was statistically distinctive (pfdr < 0.05) between
positive vs. negative valence or between high vs. low arousal.

III. RESULTS

A. Behavioral Ratings of Emotional Intent
The behavioral valence and arousal ratings of the 10 par-

ticipants were first demonstrated to indicate the feasibility of
exploring day-stationary EEG correlates of emotional intent
using the adopted four-day dataset. Fig. 2 provides the means
and standard deviation of the self-assessed valence and arousal
ratings for each of the five target emotion intents in each
day session. Generally, the valence scores of 7.4 ± 1.0
(mean ± STD) for positive intent (e.g., excited and relaxed)
were significantly higher than the scores (2.7 ± 1.3) for
negative intent (e.g., distressed and depressed, p < 0.01). The
high arousal state (e.g., excited and distressed) led to higher
(p < 0.01) arousal scores (7.6 ± 1.3) than the low arousal state
(e.g., relaxed and depressed, 2.6 ± 1.8). Furthermore, valence
and arousal ratings did not change substantially across days.
Accordingly, the dichotomization (= 5) on the nine-point scale
of valence and arousal states allowed this study to explore
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Fig. 3. Nine neurophysiologically day-reproducible IC clusters aggregated from one representative participant along four days. The cluster
characteristics in terms of spectral profiles, scalp maps, and 3D dipole locations projected onto the MNI brain template are presented.

TABLE I
MEAN DIPOLARITY (%) AND INTER-DAY IC REPRODUCIBILITY (%)

PER IC CLUSTER FROM A REPRESENTATIVE SUBJECT

relatively day-stationary, emotion-relevant EEG oscillations.
Neutral trials were not excluded from the dichotomization
procedure.

B. Day-Stationary Spatio-Spectral EEG Oscillations

To illustrate the capability of relatively day-stationary EEG
sources using ICA, Fig. 3 shows neurophysiologically inter-
pretable IC clusters from a representative participant in terms
of scalp maps, spectral profiles, and diploe locations. Their
corresponding dipolarity and inter-day reproducibility are also
listed in Table I. Nine well-dipolar ICs (mean dipolarity:
89.9 – 94.1%) appeared reproducibly for at least three days
(>75%) with the locations at left frontal, frontal central, right
frontal, left sensorimotor, central midline, right sensorimo-
tor, left occipital, superior parietal, and right occipital brain
regions. The three frontal IC sources exhibited theta and beta
peaks in their spectral profiles. The remaining sources typically
exhibited an alpha peak with distinct amplitudes.

Fig. 4 further summarizes the grand mean dipolarity and
inter-day reproducibility of the IC clusters from 10 participants
and their resultant inter-participant IC commonality. There
were nine IC clusters often aggregating for four days, includ-
ing frontal central, left/right frontal, central midline, left/right
sensorimotor, superior parietal, and left/right occipital ICs.
As shown in Fig. 4A, the clusters resulted in a mean dipolarity
of 92.3% (STD: 1.5%; range: 90.1 – 94.9%) and a mean
inter-day reproducibility of 71.2% (STD: 12.7%; range: 50.0 –
90.0%). The dipolar ICs located at the parieto-occipital regions
tended to be highly reproducible across days (75.0 – 90.0%),
followed by sensorimotor sources (75 and 77.8%) and frontal
sources (55.6 – 69.4%). The worst case was found with the
central midline source (50.0%). The spectral profiles of the
nine IC clusters generally assembled the outcomes explored
from the representative participant (Fig. 3). That is, the frontal
sources typically accompanied a minor peak in both theta
and beta bands, while the other sources were associated with
an alpha peak. However, as can be seen, their mean peak
amplitudes (in red) were more or less smeared due to the
obvious intra- or/and inter-individual variability (in gray) in
the collected four-day dataset of 10 participants.

To evaluate the inter-participant IC commonality for day-
stationary ICs, this study only considered the participants
having the IC with the inter-day reproducibility ≥ 75%
with respect to the aforementioned grand mean inter-day
reproducibility of 71.2% (STD: 12.7%). As such, the nine
clusters returned a mean IC commonality of 63.3% (STD:
21.2%; range: 30.0 – 90.0%), as shown in Fig. 4B. The
sensorimotor, parietal, and occipital sources tended to often
be reproducible over time and among participants, leading to
an IC commonality of ≥ 70.0%. Contrastingly, the frontal and
central sources exhibited greater disparity among participants
(≤ 50%), with the frontal central counterpart being the worst
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Fig. 4. Nine neurophysiologically day-reproducible IC clusters summarized from 10 participants and the corresponding inter-participant IC
commonality. (A) shows the cluster characteristics and the corresponding dipolarity (Dip) and inter-day reproducibility (Rep). (B) projects the
dipole centroids of the IC cluster to the brain. The dipole size is scaled by the inter-participant IC commonality for analogous ICs with inter-day
reproducibility ≥ 75% (i.e., at least three of four days).

case (30%). Accordingly, complying with an empirical cri-
terion of three-day reproducibility, the discernibly distinct IC
commonality reflected realistic EEG variability in active piano
improvisation.

C. Spatio-Spectral EEG Correlates of Emotional Intent
Among the derived nine IC clusters (i.e., inter-participant

IC commonality range: 30.0-90.0%), only three ICs were
located in the right frontal (Talairach coordinates x = 41,
y = 42, z = 30; BA = 9), frontal central (x = 2, y =

39, z = 11; BA = 32), and superior parietal (x = 3,
y = −48, z = 60; BA = 7) regions, exhibiting spectral
modulations underlying the dichotomized emotional intent
with an inter-participant emotion commonality of 30–40%
(see Fig. 5). This indicates that only three or four participants
showed analogous day-reproducible spatio-spectral tendency
toward the same emotional intent during piano playing. For the
valence category (Fig. 5A), the right frontal beta returned the
emotion commonality of 40%. Emotional play with positive
intent tended to promote beta enhancement when compared to
negative ones, which was consistently seen in four participants.
For the arousal category, the high arousal play manifested
significant augmentation in the frontal central gamma and
the superior parietal alpha compared to the low arousal play
with 30% emotion commonality (see Fig. 5B). The remaining
six day-reproducible IC sources were statistically irrelevant to
emotional intent for most participants (i.e., emotion common-

ality ≤ 20%). Therefore, the derived inferior inter-participant
emotion commonality may be attributed in part to the ecolog-
ically introduced inter-day EEG variability in piano playing
with the target emotional intent. As can be seen, the spectral
profiles of the dichotomized states differed across days and
thereby led to noticeable overlapping distributions (see the
right panel) for each participant. This could impede the explo-
ration of the day-reproducible spatio-spectral gap of emotional
contrast.

IV. DISCUSSION

This study employed a data-driven ICA approach to explore
the relatively day-stationary EEG spatio-spectral modulations
of imbuing emotional intent in active piano playing. Our
results showed that EEG patterns were substantially affected
by intra- and inter-individual variability when intentionally
expressing emotional intent. Among the nine day-stationary
IC clusters, only three ICs located near the frontal and parietal
brain regions manifested distinctive spectral modulations to
the dichotomized emotional valence and arousal categories,
yet only led to an inter-participant emotion commonality
of 30 – 40%. While previous studies mostly contributed to
the design without the aspect of emotional intent, as well
as a single-day analysis scenario [6], [7], [13], [14], [15],
[16], [18], this study advances the neuroscientific endeavors
of music improvisation and affective computing by appraising
the EEG (non)stationarity of emotional intent in a multiday
active piano-playing setting.
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Fig. 5. Relatively day-reproducible, participant-consistent spatio-spectral EEG modulations underlying emotional intent of the dichotomized valence
and arousal categories. Each subplot represents a resultant participant. The left panel shows the spectral time course of emotional play with respect
to the last five seconds of mechanical play as the baseline. The right panel of the subplot shows the spectral average of the emotion play. The
bands represent the corresponding standard error. ∗∗ and ∗ indicate the statistically significance with pfdr < 0.01 and pfdr < 0.05, respectively.

A. Inter-Day Reproducible EEG Sources Using ICA
Previous EEG studies mostly demonstrated the efficacy of

ICA in finding a consensus of neurophysiological source activ-
ity from a group of individuals regarding music perception
and emotional experience [8], [10], [11], [22], [36], while
a recent study exclusively attempted to explore relatively
day-reproducible sources across individuals [9]. However, the
number of ICs to be resolved by ICA is mathematically
confined by the number of scalp channels used for recording.
A sparse or limited channel montage may affect the appli-
cability of the ICA (i.e., IC source availability). Onton and
Makeig [37] documented that a 31-channel setting typically
yields 5 – 15 neurophysiologically interpretable ICs. Later
studies confirmed such a practical guide, e.g., 32 channels
for 8 – 5 ICs (mean: 11.2) in a motor imagery task [38],
30 channels for 11.2 ± 1.9 ICs (mean ± STD) in a music
listening task [9], and 30 channels for 10.8 ± 0.5 ICs in a
music listening task using a multiple-day ICA framework [22].
Unlike in a stationary setting (e.g., sitting still), the piano
playing task conducted in this study plausibly raised more nat-
ural artifacts, including eye movement, neck muscle tension,
scalp muscle activities, and headset motion. It is reasonable to
expect that these distinctive, non-stationary artifact behaviors
may impede ICA from reconstructing meaningful cortical ICs

per recording day session. A recent guitar-playing study [18]
reported a suboptimal availability of ICs (2 – 7 ICs) owing to
the motion interference, even with a 64-ch recording. Thus,
our 30-ch EEG setting which returned 10.5 ± 2.1 meaningful
ICs per day session should be both explainable and acceptable.

Aggregated day-reproducible IC clusters were found in the
frontal, central, sensorimotor, parietal, and occipital regions of
the cortex, which resembled the findings commonly reported
in music and emotion studies [9], [10], [22], [36]. While
most EEG-ICA studies summarized participant group-wise IC
reproducibility, less effort was invested in IC reproducibil-
ity over time for each individual. A recent music-listening
study [9] reported 76.03 ± 10.40% (mean ± STD) inter-day IC
reproducibility (min: 60.89 ± 28.36%, max: 88.57 ± 10.98%)
over eight recording days. Our resultant inter-day IC repro-
ducibility of 71.2 ± 12.7% among the nine clusters explored in
an active piano playing task should be explainable. It is likely
that naturalistic artifact sources that contribute to stronger
signal variance to the scalp could spread widely during cer-
tain day sessions and then compete with underlying brain
sources that are either weak or indistinctive signals to be
reconstructed [37]. Therefore, we believe that such relatively
day-reproducible IC clusters summarized across 10 partici-
pants were valid for exploring their links to emotional intent.
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B. Inter-Participant Common Spectral Modulations to
Emotional Intent

A threshold of 75% inter-day reproducibility (i.e.,
appearing for at least three days) was imposed to define the
day-reproducible cluster and quantify the IC commonality
across participants, leading to 63.3 ± 21.2% (mean ± STD)
inter-participant IC commonality (range: 30.0-90.0%; see
Fig. 4B). However, the IC commonality was considerably
enhanced to a certain extent by loosening the threshold,
for example, to 50% (two days only). In this case, the
commonality was 82.2 ± 13.0% within a range of 60.0 –
100.0% (not presented in Results). This setting subjectively
boosted the number of participants recruited to assess whether
each IC of interest possessed emotional links. However, the
resultant findings will inevitably be made with less demand
for cross-day reproducibility. To address the posed scope of
exploring day-reproducible modulations, this study conducted
a sequential analysis of emotional intent with a stringent
threshold, e.g., 75%. On the other hand, a music-listening
study [9] with an 8-day recording setting reported a better
IC commonality (mean ± STD: 71.11 ± 18.33%; range:
50–100%) using the same threshold of 75% (at least six days).
Given analogously resolved ICs per single-day session (theirs:
11.20 ± 1.96, ours: 10.5 ± 2.1), both our inferior mean
commonality and larger commonality range could be attributed
to active music playing presumably being accompanied by
stronger non-stationarity of cortical sources along days and
across individuals compared to passive music-listening.

To the best of our knowledge, this study is the first attempt
to exploit day-reproducible spatio-spectral EEG modulations
of emotional intent during active piano playing. It is challeng-
ing to justify the neurophysiological validity of our findings
exclusively due to the lack of comparable longitudinal studies.
Here, we intended to link our cross-day outcomes to existing
emotion-related endeavors, mostly conducted using single-day
and/or stationary recording scenarios. Our findings showed
that less than half (3 – 4) of the 10 participants analogously
exhibited day-reproducible spectral modulations at the right
frontal (BA9) beta in response to the valence contrast as well
as the frontal central (BA32) gamma and the superior parietal
(BA7) alpha to the arousal counterpart (see Fig. 5). The pre-
dominant engagement of the frontal and parietal activities may
be, in part, supported by a longitudinal music-listening study
[9], [22]. They documented the links of the frontal (BA9 and
BA10) and central midline (BA6) sources to the valence cate-
gory with the same inter-participant commonality (30 – 40%),
and the involvement of the superior parietal (BA5) source
to the arousal counterpart with less commonality (25%) [9].
However, most of them projected high-frequency spectral
modulations in the beta and gamma bands over the neighboring
brain regions of interest, while our findings exhibited a notice-
able frontal vs. parietal distinction; that is, the frontal area
tended to reflect the beta and gamma modulations and the pari-
etal area was associated with the alpha alteration. Even though
the spectral disparity may be attributed to different experimen-
tal tasks (stationary music-listening vs. active piano-playing),
the consensus between the studies by means of the ICA-
driven, multiple-day analytical scenario facilitated a better

understanding of the role of the frontal cortex (e.g., DLPFC
(BA9), ACC (BA 24, 32, and 33) [8], [39], [40], [41],
[42]) in intervening in emotional processes and expressing
spectral signatures that are relatively resistant to ecological
intra- and inter-individual EEG variability. Additionally, our
cross-day findings and existing single-day outcomes regarding
emotional responses may support or complement each other,
e.g., posterior alpha relevant to emotional affect and intensity
[36], [43], [44] and prefrontal beta and gamma asymmetry in
valence [45].

Referring to existing single-day music improvisation find-
ings, the resultant day-reproducible frontal sources (e.g., right
frontal sources) evidently replicated previous fMRI studies
with professional musicians. DLPFC activation was found
to be diversely driven by music improvisation [4], [5] and
considerably altered in response to the emotional intent of
the valence aspect [6], [7]. Previous single-day EEG studies
have shed light on the validity of spectral engagement with
frontal brain sources. Under different study settings investi-
gating music improvisation, several spectral signatures have
been revealed at distinct frequency bands accordingly, e.g.,
improvised performance mode associated with alpha, beta, and
gamma power near the DLPFC, ACC, and MFC compared to
prepared or scale playing modes [12], [13], [18], while impro-
visation by skilled or formally trained musicians exhibiting
higher right frontal alpha [14], [15], [16], and high-quality
improvisation leading to high-frequency beta and gamma acti-
vation against low-quality counterparts [16]. Taken together,
the frontal beta and gamma modulations explored by the
dichotomized valence and arousal contrasts in our study were
more plausibly attributed to music improvisation quality, since
emotion expression is acknowledged as a crucial modulator of
the creative process [7], [20]. Finally, this study did not yield
any sensorimotor intervention for emotional intent, despite
corresponding to a relatively high inter-day reproducibility
across participants (i.e., inter-participant IC commonality:
70 – 80%, see Fig. 4B). The absence of sensorimotor out-
comes may be attributed to the fact that piano fingering
strategies and their corresponding motoric spectral patterns
did not substantially alter the expression of different target
emotional intent for the recruited participants in this study.
Additionally, the inconsistent motoric signature compared to
the previous EEG music improvisation study [18] is likely due
to the difference in study focus; that is, they focused on the
exclusive neural distinction between improvisation and scale
playing.

Music offers a unique capability to evoke a wide range
of emotional responses across cultures and has led to
ever-growing functional neuroimaging studies to elucidate
the interplay between emotion and brain networks [41], [42].
It is evident that music-evoked emotions raise a diverse
interactive engagement of cortical and subcortical structures
relevant to sensory, motor, memory, and reward processes
[41], [42], [46]. Additionally, the brain may switch between
different strategies to execute or respond to the same task in an
ecologically realistic setting [47]. The engaged brain sources
and their communication coupling are unlikely to persist on
a daily basis in terms of location and spectral characteristics.
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Both aspects may demonstrate that emotion-evoked brain
networks exhibit salient intra- and inter-individual differences
in spatio-spectral EEG patterns, as previously reported [9],
[21], [22], [48], [49]. Most critically, EEG correlates of
emotional responses ecologically exhibit diverse profiles
across individuals plausibly ascribed to dominant factors of
personality [50] and gender [51]. This may explain in part
the manifested inferior inter-participant emotion commonality
found in this study. Instead of solving a generic model
for all individuals, machine learning-basis personalized
modeling [52] can be a potential breakthrough to deploy a
BCMI infrastructure in the real world.

C. Limitations
Scalp EEG signals are known to encapsulate less electrical

amplitudes from deep brain regions. Thus, in this study,
it was barely possible to pinpoint some subcortical regions
that have been reported previously to be relevant in fMRI stud-
ies [41], [42]. The interpretation of day-stationary emotional
intent EEG findings must consider the limited accessibility
of deep EEG sources derived by ICA. Additionally, this
study parsed EEG sources using one of the most commonly
used ICA algorithms, e.g., extended infomax ICA. Differ-
ent algorithms have been documented to return distinctive
effectiveness for source decomposition. Particularly, adaptive
mixture ICA (AMICA) has been reported to be superior in
component separation [30] and has been empirically demon-
strated in effective modeling of EEG correlating with brain
state changes, e.g., step adaptation [31] and emotion imagi-
nation [53]. Considering the ecological music improvisation
experiment, the multiple-model AMICA framework may be
a contemporary alternative for exploring EEG modulations of
imbuing emotional intent during active music playing in future
studies.

Finally, there may be a tradeoff between emotion
intent-embedded music improvisation tasks with and without
a pre-composed music score. To avoid over-complicating
the experimental variables, the dataset used in this study
used pre-composed music scores for the active playing task.
However, considering that the resulting knowledge is aimed
at informing the BCMI design and its deployment challenges,
future follow-up efforts should adopt a score-free design and
explore how the day-stationary EEG spatio-spectral modula-
tions behave against the current study settings.

V. CONCLUSION

This study attempted to exploit reliable spatio-spectral EEG
oscillations of emotional intent during active piano playing
using a data-driven ICA framework. Given the four-day dataset
of 10 participants, we demonstrated substantial intra- and
inter-individual EEG variability that inevitably impeded the
finding of common emotion-relevant EEG patterns. Three
ICs located near the frontal and parietal brain regions man-
ifested relatively day-stationary (≥ three days) distinctive
spectral modulations to the dichotomized emotional valence
and arousal categories, but only led to an inter-participant
emotion commonality of 30 – 40%. Particularly, the frontal

engagement facilitated better understanding of the frontal cor-
tex (e.g., DLPFC and ACC) in terms of its role in intervening
in emotional processes and expression of spectral signatures
that are relatively resistant to natural EEG variability. As such,
the empirical findings on an ecological multiday protocol con-
tribute to the complementary evidence of affective computing
in an active mode rather than a passive mode often addressed
in the literature.
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