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A Systematic Review of Gait Analysis in the
Context of Multimodal Sensing Fusion and Al
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Abstract— Background: Neurological diseases are a
leading cause of disability and mortality. Gait, or human
walking, is a significant predictor of quality of life, mor-
bidity, and mortality. Gait patterns and other kinematic,
kinetic, and balance gait features are accurate and powerful
diagnostic and prognostic tools. Objective: This review
article focuses on the applicability of gait analysis using
fusion techniques and artificial intelligence (Al) models.
The aim is to examine the significance of mixing several
types of wearable and non-wearable sensor data and the
impact of this combination on the performance of Al mod-
els. Method: In this systematic review, 66 studies using
more than two modalities to record and analyze gait were
identified. 40 studies incorporated multiple gait analysis
modalities without the use of artificial intelligence to extract
gait features such as kinematic, kinetic, margin of stability,
temporal, and spatial gait parameters, as well as cerebral
activity. Similarly, 26 studies analyzed gait data using mul-
timodal fusion sensors and Al algorithms. Results: The
research summarized here demonstrates that the quality of
gait analysis and the effectiveness of Al models can both
benefit from the integration of data from many sensors.
Meanwhile, the utilization of EMG signals in fusion data is
especially advantageous. Conclusion: The findings of this
review suggest that a smart, portable, wearable-based gait
and balance assessment system can be developed using
multimodal sensing of the most cutting-edge, clinically
relevant tools and technology available. The information
presented in this article may serve as a vital springboard
for such development.

Index Terms— Gait analysis, artificial intelligence, multi-
modal sensing fusion.

[. INTRODUCTION
UMAN walking or gait involves intricate coordination
and interplay between cortical and subcortical areas,
the cardiorespiratory system, and the musculoskeletal system
resulting in reflex or controlled movement. While normal
gait can be defined as a series of rhythmic, systematic, and
coordinated movements of the limbs and trunk, which results
in the change in position of the body’s center of mass,
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Fig. 1. Human gait cycle with stance and swing phases [3].
individual gait patterns are unique and influenced by age,
personality, mood and sociocultural factors [1]. The period
between one heel strike and the following heel strike when
measuring forwards motion is defined as a gait cycle [2] (as
shown in Fig.1, [3]).

In addition to providing the key means for mobility, gait
is a sensitive indicator of overall health status that can
reveal the status and progression of underlying health chal-
lenges including neurological conditions (e.g., sensory or
motor impairments and cognitive impairments) and muscu-
loskeletal/orthopedic problems (e.g., osteoarthritis and skeletal
deformities), to cardiovascular and metabolic conditions (e.g.,
heart failure, respiratory insufficiency, peripheral arterial
occlusive disease, and obesity), and to ageing-associated
ambulatory dysfunction and trauma [4], [5]. In the elderly,
gait disorders are also linked to impaired proprioceptive
function associated with polyneuropathy, frontal gait disorder
associated with vascular encephalopathy, poor vision, as well
as osteoarthritis [6]. As precursors of falls, gait deficits are
considered as the most common cause of severe injuries in the
aging population, while slow gait correlates with mild cogni-
tive impairment (MCI) and future occurrence of dementia [7].

Gait analysis has emerged as a quantitative method for
investigating a wide range of walking challenges and gait
irregularities [4]. Gait analysis, supported by modern sens-
ing technology and computational algorithms, can be used
in clinical and research laboratory investigations, security,
and everyday living contexts, allowing for the identification,
monitoring, and intervention.

Instrumented gait analysis (IGA) is considered the gold
standard for gait assessment [8]. IGA measures and analyzes
different aspects of human gait applying spatiotemporal, kine-
matic, and kinetic measures. Traditional IGA systems consist
of motion capture cameras, force plates, instrumented walk-
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ways, and treadmills, whereas contemporary IGA systems
consist of miniaturized peripheral sensing systems, computa-
tional platforms, and modalities [8]. IGA-based quantitative
assessment can improve the diagnosis, outcome prediction,
and rehabilitation of different gait impairments [9], [10], [11],
[12]. Smart wearable technologies, multi-modal physiological
network sensors, sensor fusion techniques, and Al-driven
computational platforms are becoming the center of inter-
est when it comes to evaluating human mobility and gait.
Such cutting-edge movement analysis technologies allow for
gait and balance assessment to be more objective, accurate,
quantifiable, and sensitive to alterations brought on by age, ill-
ness, or trauma [13]. These technologies provide synchronous
monitoring of spatiotemporal gait parameters (swing, stance,
cadence, step width, step length, etc.), as well as upper/lower
limb dynamics, including kinematics (angular positions, veloc-
ities, and accelerations), kinetics (forces, moments, plantar
pressure and center of pressure), in conjunction with associated
musculoskeletal, cardiorespiratory and neurological changes
[14]. Currently, there are two main types of modalities used
for gait acquisition: sensor-based (SB) and vision-based (VB)
[15]. Although SB gait capture demands more complicated
sensing technology, it has the capability of providing precise
quantitative data using either floor sensors or wearable sensors
in addition to utilizing either marker free or marker-based
recording [15], [16].

Although the importance of the role that cortical areas
play in normal gait is well known, decoding the precise
relationship between cortical activity and gait characteris-
tics remains elusive. Numerous studies indicate that cortical
involvement is essential in human gait [17], [18]. In the last
two decades, evidence for cortical involvement in human loco-
motion has been provided by neuroimaging studies based on
position emission tomography [19], electroencephalography
(EEG) [20] and functional near-infrared spectroscopy (fNIRS)
[21]. EEG and fNIRS are increasingly gaining acceptance
in the scientific community owing to their non-invasiveness,
mobility, and ease of use [22], [23]. EEG is one of the
first methods developed for capturing cortical activity and has
several applications in gait analysis [24]. fNIRS is a relatively
new technique which effectively captures brain hemodynamic
[25]. A large amount of multimodal data is, however, difficult
to interpret and requires a computational system to describe
and connect the many variables. Proprietary algorithms or
models of artificial intelligence (Al) are computational systems
that are currently being intensely investigated for prediction,
as well as the diagnosis or prognosis of different clinical
pathology [26].

Researchers in the field of gait analysis are utilizing Al
techniques including machine learning (ML), support vector
machine (SVM), and neural network (NN). These techniques
have the potential to provide ways for obtaining, storing,
and evaluating multifactorial complicated gait data, capturing
its non-linear dynamic variability, and giving the crucial
advantages of predictive analytics. ML models are a subset of
Al models, comprising supervised and unsupervised learning.
Both have advantages and disadvantages with supervised
learning models being time-consuming, and labels for input

and output variables need specialized knowledge. In contrast,
unsupervised learning algorithms might provide radically
erroneous outcomes [27]. Sensor data collection, pre-
processing, feature extraction, feature selection, classification,
and result interpretation are all becoming standard procedures
for gait classification, prediction, and analysis based on Al
[28], [29], [30].

Several systematic reviews have evaluated the viability of
utilizing wearable and non-wearable sensors individually as
unimodal detectors for gait features associated with various
neurological disorders [15], [16]. Furthermore, while studies
like [31] and [32] conducted in-depth examinations of deep
gait recognition techniques and related privacy and security
issues, they predominantly concentrated on the analysis of
gait patterns using vision sensors. This analysis, however,
omitted the exploration of the potential benefits stemming
from multimodal data integration, including the fusion of
cerebral activity and kinematic data. Moreover, the clinical
implications of their findings remained less apparent, lack-
ing investigations into the gait characteristics of individuals
afflicted by neurological conditions like Parkinson’s disease,
as well as the impact of exoskeleton-assisted rehabilitation
on gait dynamics. In contrast, our review paper specifically
addresses these unexplored aspects, shedding light on the
synergistic potential of sensor fusion, AI models, and clinical
relevance in the realm of gait analysis. To the best of our
knowledge, there has been no comprehensive evaluation of the
efficacy of multimodal sensor fusion and Al prediction models
for gait analysis. In this context, the overarching research
question guiding this systematic review is: How does the
integration of multiple gait analysis modalities through fusion
techniques, coupled with AI models, impact the quality of gait
analysis and the effectiveness of AI models for diagnosing and
prognosing neurological diseases, with a focus on wearable
and non-wearable sensor data?

In particular, this review highlights:

1. the need to integrate several gait analysis methods in
order to extract kinematic, kinetic, margin of stability, tem-
poral, and spatial gait parameters, as well as brain activity,
in order to assess the pace and intensity of movement.

2. the utilization of multimodality Al analysis of the
patient’s walking pattern to compensate for the one-sidedness
of single modality gait recognition systems that only learn gait
alterations in a single measurement parameter.

Il. REVIEW METHODOLOGY
Finding studies, vetting them for inclusion, and extracting
data for this review were all completed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement recommendations (Fig.2) [33].

A. Search Strategy

A total of 660 articles were collected from Google Scholar,
PubMed, Scopus, and IEEE Xplore databases. The term “gait
analysis” was combined with at least two of the following
search words/terms: Electroencephalography (OR EEG); Elec-
tromyography (OR EMG); Inertial Measurement Unit (OR
IMU); Functional near-infrared spectroscopy (OR FNIRS);
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Hear rate (OR HR); Electrodermal activity (OR EDA); and
Ground reaction force (OR GRF). In addition to scanning
databases, the reference lists of all chosen papers were exam-
ined to identify any relevant research that may have been
missed during the first search.

B. Inclusion and Exclusion Criteria

Articles published between January 2000 and July
2023 were considered. In the first stage of screening, dupli-
cated articles were excluded, leaving English journal papers.
In subsequent steps, abstracts only were excluded and full
texts were evaluated in order to include only publications
that utilized multi-modal sensors for analyzing gait and to
exclude articles with animal experimentation and those per-
taining to upper limb prostheses. To prevent the inclusion of
unreliable gray literature, we implemented stringent selection
criteria. We prioritized publications from reputable journals
that had undergone peer review and evaluated author credibil-
ity, methodological rigor, and consistency of findings. These
measures were implemented to ensure that only credible, high-
quality sources were included in our study (Fig.2). While a
comprehensive quality assessment for all 66 articles was not
feasible, this stringent selection process was instrumental in
upholding study quality, contributing to the overall integrity
of our review’s findings.

C. Data Extraction

Data was gathered from articles that employed multimodal
sensing to analyze gait (without the use of Al): (1) Author and
year of publication; (2) Aim of study; (3) Acquired data type;
(4) Number of sensors; (5) Sensors placement; (6) Sampling
frequency; (7) Gait features; (8) Assessment methodology;
and (9) Main findings. However, the reports that examined
gait with multimodal sensing and AI had eight main variables
extracted from them: 1) Author and year of publication; (2)
Aim of study; (3) Number of subjects; (4) Number of features;
(5) Input features; (6) Acquired data type; (7) Assessment
methodology; and (8) Performance.

I11. GAIT ANALYSIS USING MULTIMODAL SENSING
FusIiON

Fusion of multimodal data is a potential advancement for
human movement research, such as enhanced activity detection
and more accurate gait assessment [34]. By quantifying the
spatiotemporal, kinematic, kinetic, muscular, and physiolog-
ical features of people, a fusion method provides a more
complete understanding of gait impairment [16] and rehabil-
itation opportunities [35]. The current review identified one
study that recorded cortical and kinematics data from EEG
and IMU, respectively, while 19 studies examined gait by
integrating EEG and EMG sensor data. Eight research papers
used EMG data with HR data, seven studies combined EMG
with IMU data, and two studies combined EMG with fNIRS
data. Fig.3 presents a clustered bar chart showing the several
combined gait analysis approaches. Several widely used fusion
approaches are also described in this overview (Table I).
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Fig. 2. Diagram illustrating the PRISMA article selection process.
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Fig. 3. Graph depicting the results of 40 studies utilizing multimodal
sensing fusion for gait analysis.

A. EMG & EEG

Twenty research studies employed EEG and EMG together,
six of these focused on Parkinson’s disease (PD). Time-
frequency analysis of electrophysiological data reported by
Roeder et al. [23] indicated substantially reduced cortico-
muscular coherence (CMC) and EMG power at low beta
frequencies in older and PD individuals, whereas shorter swing
time was noted for PD patients compared to healthy ones.
Giinther et al. [36] explored muscle and EEG activity during
the freezing of gait associated with Parkinson’s disease and
how it varies from both walking and deliberate halting. At the
outset of halt and freeze of gait events, they observed an
increase in EEG-EMG coupling [37], [38]. Venuto et al. [39]
evaluated a non-invasive wearable embedded cyber-physical
system for PD monitoring and discovered that the system can
extract changes in walking pattern between PD and healthy
patients. Alterations in central common drive to ankle muscles
in response to visually directed foot positioning was reported
by Jensen et al. [40], who noted that the corticospinal tract
is involved in the modification of gait when visually directed
foot placement is necessary.

Furthermore, several researchers investigated hybrid
EMG-EEG data collected during walking of healthy
individuals in order to explore the contribution of the motor
cortex to muscle activation. In study [41], coherence and
directionality analyses were utilized to determine if the motor
cortex contributes to plantar flexor muscle activity during
the stance phase and push-off phase of gait. There was
substantial EEG-EMG and EMG-EMG coherence in the beta
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TABLE |

RECENT RESEARCH ON GAIT ANALYSIS WITH MULTIMODAL FUSION SENSORS

Ref | Year Purpose / Pathology Ac;l::;ed Se?‘l::l"s Sensors placement Fs Gait features Methodology Results
. ) EEG 64 Whole brain regions | 1000Hz . Using IMU da.ta to upd.ate o ERSP a.nalysis for walking shqwed that
156]| 2019 Removing EEG artifacts for - Forehead acceleration the parameters of the non-linear projection from the the gait dependency of artifact
gait analysis Forehead, right foot, - ERSP acceleration contamination was eliminated on all
IMU 3 7 * | 128Hz to each EEG channel separately target frequencies.
left foot
TA, GM, VL, RF,
Simplified markerl ait EMG 12 SM. BF 1000Hz Step duration sMaSDP extracted muscle activity in
[51] | 2023 pitie eriess & : -otep duratio Statistical analysis healthy walking and identified heel-strike
event detection X -acceleration H .
MU 1 Right foot 60Hz events in PD patient data.
IMU 1 Lumbar 5 148Hz -Walking .
“Speed cadence, stcpllclngth ayfd wal]kuilg spc(}d
Gait analysis for CSM _Cadence . . were statlsl_lc-i ly significantly lower in
5 PP tatistical analysis patients than healthy control.
[52] | 2023 Si | anal CSM han health; 1
patients -Stride time .
EMG 8 TA, LG, RF, BF 148Hz Step length EMG amplitude for TA and RF was
“EMG peak significantly lower for CSM patients.
IMU 5 Bilateral thigh fmd :
shank and waist mean, standard deviation, maximum, minimum, initial
Analyze variability between - Shank velocity and B d f’ 1val ’ ’ SI & I for the fe ¢
subjects and activities differs acceleration f anc final values. . h[ R.I LCL s l:“ © ez;turgs °
[53]| 2019 across IMUs, EMG, and . ik e mgl - RI SI and DS between MAV, waveform length, number qf Zero crossings and | the multimodal and highest for the single
X " Goniometers 4 = o . slope sign changes and the coefficients of a sixth-order modal.
goniometers modalities ankle activities and subjects A
autoregressive model
TA, GM, SOL, VL,
LG 1L RF, BF, ST )
IMU 5 Front of the thigh and 150Hz - Hip and knee joints angle Knee joint angle showed a high
shank of the right leg. - Angu_lar veloclt_y it sy by @ e e s et correlation between t}!e MGTR and
Test new prototype (MGTR) - Anterior-posterior . X normal gait.
[49] | 2021 5 - 3 and the muscle activity between the normal gait and 8
for gait rehabilitation acceleration MGTR. There was no correlation between TA
EMG 4 RF. BF. TA. GM 1112Hz - RoM . and BF, a low correlation with GM, and a
» BE, TA, GM. _MVC high correlation with RF.
Between S1 and S2
q a WY L vertebrae 1000Hz Global symmetry index,
Remodel the step's physical . o L .
: symmetry index, quality index . . . Loss of equilibrium of the subjects
features for optimal . . Analysis of specific parameters of the gait cycle before . . o
[84] | 2022 of the gait cycle, pelvic s examined under stress/fatigue conditions.
performance q 5 and after an aerobic fatigue test "
EMG 3 TA & GM 1000Hz kinematics, and muscle Global index of symmetry decreased.
activation
5 Below the heel and
HER @ the toe position HED1zke Using a single IMU
q q - - Shank angular rate Python-based graphical user interface to analyze and attached to the shank is more favourable
[85] | 2021 (Gt analys;i‘\:c;live dlifign EMG 4 TA & GM 3 - Foot pressure display the processed to collect gait data in
R ) B - Muscle’s activities data. real-time.
IMU 2 RicbilonzllateriBide - IMUs are advantageous over FSRs.
(shank)
MQ, LQ, LH, MH,
Examine how self-reported EMG 16 MG, LG 1000Hz
walking .d|fﬁcult.y and limb Bilateral tibial 3 3].) gy velogty Frontal and sagittal plane knee angles were calculated Wi dyn_amlcs G among e
dynamics may influence o 5 - Linear acceleration P N N with knee OA and walking
[50] | 2019 By tuberosities, bilateral s via Visual 3D using Euler angles and used to determine | ..
neuromuscular strategies IMU 6 superior patellas, and 100Hz - Gait intervals and speed (o ity difficulty and smallest among the control
Chseed al‘:] Z‘;goli:"ems wid the pelvis at S2 A Co-contraction index. group-
FP 2 - 1000Hz
- Gait parameters:
gait speed, cadence, double
HR 8 Wrist 64 Hz support umc_, step durat{on, R e ANOL LY Carrying load \c‘lt\)sc to the body with both
stance duration, and swing X . X hands is recommended.
5 . with Bonferroni correction were used to compare the A nn o
Effects of load carrying duration. . . . Head load causes neck and spine injuries.
[57]] 2021 G . . . effects of different load carrying conditions (no load, . X .
techniques on gait parameters - Gait symmetry ratio: 5 Carrying loads in both hands, improved
o hand load, shoulder load, and head load) on gait, 5 N
step, stance, and swing time . gait symmetry and dynamic balance and
dynamic balance, HR, and EDA. N
EDA 13 Right foot, left foot | 4 Hz b Sym‘_neb"’)l’- lowered risk of falls.
- Dynamic balance:
CoP displacement and velocity.
GM, TA, RF, VL, BF, | 1000
EAG B ECR, FCR. Hz
Concurrent monitoring of . . ..
1221|2014 both blood flow changes in IR o Wislb Bt | Uik - Skeletalax:o]izl e i Using EMG, fNIRS and OMC during bilateral lower | Increased fNIRS activity on the left brain
the brain and actual Medial and lateral - Hemoglobi rlgcox;centration extremity cycling and gait tasks region during right hand squeezing.
movements of the body malleolus, medial and H ’
ee Fr lateral lznee joint, OO
ASIS, PSIS.
Sacrum, mid-thigh.
i i MU . > y
Us_e fNIRS.tO Aaineatis rein - 2 mid-shank, and lateral | 100 Hz . Walking trials in a robotic exoskeleton for Passive and Increased oxyhemoglobin in the right
activation differences between (Xsens) £ - Joint angles. . . : : N
A i s . L eet L Active conditions, with fNIRS and EMG. frontal cortex for Passive compared with
(B3] | 21220 Active’ and Passive - Muscle activity. Using inertial measurement units (Xsens) to examine Active
overground gait in a robotic EMG 2 RF, BF 1000Hz | . Hemodynamic response. E 2 . 3
knee kinematics gait.
exoskeleton fNIRS 16 | Whole Brain region | 4.35 Hz
EEG 10 1PEh 22 (2}, G ki, 2 kHz - \»Nalk‘mg _speed. CMC and EMG power at low beta
F7,F3, Fz, F4, F8 Stride time. Independ Iysis (ICA fr ies (1321 H enificantl
. . IRC— ndependent lcomponem analysis (ICA). equenclesl( —. z) was slgxlullcant ly
[23]| 2020 Parkinson’s disease _EEG owe’f Hilbert transform. decreased in older and PD participants.
EMG o) TA 2 kHz _ITC EE% /EMG Statistical analysis. Shorter swing time for PDC/older
_CMC. : comparing to healthy/young.
EEG 128 Whole brain 1 kHz 1- Myogenic body signals are more
discriminative than kinematic data in
EMG 8 VM, BF, TA, GM 2 kHz Veloat o . EEG 1 N analyzing gait-related brain-body
. . - Velocity lopes. dul etween power envelopes wit] connectivity.
[24] | 2022 Relatmnsl:g :&vg,en I - EMG envelopes. myogenic/velocity envelopes. 2- The gait-related brain-body
a 3-axis - Gait events. eLORETA algorithm. connectivity dependent on the body
acceleration 2 Left and right ankles | 148 Hz sensor used to extract kinematic more
signals than the frequency of the neural
oscillations measured by EEG.
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TABLE |
(Continued.) RECENT RESEARCH ON GAIT ANALYSIS WITH MULTIMODAL FUSION SENSORS

EEG 32 Entire scalp 512 Hz Detect EEG changes
EMG 3 TA, soleus, RF, B 512 Hz - Step length. around SMA using 1- Enh: d alpha/thetg )i
[86] | 2020 Parkinson disease = G - q LR, " o] Fhe faudltory ae. —_—
Tkl Bt e ] G e L3 - Power spectra and | Gain model. S_tatlstlcal 2-Instructed arm swing improves Parkinson's gait
accelerometers 3 lumbar spine segment SLliE ERSP. analysis. i i,
EEG 64 ‘Whole brain 1000 Hz 1-Children with CP have higher cortical activation
EMG 16 TA, GM, SOL, FL, RF, VL, 1000 Hz Muscl i 2-Th ti Q:ll‘l_“g \:_?Lkl“g- ith CP is higher i
[87] | 2020 Unilateral Cerebral Palsy MH and HL - vluscle synergies. ERSP, NNMF, ICA ~1he gamma-activity in chidren wi 15 higherin
- Power spectra. the frontal and parietal areas.
Motion capture 10 Pelvis and lower extremities | 100 Hz
EMG 4 SOL, TA 2000 Hz Backward-oriented tasks are more positively
- EEG 24 Whole brain 500 Hz | - COP displacement. - _ _ associatefi to in_creases_ in M_RPs,
[88] | 2005 The effect of direction on MRP - Resultant force. Statistical analysis Gait tasks were mainly differentiated in early MRPs,
GRF 2 Ui e e el 500 Hz - Cycles duration. while stepping tasks were more differentiated in late
RPs.
EEG 32 motor cortex 2048 Hy | - EMG emplitudes
and frequencies.
[361] 2019 FOG in Parkinson’s discase - Pha.se . Statistical analysls. Increase in EEG-EMG couplmg at the beginning of
e a A X i B synchronization Cross correlation. stop and FOG episodes.
, gastrocnemius muscles z indices,
- EEG relative power.
Motor cortex contribution EMG 4 MG, SOL 1000 Hz - Average Spect;ila(l:o;-ir:lauon
[41]]2019 | to plantar flexor muscle activity during . 5 Crfss-s ectra, DiscreteyFo . rier Significant EEG-EMG and EMG-EMG coherence in
gait EEG 64 Whole brain 1000 Hz P . transfornl:, the beta and gamma frequency bands.
EEG 64 Wl e 2000Hz | _ Aver: " i Time-frequency analysis
1407 | 2018 Corticomuscular coherence related to -eC?fse:;‘ 22];0 4 of coherence Corticospinal tract is involved in modifying gait when
visually guided foot placement. EMG 8 TA, SOL, GM 2000Hz St cpcles : Pooled coherence visually guided placement of the foot is required.
Motion capture 14 - - P ST,
EEG 64 Bilateral premotor cortices 2048Hz : he;f:sonl')ikes com (-)Inne(iip((;‘(]?‘ie:r:al s Trunk movements and step width decrease.
[42]| 2015 | Brain role in controlling gait stability . - toe-off B P formi ly . Stability increase.
EMG 4 Trapezius 2048Hz 0C-011S camiorming analysis Increased beta activity during stabilized walking.
19 ) motogconices - Walking time. 50-Hz rTMS did not improve gait.
[371] 2012 | Efficacy of rTMS in Parkinson disease N MF;gP ’ Statistical analysis No pathological increase of cortical excitability or
EMG 6 ECR, BB, DEL - epileptic activity.
EEG 28 Sensorimotor cortex RO T Motor cortex and corticospinal tract contribute directly
- Time of heel strike. - A h le activi i -
1171/ 2012 | Synchrony between EEG and EMG ime of heel strike.  Cohieronce. to the muscle actw:t}f observ.ed in steady-state
EMG 2 TA 2000Hz | - Power spectra. - Statistical analysis. el wellsimg,
EEG 13 Motor cortices = Beneficial effects of iTBS on mood, but no
1381|2011 | Efficacy of iTBS in Parkinson disease - Walking time. Statistical anfi power 1mp.rov.ement of gait. ;
EMG 6 ECR. BB. DEL ) - MEP analysis EEG/EMG monitoring recorded no pathologic
T increase of cortical excitability or epileptic activity.
5 EEG o4 Whole brain 1000z ’ Power spectrf\A Clhgrmae. . Corticomuscular coherence at the stepping frequencies
[89] | 2008 Rhythmic foot mo - Cort Statistical analysis. in the central midline region
EMG - TA 1000Hz delay. Isocoherence maps. sion-
EEG 64 Whole brain 250Hz Expected results:
_ o - MRCP. - Time-frec!uency -Less regular timing of foot-strike and foot-off events
1907 | 2021 Quantify neuromuscular plasticity EMG 4 VL. BF. TA LG 2000Hz - Foot-strike/off. analysis. between pre- and post-training session.
induced by an exoskeleton T - EMG amplitude & - Graph analysis -Antagonist's muscles show a larger co-contraction
Fifth lumb: rtebra, lateral CoA. - Statistical analysis. with consequent stiffening of lower limb joints during
MU 3 Hth fum arf:')e he ;a, lf cra 250Hz the free walking post-training.
aspect of both shanks
EES & Wl Ailst - ERSP. s ICAI& PICAt Unidirectional brain-to-muscle connectivity for
[917] 2017 Cortical contribution to locomotion - IC dipolarity. O};‘I:ZE g::‘:;?nlon proximal and distal muscles, rhythmically related to
EMG 6 TA, BF, VM 1000Hz - Mean power. Effective connectg{;rity stride phases.
EMG 4 TA 2 kHz - EEG power. - Time lag and phase I - d1TC
Corticospinal involvement in the human - CMC. offset. geacreasesinipoweriandiliic .
[43]] 2018 . . - Evoked responses at spinal and cortical populations.
gait. . -1TC. -Spectral analysis. e
EEG 10 Sensorimotor cortex 2 kHz - Gait time points O et -A positive time lag between EEG and EMG.
EEG = - - - Cortical evoked Unilateral rhythmic involuntary movements occur
921 | 2000 y mo c potential SEP dary to strep | infecti
with streptococcal infection Brachioradiali . - EMG discharging LLR EEGs show continuous delta activity predominant in
EMG 2 B . time/frequency. the left frontocentral region.
EEG 64 500Hz
- MVIC. . . .
Alexander technique & knee EMG 4 V_L. VM, BF, 3000Hz | - Net joint torque. ERP. Decrease in medial co-contraction at the end of the
[93]] 2016 i semimembranosus . . intervention.
osteoarthritis - Moments. Statistical analysis. WOMAC pai duced from 9.6 t0 4.2
- WOMAC pain score pain score reduced from 9.6 to 4.2.
GRF
2 - 1500Hz
walkway
EEG 8 Motor cortex 500Hz _ Bereitschafts
Testing non-invasive wearable embedded potential (BP). MRP. The system can extract walking pattern differences
[39]| 2018 CPS for PD monitorin - p-rhythm. Statistical analysis between PD and healthy subjects.
& EMG 8 RF, BF GM, TA 500Hz - B-rhythm. SIS MRPs increase during the voluntariness recovery.
- Haste rate (HR).
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HR 1 wrist -
Different forms of bodyweight supported Lokomat is better for isola!ed hip.extengiqrf strength.
[94] | 2014 | locomotion with incomplete spinal cord = O upl:a.ke. Statistical analysis. Hegs Gl WDl Treadmll sessions g eiar
inury (SCI) G 3 TA. BF. RF. GM 10008z |~ Beats per minute. oxygen consumption comparing to the Lokomat.
nury U High HR values for SCI comparing to CON.
HR 2 Chest, wrist 50 Hz
T GV VL. L T — Toints angle, No significant effects of load position for HR or joints
EMG 5 , GM, VL, SM, z o : RPE. angle.
[48] | 2012 The effect of load position on gait i Jo‘:‘zzt‘;:ge o Statistical analysis. Less EMG intensity for GM with high position load.
GRF 8 - 1000Hz . § Muscle burst intensity | Vertical GRF impact peak was greater in the high load
- Stride length. .
position.
Motion capture 9 Left lateral aspect 100 Hz
HR 1 Wrist 1000Hz - Muscle activity. . . . .
1951(2011 |  Gait analysis for walk-run o SLt“:?*:? e B! CTS‘."";"&:JE © W“tTl:Slfn‘}'e :ela'e" ®
EMG A GM. VL, RF, TA 1000Hz | - Beats per minute. atistical analysis. mechanical than to metabolic factors.
HR 1 Wit L Energy expenditure.
[47]| 2018 Nordic walking analysis. i Rﬁ‘i/ﬂ(l:ﬂx Statistical analysis. EMGHOEEY lowerll\}ﬁlzl?csl“g/:;g;amly il wiidh
EMG 6 BB, VL, BF, TA, GM 1000Hz e &
EMG 5 VM, RF, BF, TA, LG 1000Hz Older subjects had increased hip musculature activity
. i i i - %MVC. and decreased ankle plantar flexor activity while
[46] | 2007 Lokl dlff;re':;: during walking - Stride frequency. Statistical analysis. walking in water.
water. HR - = = - Walking speeds. No significant difference in the HR response between
older and young subjects.
EMG R dl.aF’ 1,16, II{A gh;teus 1000Hz o o
Analysing backward and forward TR, (RNl e S _oMVC. o i Muscle activities and HR were significantly greater
[96] | 2007 . . Statistical analysis. when walking backward than when walking
walking on an underwater treadmill - HR responses. forward
HR - - -
EMG 8 BF, RF, TA, GM. 1000Hz
_— q . AT HR 1 Wrist - ) Pearson correlations. Females exhibited higher GRF in the heel-stnkp 'fmd
The effects of age, gender and walking - Joint angles. N X toe-off stages, as well as higher TA muscle activity.
[44] | 2010 . Duncan’s multiple range o P .
speed on the gait. 400H, -MVC. o Older subjects had significantly higher RF muscle
GRF 2 - z . activity than younger adults.
Motion capture 37 Lower body segments 120Hz
EMG 4 TA, GM, VM, BF 1kHz
- Oxygen
Analyze running in hypergravity consumption. o 8 LBNP increased the HR, GRF.
(451 2005 conditions B : - ROM. Siriiter| bt No changes were seen on the EMG and RoM.
- Dynamic knee angle.
GRF 2 = 1kHz g ¢

o N FEG 2 Motor cortex S0t '_ EI]IE)(G); Losoliis power. Postural instability gait disorder patients presented
luence o motor sul €S on isti 1 i Vi i i
o1 an| s 7D et mis | v | oo o | sl | s | bR b e
- ) ) 200 Ha ~Velocity. in FCz and CPz channels.
MAYV Mean absolute value RAGT Robot-aided gait training ITC Intertrial coherence FPGA Field-programmable gate array
RI  Repeatability index SI Separability index DS Desirability score PIGD Postural instability gait disorder
ROM Range of motion RF Rectus femoris RA Rectus abdominis BF Biceps femoris
TA  Tibialis anterior GM  Gastrocnemius medial SMA  Supplementary motor area MGTR Machine of gait training and rehabilitation
MVC Maximum voluntary contraction MQ  Medial quadriceps CPS Cyber-physical system ERSP Event related spectral perturbation
LQ Lateral quadriceps LH  Lateral hamstring CON  Able-bodied controls MH Medial hamstrings
LG Lateral gastrocnemius ECR Extensor carpi radialis CMC  Corticomuscular coherence MARG Magnetic, angular rate, and gravity
VL  Vastus lateralis VM Vastus medialis D Tremor dominant ELORETA Exact low-resolution brain electromagnetic tomography
ASIS Anterior superior iliac PSIS  Posterior superior iliac spine VGRF  Vertical ground reaction force ITC EEG Inter-trial coherence of EEG
CMC Corticomuscular coherence NKC Neurokinematic connectivity LLR Long latency EMG responses NMC Neuromuscular connectivity
OMC Optical motion capture OA  Knee osteoarthritis ERPS  Event-related potentials MVIC Maximal voluntary isometric contractions
HL  Hallucis longus PL Peroneus longus sMaSDP Simplified Markerless Stride Detection Pipeline NNMF On-negative matrix factorization

PSD Power spectral density
COP Centre of pressure MCS
iTBS Intermittent theta-burst stimulation FCR

BB  Biceps brachii DEL
ICA Independent component analysis ~ SM
MSL Multi-scale learning SOL

RPE Ratings of perceived exertion

MRPS Movement-related potentials COA

Motion Capture system
Flexor carpi radialis
Deltoid
Semitendinosus

Soleus

WRTS Walk-run transition speed

FSR
MVC
ST
SEP
MRP
LBNP

Center of activity
Force-sensitive resistor

Maximal voluntary contraction
Semitendinosus

Somatosensory evoked potentials
Movement-related potential
Lower body negative pressure

CSM
FOG
rT™MS
MEPS
MRCP
PPWS

Cervical Spondylotic Myelopathy

Freezing of gait

Repetitive transcranial magnetic stimulation
Motor evoked potentials

Movement related cortical potential

Percentage of preferred walking speed

RERMAX Maximal respiratory exchange ratio
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and gamma frequency ranges. Similarly, the beta band activity
was shown to originate mostly in the bilateral pre-motor
cortices when a beamforming analysis was performed [42].
Examining changes in cortical power and CMC during the
gait cycle, Roeder et al. [43] reported evoked responses at
spinal and cortical populations as well as positive time lag
between EEG and EMG during human walking.

B. EMG & HR

The association of HR and EMG with gait has been reported
by eight studies. The objective of these was to examine muscle
activation, heart rate, and oxygen consumption in a variety of
gait scenarios including walking at different walking speeds
and the impact of age, and gender. The magnitude of the
vertical ground response force during the toe-off phase varied
significantly as a function of gender and gait speed [44]. How-
ever, only HR was affected in the study by Groppo et al. [45]
when applying negative pressure to the lower body and recreat-
ing a hypergravity condition. Similarly, Masumoto et al. [46]
investigated the effect of walking in water on muscle activity,
stride frequency, and HR and EMG responses with respect to
age. While walking in water, older participants had greater
hip musculature activity and reduced ankle plantar flexor
activation. Nordic walking was also employed to investigate
the relationship between pole force and physiological reactions
[47]. Furthermore, Simpson et al. [48] developed backpack
load position recommendations for hikers following the obser-
vation higher load positions resulted in weaker EMG activity
in the gastrocnemius medialis muscles.

C. EMG & IMU

Integrating wearable EMG and IMU sensors provides gran-
ular gait metrics including kinematics and muscle activation.
Seo and Kim [49] tested a novel phenotype for gait rehabil-
itation (machine of gait training and rehabilitation - MGTR).
The MGTR was found to have a strong association with knee
angle during normal gait. In addition, IMU and EMG data
demonstrated ability to discriminate between limb kinematics
and muscle co-contraction strategies to appropriately diagnose
gait deficiencies by segmenting EMG signals via IMU data
[50], [51], [52]. In addition to these features, Krausz et al. [53]
recommended the incorporation of an eye movement tracker
that might improve the performance of the EMG and HR
models.

D. fNIRS & EMG, fNIRS & EEG

Quantitative information of gait has the potential to
significantly advance our understanding of cortical control of
movement in both normal and abnormal gait patterns. In four
publications, the assessment of the hemodynamic response
using fNIRS was paired with EMG and EEG separately to
detect cortical hemodynamic body movements. Peters et al.
[54] utilized fNIRS and EMG to distinguish between active
and passive overground locomotion when using a robotic
exoskeleton. Here passive walking was associated with higher
levels of oxyhemoglobin in the right frontal cortex than active
gait. Two studies combined fNIRS and EEG and focused
on gait analysis for PD patients [25], [55]. Orcioli-Silva

et al. [55], looked into how dopaminergic drugs affected
cortical activity in PD patients as they walked freely and
avoided obstacles. They found a promising effect on the B
and y power in the EEG CPz channel with dopaminergic
medication and an increase in step length and step velocity.
The same group investigated how tremor dominant (TD) and
postural instability gait disorder (PIGD) motor subtypes of
PD affected cortical activity during free walking and obstacle
avoidance indicated that individuals with postural instability
gait condition have more pre-frontal brain activity than tremor
dominating patients [25].

E. EEG & IMU, EDA & HR

To reduce movement noise in EEG recordings during gait,
Kilicarslan and Vidal [56] collected EEG and IMU data. IMU
sensors were used to analyze the total head movement and
segment the gait, while an adaptive de-noising framework was
built to describe and manage the motion artifact contamination
in EEG readings. Using EDA and HR data, Anwer et al.
[57] investigated the impact of load bearing strategies on gait
metrics, which indicated that carrying burdens with both hands
increased gait symmetry, dynamic balance, and decreased the
chance of falling.

IV. GAIT ANALYSIS USING MULTIMODAL SENSING
FUSION AND Al

Statistical characteristics and frequency domain features
are typically generated for use with Al models. Recent gait
analysis research employing Al and multimodal fusion sensors
are outlined in Table II. Twenty-six publications have utilized
Al models to analyze multimodal fusion sensing data for gait
analysis. The majority of these focused on combining EMG
data either with IMU (12 studies) or EEG (7 studies).

A. Feature Extraction

Several studies retrieved statistical characteristics from pro-
cessed raw time-series data using a sliding window approach,
which was particularly prominent for EMG data, such as mean,
median, entropy, standard deviation, root mean square vari-
ance, etc., [58] and [59]. The frequency-domain characteristics
represent yet another set of feature extraction. Hasan et al.
[60] employed wavelet synchro squeezed transform (WSST)
to recover EEG alpha and beta event-related desynchronization
from the data epochs. Mezzina and De Venuto [61] analyzed
the brain signal patterns using fast Fourier transformation
(FFT). The EMG power spectrum along with waveform length,
median and mean frequency, and modified mean frequency
were the most frequently employed techniques for transform-
ing original EMG temporal sequences into the frequency
domain [58], [59].

With its ability to standardize the process of automated
extraction of features, deep learning algorithms such as long
short term memory (LSTM) and convolutional neural net-
work (CNN) have become more prominent in the field of
gait analysis. While EMG data are closely correlated with
muscle force, they are collected with a substantial phase delay
due to filtering, which makes accurate prediction difficult.
To overcome this issue, artificial neural network algorithms
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Fig. 4. Performance of several Al models in gait analysis using sensing fusion data. Figure shorthand is listed in Table II's footnotes.

were suggested to automatically extract signal characteristics
in order to circumvent a possible bottleneck. LSTM was dif-
ferentiated from other artificial neural networks by its capacity
to ignore irrelevant information [62]. To efficiently extract
the inhibition and excitation mechanisms among EMG data
and to emphasize the association between combined efforts of
muscle activations and movements, LSTM with its power of
forgetting unnecessary information, jointly analyses the signals
of all the channels [63], [64]. Similarly, Duan et al. [65] used
CNN-based deep learning to efficiently extract walking-related
characteristics from multimodal inputs after converting them
into a 2D matrix. CNN is an end-to-end algorithm that
offers superior learning capabilities since it bypasses the
need for feature extraction. Local features on both temporal
and spectral scales can be extracted via convolutional layers,
which is useful for signal classification and motion detection.
Moreover, to efficiently extract characteristics from disparate
data sources, Jun et al. [66] supplied sequential skeleton
and average foot pressure data into recurrent neural network
(RNN)-based encoding layers and CNN-based encoding lay-
ers, respectively. Likewise, Zhao et al. [35] proposed a novel
hybrid model for learning the locomotion disparities between
PD patients. A spatial feature extractor (SFE) was built to
understand the spatial information of multiframe time-series
data and to output spatial features following dimensionality
reduction. In the meantime, a novel correlative memory neural
network (CorrMNN) architecture was created to measure the
correlation in bimodal gait data and extract the dynamic gait
variations to generate temporal features [35]. Similar neural
network was developed to capture the changes in multimodal
PD handwriting data using a novel Spatio-temporal Siamese
neural network [67]. Meanwhile, the Multiview gait identi-
fication problem was addressed by proposing a spiderweb
graph neural network (SpiderNet) to deal with visual gait
data appropriately. By constructing a multi-view active graph
convolutional neural network, it outperformed other methods
in representing the Spatio-temporal and structural knowl-
edge underlying the gait data [68]. As well, the associated
Spatio-temporal capsule network (ASTCapsNet) utilized by
Zhao et al. [69] demonstrated significant results when combin-
ing multiple independent datasets that rely on unimodal data,
such as vision data, force-sensitive data, and ground reaction
force data. The common spatial pattern (CSP) neural network
was also used to extract characteristics from EEG brain
signals. CSP technique relies on the computation of a collec-

tion of spatial filters that increases the variance of one class of
EEG signals and decreases the variance of another class [70].

B. EMG & IMU

Assistive devices, such as exoskeletons, play a significant
role in rehabilitation, leading Su et al. [71] to suggest a
framework for machine learning that uses two multilayer
perceptrons (MLP) to forecast locomotor modes and recognize
gait events. Likewise, a deep RNN was employed as an
intention prediction model for powered prosthesis based on
knee joint motion prediction [72]. Wang et al. [73] also made
accurate predictions for the continuous joint angle using a
hierarchical planner, however, according to research conducted
by [74], bidirectional long short term memory (BiLSTM) gen-
erates the most accurate predictions of lower limb joint angles
throughout the entire locomotion cycle. Donahue’s study con-
firmed these findings by showing that kinetic waveforms can
be estimated using machine learning from real-world running
data without the need for feature engineering using the BiL-
STM architecture [75]. Exoskeleton control and user activity
monitoring might be improved with more precise estimates of
joint moment [76]. In addition, the end-to-end training made
it possible for LSTM predictor to be used for continuous
kinematics prediction through the regression process, when
transmission delay is introduced by exoskeletons [63]. Also,
multiple linear regression yielded an F1 score of 0.9 for
approximating IMU angular velocity profiles and subsequently
locomotion events using EMG data [77].

C. EMG & EEG

In the -categorization of walking patterns [65], the
combination of EEG and EMG data offers better performance
compared to employing a single modality of EEG or
EMG. Tortora et al. [64] designed and tested a hybrid
human-machine interface (hHMI) for deciphering leg walking
phases using a Bayesian fusion of EEG and EMG inputs.
hHMI performed considerably better than its single-signal
inputs. In addition, during the time-frequency domain
analysis of the brain signal changes, logic networks primarily
handled differentiating an unexpected loss of balance event
from typical movements [61], [78]. MLP was employed
to assess brain and muscle health in the earliest stages of
PD. This aided prescribing the correct medication to limit
the progression of the disease, as well as identifying the
various phases of PD and distinguishing PD from non-PD
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TABLE I
RECENT STUDIES THAT EMPLOYED Al AND MULTIMODAL FUSION SENSORS FOR GAIT ANALYSIS
Pathology/ # of . . L
Ref | Year 3 # of features Input features Acquired data Algorithm/model Performance Limitations
Purpose Subjects
Offline scenario:
accuracy85.9+2.9%. Low subjects number.
Prediction of gait acceleration 20 features for each 1- Alpha and beta band EEG IMU SVM with radial Real-time scenario: 9 out of 12 . ) -
[60] | 2021 5 B 1 A . 5 Requires advanced computational
intention second epoch. ERDs. GRF basis kernel acceleration events were predicted
. methods.
successfully with average latency
of -741ms.
Multimodal biometric EEG power EEG » 5 .
[81] | 2020 e ey — 7 - Kinematics MU RNN Accuracy=99.57% Small sample size.
Stratlﬁed.S-Ff)lds Accuracy=80.4%
Data windows 32 cross validation. The performance of the model was
[80] | 2023 | FoG prediction for PD patients 8 samples. LEE Gt VLY EEG iy vttt idoraifiting
P p ples. statistical features MU applications and on a single dataset.
Transfer learning Accuracy=86.2%
IMU data are not considered the
Ninety-three minutes of Siving e el “gold standard” for defining
77 | 2023 Gait event pr;dlctlon for PD 6 gait actwng and 5253 e MU Multiple l.mear Median Fl-score of ~0.9 ground-truth gait pa(ameters.
patients full gait cycles. off events EMG regression Small sample size.
210 EMG features. v The proposed approach was not
tested on healthy control data.
- BiLSTM is the most robust
74] | 2023 'oint};;e?lecs[?% if:tur:rio s 30 14 EMG features. Statistical features MU BI;E’SF'IPdM performer across the gait cycle, B
J gies during variow 144 IMU features. from EMG and IMU EMG ] with a mean prediction RMSE of
phases of gait Random forest
1.42-5.71 degrees.
. LSTM outperfomed ﬂ.]e . NN couldn’t accurately estimate
P q Acceleration, Angular conventional FNN in predicting q
Estimating lower extremity . . MU FNN .. muscle behavior because of
2| 202 muscle activity from IMU data 2 T gt e vty G EMG LST™M e i, secondary or minor peak
¥ envelope RMSE (FNN) < 15% A
RMSE (LSTM) < 10% 101S:
. . 10 footfalls for a Angular velocities. Average RMSE of 0.030 for Unconstrained running environment
[75] | 2023 Esnm:/(;tg:é:;vg 21151 ?‘;/?UG Ry 16 combination of velocity Resultant g\f{g BiLSTM contact time with foot-mounted of this study.
W and grade accelerations. IMUs Using 13 LOOCV
. . 27 . Lty GRF. g, (el The findings are limited to the
Select the optimal sensor site 5 synchronized IMU 5 sensor location was top of the shoe
. Healthy L MU Reservoir shank and the foot segments only.
[100] | 2023 | for GED and GRF prediction - acceleration in 3 . for 72.2% and 41.7% of
5 18 P GRF computing RNN i 5 Results are only based on the data
using IMU data. directions individuals in the healthy and 2 q aq
MKOA . . collected in a lab setting condition.
MKOA populations, respectively.
Lo LIRS MLP1: accuracy of 100% and 98%
a q - MLP1 detected the a
. . MLPI1: - Linear acceleration. . . for FC and TO events respectively. . . .
Locomotion mode transition . gait event using X 5 5 Did not consider a feature selection
L . 42-element vector - Angular velocity. IMU MLP2: accuracy of 96.3%, 90.1%,
[71] | 2021 | prediction based on gait-event 8 X S ~ IMU data. 2 procedure.
L MLP2: - EMG & IMU EMG X and 90.6% for walking, ramp . . .
identification a - MLP2 predict the Dealing with only healthy subjects.
62-element vector signals. . ascent, and ramp descent
locomotion mode P
a5 transitions.
transitions.
The reference data for knee joint
angle was determined by two IMUs
- Roll angles. i _ .
. : » 7 channels e MU Prediction error =+2.93 dggrees. mounted on lowgr limb. It was
[72] | 2019 | Knee joint motion prediction 11 5 : RNNs Better than SVR and traditional calculated as the difference of roll
signals - Sampled EMG EMG ANN
iemals, 5 angle between segments (shank and
SIgnass. thigh), which is not the gold
standards of biomechanics
MU Lower error in anticipating hip
A | 6 ; . ; Autoregression EMG moment comparing to knee and The models were trained on a
[76] | 2022 Predm:;::segnl:dl Jomnt 12 e g::;u‘fi;dfg;e“h coefficients. Slope GRF NN and XGBoost ankle. subject-by-subject basis per
Sign Changes. GON MAE is 0.06 Nm/kg for XGBoost, ambulation mode.
MCS and 0.07 Nnvkg for NN.
o o (LB (T Accuracies of 99.13% and 99.39%
Motion intention prediction 264- features and 4 spectral " " G
P q o q q MU LDA and Quadratic for standing and swing phases.
[73] | 2022 and joint trajectories 8 dimensional feature features. N -
3 EMG SVM RMSE of the walking frequency
generation vector IMU: 4 temporal . 0
estimate was 2.3%.
features.
PP - - Average recognition rate is
Wil et o ety 86.49% for seven gradients,
the movements of lower limbs - EMG temporal 3 B B
5 E 93.76% for five kinds of gait and
to verify the correctness of the q features: iEMG, q q
6000 eigenvalues for MU Backpropagation 86.07% for four kinds of
[58] | 2021 muscles selected by SPSS 10 . . RMS, VAR. -
.. . each action/gait EMG neural network movements.
statistical mathematics method - EMG frequency .
- EMG signals of muscles selected
and human anatomy features: MF, MPF. . . N
——— by f:grrelatmq analysis can identify
p : different gaits and road slopes.
. . Each window: EMG temporal MU Average RMSE = 3.98° . .
iy | avpn || GO pEE o 10 37-element feature features. EMG ST SR || Mttt e o Al et || SOt i il
lower-limb kinematics added.
vector Knee angles. MCS 27ms and 108ms.
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LSTM predictor processes a better
Ahead-of-motion prediction of MU performance than the SVM . .
[62] | 2020 |  lower-limb kinematics and 10 [0-clement feature MG features. EMG LSTM + SVM predictor. St R b
kinetics. s MCS R-value of 0.9 for LSTM extractor )
with predictor.
EEG to detect FoG D;Z%:“t‘:;zf d(EnL) Size of DL model limited by
. . Public dataset with Patch sensor to 4 EEG channels The DL model achieves a memory and computational
Detecting and alerting 12PD . . FoG dataset. . ; L
[79] | 2023 X . . multi-modal sensory measure muscle EMG with . high detection sensitivity of 0.81 resources of selected
freezing of gait symptom patients o CNN in parallel Py 5
data activity and accelerometers L 5 and a specificity of 0.88. microcontroller module.
using time-domain
movement data . .
signals as input.
Time-frequency EEG
Early detection of balance linearization of Logic network Accuracy= 96%
[61] | 2019 6 o ! . EMG ¢ _ Aceuracy=56 -
losses reactive cortical MCS classifier Discrimination time= 370.6 ms
responses
= o
Multi-scale tensors {\ccm:acy- WS - only male subjects took part in the
Classification accuracy of the .
Wavelet transformed decomposed from EEG 62-channel EEG setting is always Experiment.
[65] | 2022 Gait pattern classification 30 maps of size EEG and EMG MSL e Y - relationship between brain regions
q 5 EMG better than the ~ 20-channel EEG S
channelsxfrequency signals using Wavelet . and classification accuracy was not
setting, regardless of whether the
transform. 5 5 explored
EMG signal is used or not.
Comted| el wlling 2 dimensional CSP B q EEG 4-laye?r oce The ERA about two different
[70] | 2019 exoskeleton by EEG 3 CSP projection matrix propagation neural . . b -
- feature vector EMG imagery tasks is over 80%.
classification network
hHMI significantly outperforms its =i e{iie (e @i iae
. . . N decision based on the performance
Hybrid human-machine -LSTM networks single-signal counterparts. 5 Bl
. . . . Segmented and block . . . estimated on the validation set
interface for gait decoding Single EEG/EMG EEG -Bayesian Belief Fusion of EEG and EMG keeps a . s ey
[64] | 2020 . . 6 averaged EEG/EMG . " . without considering the classifier's
through Bayesian fusion of features per channel. & o EMG Fusion stable recognition rate of each gait 2 P
EEG and EMG classifiers urcichcs phase of more than 80%. Gl i i) demsmn:
) -The data were for healthy subjects
only
Energy of EEG PSD. L
Multisensing architecture for Neuromuscular EEG . et =6 < G
[78] | 2020 3 6 - Logical network ms. -
the balance losses detection parameters. EMG o
Accuracy= 96.21%.
EEG: Lyapunov and
inverse Lyapunov Accuracy=98.8%.
5 9 3 ) exponent. The rise in Shannon entropy in PD
[59] | 2019 Ql&?:;;?:ﬁ;‘i’: o}g]}ijgl;‘ﬁgl s 60 3 from EEG. Shannon entropy. EEG ANN indicates that their brain .
g B 9 from EMG. EMG: EMG complexity contributes to their
correlation Aen 5
Power. poor coordination and disordered
Variance. gait.
RMS.
Spatial Temporal Fusion Modality
Hybrid
156 585 3D TRM =969
TR ER AL i sore o7
i Multi-stream CNN
[82] | 2021 Hur]nan.fg-alt gpccd 50 24 585 3D GRF GRF - - Limited to gait speed prediction
classification EMG Single Modality
: ~919 0
12 8985 s e st Single stream CNN F1 score = 91% +0.6%
ViT F1 score = 58% 0.3%
8 8985 EMG Single stream SVM F1 score = 84% +1.1%
Accuracy
= 9
MSENet, TST, MSENEF91.31 %
. TST=90.22%
e v of 1228 Statistical R TCN=87.89%
Activity-based person values. Accelerometer CNN-LSTM, S Data collected from a single session
[97] | 2023 9 3 9 81 Temporal CNN-LSTM=88.15%
identification 450 features from each Gyroscope ConvLSTM, . 5 (less model robustness).
e Spectral XGBoost. DT, KNN ConvLSTM=82.71%
. T XGBoost=88..73%
DT=72.20%
KNN=80.00%
TR 0
St G TGN Pressure Pressure sensor N o
identi i i i RNN Accuracy= 94.63%
1831 | 2022 User 1dentlﬁ::[i;(:]n from gait 40 unit steps Zl:liabout 158 Acceleration Accel : Y - o R
p DU, Rotation Gyroscope Self-Attention Accuracy=91.64%
psp Ject. Ensemble Accuracy= 95.32%
1 channel image of Plantar
. . . 1,440 skeleton and foot | average foot pressure RNN Multimodal hybrid Few subjects, and the datasets were
[66] | 2021 Abnormal gait classification 12 5 = 5 Pressure » 5 5
pressure instances 14 joints and time CNN accuracy=95.66% collected by simulation
3D skeleton
steps
ERD Event related desynchronization hHMI  Hybrid human-machine interface SVM  Support vector machine FC Foot contact FPGA Field-programmable gate array
TO Toe off PSD Power spectrum density MLP Multilayer perceptron IMU  Inertial measurement unit ERA EEG recognition accuracy
EMG Electromyography LSTM  Long Short-Term Memory GRF  Ground reaction force RNN  Recurrent neural network CSP  Common spatial pattern
SVR Support vector regression BOI Bands of interests ANN Artificial neural networks RMS Root mean square MPF Mean power frequency
MAE Mean absolute error PIFD  Pre-impact fall detection GON  Electrogoniometer MCS Motion Capture system MF  Median frequency
NN Neural network MSL  Multi-scale learning RMSE Root mean square error LDA Linear discriminant analysis SRF  Spatial Feature Extractor
CorrMNN g::;ilj:;we Memory Neural LOOCY Leave One Out Cross Validation FNN  Feedforward Neural Network ViT ~ Vision Transformer DT  Decision Tree

BiLSTM  Bidirectional Long Short Term Memory

TRM

BPN

Trajectories of Reflective Markers

Backpropagation network

GED

MSENet multivariate squeeze-and-excitation network

Gait Event Detection

ESN  Echo State Network

TST Timeseries Transformer

TCN

MKAO Medial Knee Osteoarthritis

Temporal convolutional network KNN

LN

k-nearest neighbor

Logistic Network
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[59]. Similarly, Hou et al. [79] obtained high sensitivity and
specificity for real-time FoG detection utilizing a CNN deep
learning model and an adaptable, wireless sensor network.

D. IMU & EEG

Using Al models while merging IMU and EEG data was
reported in several research such as cortical changes associated
with the intention of acceleration during self-paced walk-
ing, multimodal biometric authentication system, and FoG
prediction for PD patients. Specifically, utilizing processed
pre-acceleration EEG, a SVM classifier with radial basis kernel
was developed to discriminate between the constant speed and
accelerated speed conditions. This might be used to detect the
intention to accelerate stride and then operate an associated
assistive device adaptively [60]. In addition, Bajpai et al. [80]
evaluated an ensemble model comprised of two neural Net-
works for clinical and personal applications. Transfer learning
was used to learn user-specific FoG-related characteristics for
personal use. Besides, Zhang et al. [81] designed a multimodal
biometric authentication system based on RNN to protect
against biometric authentication-related threats.

E. Other Multimodals

Multimodal gait analysis enhanced by Al also involved
data from various sensors, like motion capture cameras,
accelerometers, and pressure sensors, to comprehensively
assess an individual’s walking pattern. Alharthi and Ozanyan
[82] investigated the integration of reflective marker trajec-
tories, force-plates, and EMG sensors. They discovered that
multimodality fusion produced more accurate predictions than
single modality methods, such as single stream CNN, Vision
Transformer, and statistical classifiers. Likewise, using data
from pressure sensors, accelerometers, and gyroscopes, Moon
et al. [83] demonstrated the same conclusion, showing the
highest accuracy for gait recognition using a combination
of CNN, RNN, and Self-Attention models. Meanwhile, the
multivariate squeeze-and-excitation network proposed in [97]
demonstrated 91.31% accuracy in the recognition of human
locomotion. Fig.4 depicts the best performance of the various
gait analysis models that have utilized EMG-IMU, EMG-
EEG, IMU-EEG, and other multimodal sensing fusion data.

V. DISCUSSION

Gait is not only necessary for human mobility, independence
and everyday life functioning, but it is also a key predictor
of quality of life, health status and mortality, as well as the
progression of underlying pathophysiology [98]. Examining
gait patterns, particularly spatiotemporal, kinematic, kinetic,
and balance gait features, can shed light on the quality of
gait in association with overall health status and functionality.
In gait research, smart wearable technologies and artificial
intelligence, such as machine learning and deep learning
techniques, are gaining growing interest. Despite their limited
use in clinical settings, these methods hold great potential
for changing how gait is quantified by collecting, storing,
and evaluating multifactorial complex gait data while also
capturing its non-linear dynamic characteristics and variability.
While neural networks have been used in a small number

of research studies, the findings are encouraging and warrant
more investigation. Several studies employed multimodal sens-
ing fusion to design and improve lower limb prosthesis [39],
[49], [53]. The results showed that the optimum separability,
repeatability, clustering, and desirability across subjects and
activities were achieved by integrating characteristics from
vision, EMG, IMU, and goniometer sensors [53]. Hence,
future applications of this sensing fusion in a forward predictor
for powered lower-limb prostheses and exoskeletons might
benefit from the incorporation of vision-based ambient data.

Promising results were also revealed by the EEG and EMG
hybrid modality [24], [42], [55], [85], [87]. Chung and Wang
[44] focused on the effects of age and gender. They discovered
that females exhibit higher GRF during the heel-strike and toe-
off phases, as well as more tibialis anterior muscle activation.
On the other hand, Short et al. [87] investigated unilateral CP
and found that children with CP had more cortical activity
when walking. Research using the LDA classifier trained with
fused IMU and EMG data achieved the highest accuracy
compared to other types of classifiers trained with the same
fusion of signals. However, this conclusion is not generalizable
because of the wide variation of data collection settings
and feature extraction strategies across investigations. LDA
was mainly used for motion intention prediction and joint
trajectory generation. In contrast, the single study that used
the SVM classifier with EEG and EMG data had the lowest
accuracy. Specifically, SVM was able to correctly predict 9 out
of 12 acceleration events with a mean delay of —741ms.
According to Huang et al. [72], RNN performs better than both
support vector regression (SVR) and conventional artificial
neural networks (ANN). Similarly, the LSTM predictor per-
formed better than the SVM predictor [62]. On the other hand,
gait events such as foot contact and toe-off were recognized
accurately with MLP due to the meaningful IMU data that
depicts these events clearly [71].

Higher number of electrodes with EEG also showed
improved results in EEG-EMG multimodal classification [65].
Meanwhile, cortical and subcortical changes lead to PD
patients poor coordination and abnormal gait [59]. Other
factors that impact the performance of the models and lead
to some variation in the findings include offline prediction
that demonstrated superior model performance compared to
online prediction. In addition, a number of models reported in
the literature lacked modern computational methodologies and
feature selection procedures or inadequately defined reference
data such as knee joint angle. More research into the con-
nectivity between cortical areas and classification accuracy is
needed when EEG data is included into multimodal fusion Al

Subject variability and label deficiency are intrinsic issues
not just in gait assessment and staging, but in all healthcare
settings. Therefore, future research might concentrate on loss
design, data augmentation, or prototype learning methodolo-
gies to address this difficult but realistic topic. Similarly,
creating unsupervised or semi-supervised approaches may
lessen the need for time-consuming annotations and pave the
way for more robust model creation. For this paradigm shift
to be aligned with personalized gait abnormality assessment
and rehabilitation, the loop must be closed with artificial
intelligence models that include both static and dynamic
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features, as well as sophisticated data reduction and individual-
ized feature selection of the most important gait characteristics.
The field of neurological disease assessment is undergo-
ing notable trends that could reshape diagnostic approaches.
A prominent trend involves integrating diverse gait analy-
sis methods, encompassing kinematic, kinetic, and cerebral
activity measurements. This holistic approach provides a
more nuanced understanding of movement patterns, enhancing
the diagnostic potential of gait analysis. Additionally, the
rise of multimodal sensor fusion, which combines wearable
and non-wearable sensor data through advanced techniques,
is becoming increasingly prevalent. This trend significantly
improves diagnostic accuracy by capturing data from multiple
sources, contributing to more precise assessments. Moreover,
artificial intelligence models are gaining traction, particularly
when coupled with multimodal sensor fusion. This combined
approach holds the potential to revolutionize neurological
disease diagnosis, offering advanced predictive capabilities
by processing complex datasets and identifying patterns that
might not be discernible through individual modalities alone.
Despite the promising advancements, several open issues
warrant careful consideration. Firstly, determining effective
strategies to fuse various sensor data types optimally remains
a challenge. This necessitates exploring fusion techniques that
maximize the benefits of multiple data sources while ensuring
robustness. Real-world validation of wearable systems across
diverse settings and patient groups is imperative to establish
their reliability and generalizability. Moreover, developing
Al models that provide interpretable results is an ongoing
concern, as comprehensible outcomes are vital for gaining
clinicians’ and patients’ trust. Creating practical systems for
long-term patient monitoring and disease tracking presents
a technological challenge that requires attention to ensure
usability and accuracy. Lastly, integrating gait analysis systems
into clinical workflows and addressing adoption challenges
remain key issues, emphasizing the importance of standardized
practices and seamless incorporation into medical routines.

VI. LIMITATIONS

While this review did record the locations of the sen-
sors and highlighted the most desired site by researchers,
it was unable to draw any firm conclusions about the optimal
number and placement of sensors. Even though all studies
assessed gait, not all used the same experimental design,
methodology, or conditions. This impacts both the obtained
data and Al-based quantification of gait.

Different Al research groups also train their AI models with
distinct datasets making it challenging to evaluate the perfor-
mance of two Al models. Furthermore, software variation and
its potential impact on algorithm efficacy were not considered
due to lack of information in the included research studies.
Likewise, there is also some uncertainty as to whether or not
adding more sensors reduces or improves the reliability of the
Al findings.

Certain machine learning models are known to be overfit-
ting, and do not perform well on new datasets, making the
scarcity of benchmark data all the more worrisome. The use-
fulness of an artificial intelligence model drops significantly

if it lacks the ability to consistently generalize to novel,
previously encountered situations.

VIl. CONCLUSION AND FUTURE WORK

This systematic review primarily discussed the relevance of
gait analysis utilizing fusion approaches and Al models that
have been developed for this purpose. Among the 66 research
articles, 44 utilized EMG signals as part of the multimodal
fusion data. The relevance of combining multiple forms of
wearable and non-wearable sensor data and the influence of
this combination on the performance of Al models might thus
be investigated further. The significance of cortical activity in
evaluating gait might also be investigated in future research
utilizing EEG and fNIRS. This allows researchers to measure
several forms of mental stress and cognitive processes along
with a variety of aberrant gait patterns. While deep learning
is only employed in a small number of gait analysis studies,
the findings are encouraging and warrant more investigation.
Consequently, this review article serves as a starting point for
the design and validation of a smart portable wearable-based
gait and balance assessment system employing current tools
and technologies that have been specifically developed for
clinical use.
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