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Monitoring Active Patient Participation During
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Between a Robot-Based Metric
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Abstract— While rehabilitation robots present a much-
needed solution to improving early mobilization therapy in
demanding clinical settings, they also present new chal-
lenges and opportunities in patient monitoring. Aside from
the fundamental challenge of quantifying a patient’s vol-
untary contribution during robot-led therapy motion, many
sensors cannot be used in clinical settings due to time and
space limitations. In this paper, we present and compare
two metrics for monitoring a patient’s active participation
in the motion. The two metrics, each derived from first
principles, have the same biomechanical interpretability,
i.e., active work by the patient during the robotic mobi-
lization therapy, but are calculated in two different spaces
(Cartesian vs. muscle space). Furthermore, the sensors
used to quantify these two metrics are fully independent
from each other and the associated measurements are
unrelated. Specifically, the robot-based work metric uti-
lizes robot-integrated force sensors, while the EMG-based
work metric requires electrophysiological sensors. We then
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apply the two metrics to therapy performed using a clini-
cally certified, commercially available robotic system and
compare them against the specific instructions given to the
healthy subjects as well as against each other. Both metric
outputs qualitatively match the expected behavior of the
healthy subjects. Additionally, strong correlations (median
R2 > 0.80) are shown between the two metrics, not only
for healthy subjects (n = 12) but also for patients (n = 2),
providing solid evidence for their validity and translatability.
Importantly, the robot-based work metric does not rely on
any sensors outside of those integrated into the robot, thus
making it ideal for application in clinical settings.

Index Terms— Assist as needed, intensive care unit, par-
ticipation assessment, rehabilitation robotics.

I. INTRODUCTION

THE main priority of intensive care facilities is to treat life-
threatening ailments, which requires a major emphasis

on bed rest and immobilization. Unfortunately, bed rest and
immobilization are associated with secondary complications
of the musculoskeletal and cardiovascular systems [1], [2],
[3], from which recovery is generally slow and which can
eventually overshadow the initial ailment [4]. For example,
the development of intensive care unit-acquired weakness
(ICU-AW), which can be attributed to a combination of
neural and muscular dysfunction, has been observed in up
to 67% of patients admitted to the ICU and is associated
with poor clinical outcomes [5], [6], [7]. Impaired skeletal
muscle function has been observed upwards of five years
after hospital release [8], [9]. Early mobilization has long
been suggested as a way to improve the recovery of critical
care patients [10] and the benefits have been demonstrated in
a number of randomized controlled trials [11]. Importantly,
early mobilization has recently been incorporated into the
established norms and standards for care of ICU patients with
pulmonary disfunction in Germany [12].

Robotic devices are gaining increasing traction as assis-
tive tools for various aspects of healthcare. They have been
especially well-received in the area of neuromotor rehabil-
itation, because they enable more extended and consistent
patient training with minimal physical effort by the therapists,
simultaneous treatment of multiple patients, and the ability to
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monitor progress [13], [14]. Robot-based mobilization also has
enormous potential in the critical care setting [15], [16]. For
instance, robotic systems may be used to reduce the physical
burden as well as the safety risks associated with mobilizing
frail, physiologically unstable and/or agitated patients [17],
[18], [19]. Further, the barrier of personnel limitations, such
as insufficient staff numbers with adequate training level and
insufficient funding, which often limits the implementation of
early mobilization, may be mitigated through the use of robotic
systems [17], [19].

Robots have also opened the door for new rehabilitation
strategies and approaches through the use of intelligent control
algorithms. It is well known that voluntary drive and energy
expenditure, i.e., active patient participation, are critical to
preventing muscle strength loss and promoting recovery during
early mobilization [20]. Furthermore, voluntary drive is key
for motor learning [21]. To address this, robot control strate-
gies have been developed to intelligently adapt the support
level to the needs of the patient (“assist-as-needed”, AAN),
e.g. using machine learning approaches [22], [23], [24]. For
example, an energy-based AAN control algorithm was recently
integrated into a commercial robotic system, designed for use
in the ICU, and an initial clinical study reported positive
results [16], [25]. This AAN control algorithm is designed
to empower patients and promote active participation by
supplementing the energy that the patient is not capable of
generating him- or herself. Detailed results of this clinical
study have not yet been reported.

Given the separation between patient and therapist and the
importance of voluntary drive during robotic rehabilitation,
it is important to continuously monitor the patient’s level of
self-initiated movement [26]. This is particularly important
due to the so-called “slacking hypothesis”, which is based on
observations that patients tend to reduce their effort and let
the robot drive the motion if too much support is offered [27].
This, in turn, may negatively impact rehabilitation outcomes,
following the evidence described above.

Neural drive in the motor cortex is the origin of movement
and can, in theory, be assessed using electroencephalography
(EEG). At least one research group has shown that EEG can
be used to differentiate between active and passive walking
with a robotic device [28]. Electromyography (EMG) provides
a more movement-specific measure of neuromotor activity,
i.e., muscle activity modulation, and is widely used in the
laboratory setting [29].

Unfortunately, electrophysiological sensors are impractical
for regular use in ICU settings [30]. Therefore, it is also
important to find methods for estimating the patient’s active
movement generation, which involve only sensors that can be
integrated into the robotic system, e.g., interaction force, motor
torque, and robot link angle (velocity) sensors. However, esti-
mating active participation can be challenging when only force
or motion sensing is used, especially when the robot’s support
changes. For example, when the support is low, the magnitude
of the interaction force - and thus its variation - may decrease,
making it more difficult to assess the patient’s behavior based
solely on the force/torque changes [26]. A similar phenomenon

occurs when the support is high, and the observation metric
relies solely on the motion.

A. Related Works
As introduced above, EMG measurements have been used

by a number of research groups to estimate joint torques, also
in the context of robotic support with AAN control algorithms
[31], [32]. For example, by using EMG measurement data
as an input for computational models of the musculoskeletal
system, the actual joint torque may be estimated, which
may then be used to derive the deficient joint torque [33].
Additionally, a number of biomechanical measures have been
explored for quantifying patient performance, both in terms
of quality and quantity. These techniques use force and torque
signals to quantify the amount of robotic assistance provided to
the patient and have the advantage that the integrated sensors
of the robot suffice and no additional equipment, such as EMG
or motion capture, is needed [34]. Such measures include: the
(arbitarily) weighted sum of human-robot interaction torques
[26], the human active torque, estimated by subtracting a
passive baseline [35], musculoskeletal modeling-based oper-
ator strength estimation [36], total work performed by the
robot [37], “useful force”, i.e., the force applied along the
target direction, as well as task-specific kinematic and dynamic
performance indicators [38]. While some of the listed metrics
are either biomechanically interpretable or practicable for use
in a clinical setting, none combine both of these important
features. An exception to this is the integrated power metric
presented in [39], which is both interpretable and practicable.
However, to the knowledge of the authors, neither this nor
other metrics have been effectively verified or validated in
human subject experiments.

B. Contribution Statement
In this work, we derive and compare two metrics for

quantifying a patient’s active participation during robot-led
lower limb mobilization. The two metrics are chosen for their
identical biomechanical interpretability, i.e., the work actively
contributed by the patient to the mobilization therapy, and
their non-overlapping sensor requirements. The first metric
only requires the robot’s integrated sensors, making it highly
practical for clinical application, while the second requires
only electromyography (EMG) sensors as well as a basic mea-
surement of the patient kinematics. Both metrics are derived
using first order principles (preferentially) and well-established
correlation factors (only where necessary). We evaluate and
compare these metrics using a commercially available robotic
rehabilitation system and healthy subjects as well as patients.
Both full support and AAN support are considered in order to
test whether the predictive capacity is affected by the variable
robot support level. We then provide initial evidence that
patients may participate more actively when receiving AAN-
based therapy as opposed to full support therapy in the ICU.

II. THEORY

Here, we derive two metrics for quantifying the human’s
active contribution during a cyclic robot-aided movement
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rehabilitation task. This may be referred to as the “productive
work” performed by the human, i.e., the work contributed
toward the specified task. The first metric is based on conser-
vation of energy and uses force sensors integrated in the robot.
The second metric considers electrophysiological sensor-based
estimation of muscle forces. These metrics quantify the same
physical phenomenon, but are based on fully independent
measurements; therefore, each serves as a means of verifying
the other. In the following subsections, we begin by presenting
the dynamics of the musculosketal system before deriving first
the robot-based work and then the EMG-based work metrics.

A. Musculoskeletal Dynamics
Human limb movement is controlled by muscle activation.

Considering τ h ∈ Rn as the joint torque of the n-degrees-
of-freedom human limb associated with muscle activation, the
limb’s motion can be described with the following dynamics
equation:

Mh(qh)q̈h + Ch(qh, q̇h)q̇h + gh(qh)

+ dh(q̇h) + kh(qh) = τ h . (1)

Here, qh ∈ Rn represent the limb’s joint angles,
M(qh), Ch(qh, q̇h) ∈ Rn×n are the inertia and the
centrifugal and Coriolis matrices, respectively, and
gh(qh), dh(q̇h), kh(q̇h) ∈ Rn denote the torque vectors
associated with the limb’s gravity, the energy dissipation, and
the elasticity of the musculo-tendon units. When the human is
unable to produce the required joint torques, external devices
such as a rehabilitative robot or a prosthesis could assist by
exerting interaction wrenches at various contact points on the
limb. As a result, the dynamics equation (1) changes to

Mh(qh)q̈h + Ch(qh, q̇h)q̇h + gh(qh)

+dh(q̇h) + kh(qh) = τ h +

k∑
i=1

J T
h,i (qh) f ext,i , (2)

where f ext,i ∈ Rm denotes the interaction wrench defined
in an m-dimensional Cartesian space, acting on the i-th point
of contact with the limb. Moreover, Jh,i (qh) ∈ Rm×n is the
Jacobian matrix corresponding to the i-th contact point, such
that

ẋi = Jh,i (qh)q̇h, (3)

where xi ∈ Rm is the location of the i-th contact point in
Cartesian space.

B. Robot-Based Work Metric
The musculoskeletal system has three forms of stored

energy: kinetic energy, gravitational energy, and elastic energy.
We define Th ∈ R as the limb’s kinetic energy, where

Th =
1
2

q̇T
h Mh(qh)q̇h, (4)

Ug,h ∈ R as the gravitational energy such that

gh(qh) =
∂Ug,h

∂qh
(5)

and Uk,h ∈ R as the stored elastic energy in the musculo-
tendon units, where

kh(qh) =
∂Uk,h

∂qh
. (6)

Thus, the overall stored energy Sh ∈ R of the human limb
becomes

Sh = Th + Ug,h + Uk,h . (7)

Considering (3)–(7), the dynamics equation (2) results in the
following power-flow equation:

Ṡh + Pdiss = Ph + Pext, (8)

where

Pdiss = q̇T
h dh(q̇h) ≥ 0, (9)

Ph = q̇T
h τ h, Pext =

k∑
i=1

Pext,i , (10)

Pext,i = q̇T
h J T

h,i (qh) f ext,i = ẋT
i f ext,i . (11)

According to (8), the variations in the stored energy Sh result
from the summation of the human input power Ph associated
with muscle activation as well as the external power Pext
from the external devices subtracted by the dissipated power
Pdiss. Figure 1 depicts the port-based modeling of the system.
During one motion cycle, the performed work associated with
different ports of the system can be described according to (8)
as follows:

Sh,end − Sh,start + Ediss

= Wh + Wext, (12)

Ediss =

∫ tend

tstart

Pdiss dt, Wh =

∫ tend

tstart

Ph dt, (13)

Wext =

∫ tend

tstart

Pext dt =

k∑
i=1

∫ tend

tstart

ẋT
i f ext,i dt, (14)

where tstart, tend are the times and Sh,start, Sh,end are the energy
values associated with the beginning and the end of the motion
cycle, respectively. Considering (4)–(7), the values of Sh,start
and Sh,end remain the same for a repetitive motion where
the initial and final limb configurations and velocities (i.e.,
qh, q̇h) are kept the same for all iterations.1 Moreover, when
the limb’s mass is large enough, the magnitude of the kinetic
and potential energy is significantly larger than the changes
in dissipated energy Ediss between steps; thus, the changes in
Ediss can be considered negligible and the left side of (12)
can be assumed constant across iterations. Therefore, we can
deduce that any increase/decrease in Wext (i.e., work per-
formed by the robot) for two consecutive cycles is associated
with a decrease/increase in Wh (i.e., work performed by the
human). In other words, by monitoring the changes in the work
performed by the robot according to (14), we can indirectly
evaluate the human’s active participation in the motion, i.e.,

1Please note that we neglect the effect of the musculo-tendon elasticity
variation over iterations, which would result in different values of Uk,h even
for a same configuration qh .
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Fig. 1. Port-based modeling of the limb in contact with external devices.

the evolution of Wh . This analysis is the core idea behind our
proposed robot-based work metric.

Following the concept of reference energy as in [40], and by
defining W †

ext as the work performed by the interactive robot
when the human limb is entirely passive (i.e., for Wh = 0),
the active participation of the human in the movement can
be monitored by iteratively comparing Wext with W †

ext. Hence,
similar to the observer metric in [40], our robot-based metric
for determining the human’s (h) contribution during a motion
cycle can be defined as

Ŵh = W †
ext − Wext. (15)

Obviously, when the human is passive during a motion cycle
(i.e., when Wh = 0), the value of Wext is identical to W †

ext, and
considering (15), the robot-based work metric Ŵh becomes
zero.

C. EMG-Based Work Metric
Muscles convert chemical energy (i.e., ATP) into mechan-

ical work in the form of force generated by the muscle’s
contractile element (CE). This is also referred to as the active
force of the muscle, while the passive force results from
passive stretching of the muscle’s viscoelastic elements [41].
In (1), τ h represents the torque generated by the active muscle
force, whereas the torque vector hh(qh) is associated with
the energy stored due to passive stretching of the muscle’s
viscoelastic elements. The total muscle force is the sum of the
active force generated by the contractile unit and the passive
force provided by the elastic elements in parallel with the
contractile unit [42].

By definition, the work performed by a muscle m must be
calculated from the active force, Fm,a ∈ R. While there is
no way to directly measure this force or the resulting work,
it has been well established that EMG activity is correlated
with Fm,a under certain conditions [43], [44], wherein

Fm,a = aFmax f (l̄m f ,
¯̇lm f ). (16)

Here, a ∈ [0, 1] is muscle activation, parameter Fmax ∈ R>0 is
maximum active muscle force, while l̄m f ∈ R>0 and ¯̇lm f ∈ R
are normalized muscle fiber length and change rate, respec-
tively. Model f (·) in (16) contains shape parameters for the
force-length and the force-velocity curves of skeletal muscle.
The detailed equation can be found in [42]. We may estimate
the muscle activation a directly from EMG measurement ã
according to

a = κ ã + ã0, (17)

where κ ∈ R>0 is a constant scaling factor and ã0 ∈ R is the
quiescent EMG baseline. These parameters are unique to each
subject, muscle, and sensor placement. If we further assume

Fig. 2. VEMOTION system and setup (Reactive Robotics GmbH).

that the tendon is rigid, we find that l̄m f = f (qh) and ¯̇lm f =

f (qh, q̇h), making it possible to estimate Fm,a from EMG and
kinematic data, given parameters κ , ã0, and Fmax.

Considering the sets of agonist muscles Mag and antagonist
muscles Mant involved in a given motion, we can estimate the
work performed by the human muscles (m) according to

Ŵm =

∑
m∈Mag

∫ tend

tstart

Fm,a l̇mdt −

∑
m∈Mant

∫ tend

tstart

Fm,a l̇mdt. (18)

Here, l̇m ∈ R is the muscle length change rate, which we can
also assume to follow l̇m = f (qh, q̇h). This is similar to the
method described in [45] for calculating muscle joint work.
Note that we expect Ŵm ≈ Ŵh for the same motion, given
that the motion trajectory is constrained by the robot.

III. METHODS

A. Hardware Setup
The VEMOTION system (figure 2), used in this study,

consists of a hospital bed with a harness/seat support system
and a robotic attachment for moving the patient’s legs through
a stepping-like motion. The bed can be tilted to achieve
a maximum patient inclination angle of 70◦. Each foot is
strapped to a footplate, which is free to slide passively along
the y-axis as well as to rotate about the z′-axis (figure 2). The
z′-axis is perpendicular to the x − y plane, which corresponds
with the saggital plane of the patient, but it does not allign
with the patient’s ankle. The robotic end effectors attach to
the patient thighs and follow an arc trajectory in the sagittal
plane about the hip joint center, thus moving the patient’s legs
through a stepping-like motion. Only one leg is moved at a
time; the other is held in full extension, i.e., stance phase.
Therapy parameters, such as the hip range of motion (ROM)
and step frequency, can be set by the clinician.
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Fig. 3. VEMOTION variables of interest. (Adapted from [24].)

An “assist-as-needed” (AAN) support mode, described in
[24], automatically adapts the support level to the patient so
that it provides only the required amount of support to enable
the patient to move each individual leg along the desired
reference trajectory. This is achieved by “shaping” the input
velocity of the robotic motion. The AAN setting can be turned
on and off as often as required during VEMOTION therapy.
When not in use, the patient receives full (100%) support by
the robot throughout the motion cycle, meaning that the input
velocity curve is fixed.

The VEMOTION system is equipped with various force
and link angle sensors, which are used for robot control and
safety monitoring as well as for estimating and tracking certain
variables of interest. These variables, which are calculated
based on the sensor measurements as well as a thigh length
measurement d, i.e., the distance between the hip joint center
(HJC) and the robot end effector, may be exported from the
VEMOTION system after the therapy (written data frequency
of 50Hz). In this study, the following variables were of interest:
the human-robot interaction wrench vector, f ext, the robot end
effector velocity vector, ẋ, the patient hip flexion angle, q1,
and the bed tilt angle, α (figure 3).

B. Study Participants
1) Healthy Subjects: The metric verification study took

place in the Human Motor Control Lab of the Technical
University of Munich (TUM). Twelve healthy subjects partic-
ipated: 7m/5f; 31 ± 4years; 174 ± 11cm; 73 ± 13kg (mean ±

standard deviation). All subjects provided written consent
after being informed of the study details. The ethics proposal
was submitted to the ethics committee of the TUM and no
objections were raised (study number 2022-623-S-KH).

2) Patients: Additional data were collected from two
ICU patients of the Schön Klinik Bad Aibling Harthausen
(SKBA) who were undergoing VEMOTION-based mobi-
lization as part of their hospital care. Patient 1 was a
79-year-old female (171cm, 77kg) with polytrauma following
a traffic accident and suffering from muscle weakness, delir-
ium, dysphagia, and respiratory insufficiency. Patient 2 was
an 81-year-old male (170cm, 93kg) with a critical-illness-
polyneuropathy/-myopathy following a prolonged ICU stay
due to complications from Covid-19. He was suffering from
muscle weakness, dysphagia, and respiratory insufficiency.
In addition to VEMOTION therapy, the patients also received

Fig. 4. VEMOTION motion cycle used for healthy subjects.

standard care, including a combination of physiotherapy, occu-
pational therapy, swallowing therapy, neuropsychology, and
breathing therapy. The experimental protocol was reviewed
by the Ludwig Maximilians University of Munich Ethics
Committee under project number 18-645 and no objections
were raised.

C. Experimental Protocol
1) Healthy Subjects: Subjects were asked to lay on the

VEMOTION bed, after which their thighs and feet were
strapped to the robot end effectors and foot plates, respectively,
and the seat support was adjusted to their body size. This was
in accordance with the manufacturer guidelines. Surface elec-
tromyography (sEMG) sensors with integrated accelerometers
(Mini Wave Infinity, Cometa Srl, Milan, Italy) were attached
to the subjects’ skin to measure muscle activity from the left
and right m. iliopsoas (IP) at 2kHz, following [46]. In addition,
a third sEMG sensor was positioned on the VEMOTION
control console and was manually tapped at the beginning
and end of each protocol phase for easier post processing and
temporal alignment of sEMG and VEMOTION data.

The initialization protocol specified by the manufacturer was
followed and the following therapy settings were used: bed tilt
angle α = 50◦, hip flexion/extension range of motion (ROM)
q1 = 0 − 25◦ (min − max), step frequency f = 30min−1

(figure 4). Each data collection began with a calibration phase,
wherein the subject was instructed to relax fully, the VEMO-
TION was set to full (100%) support, and data were collected
from three full left and right steps. After this, the AAN setting
was initialized and subjects were instructed to first participate
actively for ∼ 30s, then to simulate fatigue (i.e., decrease
active participation) for ∼ 30s, and then return to full active
participation for ∼ 30s. The same procedure was followed
using the standard therapy setting. Note that this experiment
was part of a larger data collection protocol, which required a
total time of two hours or less, and not all details are specified
here.

2) Patients: The patient VEMOTION and sEMG setup
protocol was identical to that of the healthy subjects. The
therapist selected the robotic end effector ROM according to
the patient’s hip ROM, q1. The robot-supported leg movement
was started (full support) while the patient bed was horizontal.
The therapist gradually adjusted the bed angle α to the highest
setting that the patient could tolerate on that day, according
to the therapist’s professional experience. The final settings
were: α = 30◦ (patient 1), α = 25◦ (patient 2), q1 = 0−25◦

(min−max; both patients), f = 20min−1 (both patients).
Four active trials were performed per patient; two with

the full support setting and two with the AAN setting (in
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alternating order, beginning with full support). For each trial,
the patient was encouraged to actively follow the stepping
motion of the robot end effector with his/her legs as much
as possible. Care was taken to ensure that the instructions
given to the patient were consistent between therapy types.
After approximately one minute, corresponding to between
8−16 steps per leg, the patient was allowed to relax and, in the
case of the AAN trials, the full support setting was resumed.
The patient was allowed a 2−3 minute break between each
active trial. After all trials were completed, the bed angle was
returned to horizontal and the therapy was ended.

D. Evaluation Metrics
1) Robot-Based Work Metric: For each step of the therapy,

we estimated the robot-based work metric for the hip flexion
and extension phases separately, referred to as Ŵh, f and Ŵh,e,
respectively. The calculation, which follows section II-B,
is described in the paragraphs below. It may be noted that
these phases were chosen because, due to the sinusoidal
rehabilitation motion (figure 4), joint velocities q̇h = 0 at the
beginning and end of flexion and extension and the initial and
final configurations qh remain the same across the iterations.
Thus, Sh,start and Sh,end could safely be assumed to remain
constant throughout the motion cycles. In fact, these energy
values are only associated with the limb’s gravity gh(qh) and
the muscle elasticity hh(qh); see section II-B.

The physical interaction between the VEMOTION robot and
the human was described through one contact point, for the
sake of simplicity. Thus, considering (14), the work performed
by the robot during the flexion phase was estimated as

Wext, f =

∫ tend, f

tstart, f

Pext dt =

∫ tend, f

tstart, f

ẋT f ext dt, (19)

where tstart, f and tend, f correspond to the flexion start and end
index, respectively, for the given step. The reference energy
W †

ext, f was determined during the calibration phase, i.e., when
the human is passive (Wh, f = 0). Finally, the robot-based
work for the flexion phase was derived according to (15) as

Ŵh, f = W †
ext, f − Wext, f . (20)

The same process was followed for estimating the extension
phase variables Ŵh,e, W †

ext,e, and Wext,e.
2) EMG-Based Work Metric: An important consideration for

the EMG-based work metric introduced in section II-C was
the muscle selection for measurement. Due to the kinematic
constraint at the foot in the VEMOTION system, flexion
(or extension) of the hip and knee joints are forced to be
coupled, thus rendering the bi-articular muscles, i.e., m. rectus
femoris (RF) and m. biceps femoris (BF), less effective than
during normal gait. In fact, it was observed in our previous
work that the activation patterns of these muscles is highly
inconsistent (between subjects) during VEMOTION therapy,
even for healthy subjects [48]. Based on this evidence as well
as preliminary experiments, we assumed in this work that
the stepping motion is primarily driven by hip flexion- and
extension-specific muscles, i.e. single-joint muscles. Surface
EMG measurement of hip extensors, e.g. m. gluteus maximus,

Fig. 5. Normalized muscle fiber length (̄lmf) and muscle-tendon length
(lm) of the m. iliacus and m. psoas vs. hip flexion angle over the range of
motion used in this study. Normalized muscle fiber length change (¯̇lmf) is
also shown for both muscles for three motion cycles. Here, the negative
length change corresponds to the hip flexion phase and the positive
length change corresponds to the hip extension phase. Plotted results
are based on a state-of-the-art musculoskeletal model [47].

was not feasible with the VEMOTION setup. Therefore, the
focus here was to estimate the hip flexion work by measuring
EMG from an accessible hip flexion-specific muscle group,
i.e. the m. iliopsoas (IP) [46]. For practical purposes, this also
required us to assume minimal co-activation of the antagonist
muscles during hip flexion. As a result, we will refer to Ŵm
for the flexion phase as Ŵm,I P from here on.

A preliminary evaluation of the m. iliacus and the m. psoas
muscles with a state-of-the-art musculoskeletal model [47]
shows that l̄m f,I P ∈ [0.83, 1.0] and ¯̇lm f,I P ∈ [−0.026, 0]

for the lumped IP, given the hip flexion motion cycle (q1(t);
figure 5). Recall that we assumed a rigid tendon, so that l̄m f,I P

and ¯̇lm f,I P may be directly estimated from hip flexion q1(t).
Further, we estimated ã, introduced in (17), directly from

the root mean square (RMS) of the m. iliopsoas sEMG
measurement. At this stage, the values of parameters κ , ã0,
and Fmax were unknown for a given muscle and sensor
setup. However, given that the flexion motion is (primarily)
driven by the m. iliopsoas, i.e. a single muscle group, the
correlation between Ŵh, f and Ŵm,I P is minimally affected by
the choice of parameters.2 Thus, in a first step we calculated an
intermediate version of the EMG-based work metric according
to (16) and (18), which we refer to as Ŵ ∗

m,I P , where

Ŵ ∗

m,I P =

∫ tend,f

tstart,f

ã f (l̄m f,I P , ¯̇lm f,I P )l̇m,I P dt. (21)

2This only holds true for a given muscle and sensor setup. A more precise
estimate of κ , ã0, and Fmax are required for inter-subject comparison.
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Note that this is equivalent to arbitrarily assuming that κ = 1,
ã0 = 0, and Fmax = 1. Here we used the standard shape
parameters reported in the Github repository for [42].3

In a second step, we estimated κ Fmax and ã0 Fmax for each
subject and side by assuming Ŵh, f = Ŵm,I P . For this, first
(16) and (17) were substituted into (18). Defining

0 = f (l̄m f,I P , ¯̇lm f,I P )l̇m,I P , (22)

the resulting equation was then reformulated as

Ŵm,I P = κ Fmax

∫ tend,f

tstart,f

ã0dt︸ ︷︷ ︸
Ŵ ∗

m,I P

+ã0 Fmax

∫ tend,f

tstart,f

0dt. (23)

Using the data set (i.e., all steps) from each subject and side
separately, linear regression was then used to estimate κ Fmax
and ã0 Fmax, corresponding to that muscle and sensor setup.
Finally, Ŵm,I P was calculated for each subject (healthy or
patient), side, therapy type, and step.

E. Data Analysis
All data were processed and analyzed using a custom

Matlab script (The MathWorks, Natick, MA, USA). For the
statistical analysis, the statistics and machine learning toolbox
was used. The force data were filtered using a moving average
window (size 220ms), signal bias was removed, and the filter
time shift was compensated. The sEMG sensors used have a
built-in band-pass filter (5 − 500Hz, 3dB/oct, 4th order). The
signals were full-wave rectified and the moving window root
mean square (RMS) was calculated (200ms window size).

VEMOTION data (α, q1, f ext, and ẋ) and EMG data were
synchronized in a two-step process. Approximate alignment
was achieved using the manual “tap” signals from the sEMG
sensor and the manual “start” signals from the VEMO-
TION data log. Precise synchronization (within ∼ 20ms) was
achieved by aligning the leg motion profiles measured by the
sEMG-integrated accelerometer and the VEMOTION angle
sensors. The “tap” signals also served to define start and
stop indices of each therapy phase. Finally, indices for the
beginning and end of the flexion and extension phases were
identified for each step, based on the motion profiles.

The robot-based work metrics Ŵh, f and Ŵh,e were cal-
culated for each subject (healthy or patient), side, therapy
type, and step according to (19)-(20). The pseudo and final
EMG-based work metrics Ŵ ∗

m,I P and Ŵm,I P were similarly
calculated according to (21)-(23). The coefficient of determi-
nation, R2, was then calculated between Ŵh, f and Ŵ ∗

m,I P for
each subject and side individually. Finally, R2 was calculated
between Ŵh, f and Ŵm,I P for the combined data of all
subjects. Therapy types were assessed separately. Individual
patient trials were also assessed separately. Outliers were iden-
tified as any data point lying more than 1.5· I Q R (interquartile
range) outside of the first or third quartile. These data points
were excluded from the summary statistics, though they are
shown in the plots. Additionally, one healthy subject’s AAN
therapy data were excluded from the analysis due to a safety-
related hardware shutdown before the end of the trial.

3https://github.com/mjhmilla/Millard2012EquilibriumMuscleMatlabPort

IV. RESULTS

A. Verifying the Work Metrics
The coefficient of determination (R2) between Ŵ ∗

m,I P and
Ŵh, f of the healthy subject data, assessed for each subject
individually, ranged from 0.43 to 0.99 (excluding outliers)
for the standard therapy and from 0.44 to 0.95 for the AAN
therapy (p < 0.01). Similar results were observed in the
patient data. Specifically, R2 ranged from 0.39 to 0.97 for the
standard therapy and from 0.55 to 0.95 (excluding the outlier)
for the AAN therapy (p < 0.05). See figure 6. The results
were identical when comparing Ŵm,I P and Ŵh, f .

When the Ŵm,I P and Ŵh, f data were combined for all
twelve healthy subjects, R2 was found to be 0.93 for the
standard therapy case (excluding data from the three outlier
trials seen in figure 6) and 0.86 for the AAN therapy case
(p < 0.001). For the combined patient data, R2 was 0.77 for
the standard therapy data and was 0.92 for the AAN therapy
data (p < 0.001, excluding data from the outlier trial seen in
figure 6). See figure 7.

For further verification, the two work metrics are shown
for a representative example of a healthy subject AAN trial
(figure 8). During the phases when the subject was instructed
to be passive, the work performed by the subject, estimated by
both Ŵm,I P and Ŵh, f , is very low. During the phases when
the subject was instructed to participate actively, the work,
as estimated with each of the independent metrics, increases
with each step. Similar results were found for all subjects.

B. Comparing Wh Between Standard and AAN Therapy
The distribution of Wh, f and Wh,e across steps is shown

for each patient, side, and therapy trial in figures 9 and 10,
respectively. Positive values may be interpreted as the patient
performing work in the direction of the motion (referred to
as “positive work”). Negative results may be interpreted as
patient performing work against the direction of motion, i.e.,
the patient resisting the motion driven by the robot (referred
to as “negative work”). Values near zero may be interpreted as
the patient behaving passively, i.e., minimal muscle activation.
(See equation (20).)

It can be observed from these results that both patients
performed primarily positive work in the flexion phase and
primarily negative work in the extension phase. The exception
is patient 1, who was relatively passive in the extension phase
of the standard therapy trials. Furthermore, patient 2 performed
a higher magnitude of positive work than patient 1 in the
flexion phase and a higher magnitude of negative work in the
extension phase, but did not achieve the same peak magnitude
as was observed in the healthy subjects.

The difference in Wh, f and Wh,e between standard therapy
and AAN therapy is not very pronounced in general. Notably,
however, there is a large increase in positive flexion work
between the standard and AAN therapy 1 for patient 1.

V. DISCUSSION

Voluntary drive is critical during patient rehabilitation ther-
apy, in order to optimize recovery, and robotic systems are
promising tools for this purpose. However, it is difficult to esti-
mate the human contribution during shared human-robot tasks
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Fig. 6. Distribution statistics of the correlation between Ŵ ∗

m,IP and Ŵh,f , quantified for each subject, side, and trial individually. Outliers are
indicated with red crosses.

Fig. 7. Comparison between Ŵm,IP and Ŵh,f for all steps of all healthy subjects and patients using the standard therapy and the AAN therapy
settings. Each subject is represented by a single color (right leg data is depicted with closed circles, left leg with open circles).

without the use of body-worn sensors. Various biomechanical
measures have been introduced, but, to the knowledge of the
authors, none has been systematically evaluated and verified.
In this paper, we have presented two metrics for quantifying
the work performed by a patient during robot-assisted lower
extremity rehabilitation and we have tested and verified them
against each other using both healthy subject and patient data
sets. The two metrics, Ŵh and Ŵm , calculated from indepen-
dent sensor measurements following different computational

models, have identical biomechanical interpretability, mean-
ing that the values should be equal. Thus, by comparing
the quantified measures, the validity of the metrics may
be evaluated. Indeed, the results show a strong correlation
between the two measures. Although the best test of validity,
i.e., comparison against ground truth, was not feasible, the
presented results further demonstrate consistency between the
outcome measures and the instructions given to the subjects.
Based on these combined results, we conclude that there is
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Fig. 8. Example Ŵm,IP and Ŵh,f results from one healthy subject performing the AAN trial. In phases (a, calibration phase) and (c), the subject
was instructed to be passive and let the robot do the work. In phases (b) and (d), the subject was instructed to participate actively.

Fig. 9. Flexion work performed by the patients during each trial.

strong evidence that both metrics serve as valid estimators
of the productive work done by the human (muscles). The
results further support that the metrics are not only valid with
100% support mode, but with a reduced assistance level, which
has previously been considered particularly challenging for
estimates based solely on interaction force measurements [26].
This outcome was expected because both metrics integrate

Fig. 10. Extension work performed by the patients during each trial.

measurements (or estimates) of both force and motion. It may
be additionally noted that the metrics are agnostic to the type
of (AAN) control algorithm used, because no assumptions
were made with regard to the control algorithm.

While many different aspects of work could have been
considered, we chose in this study to focus on what we refer
to as “productive” work as a quantitative estimate of the
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patient’s active participation during the mobilization therapy.
Other metrics, such as those described in [26], [31], [32], [33],
[34], [35], [36], [37], and [38], may be better for evaluating
the quality of the patient’s muscle coordination, for example.
Developing better methods for assessing quality of movement
would be an important extension of this work. For example,
erratic movements can result in an increased effort from the
patient, which is undesirable.

An interesting aspect of the two chosen metrics is that one
is calculated in Cartesian space while the other is calculated
in muscle space, yet, the final result has the same physical
meaning for both. This was possible due to the strategic choice
to quantify work (as opposed to force) produced by the human.
Quantifying work meant that no model-based mapping (e.g.,
Jacobian) was required in order to convert from one space to
another, making the comparison feasible. Furthermore, for the
given setup (i.e., constrained motion. which is primarily driven
by a single muscle group), the corresponding metrics made
it possible to calibrate the EMG-force relationship, which
generally requires the use of relatively unreliable maximum
voluntary contraction experiments [49]. Thus, the presented
method also represents an interesting alternative for EMG
calibration under certain circumstances.

In this work, we additionally performed a preliminary
comparison between patient participation during a standard
(full robotic support) therapy vs. an assist-as-needed therapy
setting. While there is not a statistically significant difference
in the distributions between the standard therapy and the AAN
therapy settings, we do see some interesting results for each
patient. In the first standard therapy trial, patient 1 was almost
fully passive, despite being directed to actively participate in
the leg movement. This patient was in an altered mental state.
In the subsequent trial the AAN setting was used and we
observe a large increase in the patient’s Ŵh, f , indicating that
she was able to actively participate. Notably, this increased
activity level persisted for the subsequent standard and AAN
trials. One possibility to consider is that the AAN trial may
have enabled the patient to remember the motor activation
patterns and that this memory persisted. This could indicate
that the adaptive support level during AAN therapy served
as a kind of biofeedback to the patient, which is believed to
be important for effective rehabilitation [50]. However, these
assertions cannot be verified from the current data. A larger
study is needed in which the first trial is randomized between
standard and AAN therapy in order to address this question.

In patient 2, the data show an upward shift of the 75th
percentile and maximum Ŵh, f as well as a downward shift of
the 25th percentile and minimum Ŵh,e when comparing AAN
to standard therapy. This patient was much more cognitively
fit. While the Ŵh, f data show an encouraging trend, the
negative Ŵh,e results point to the hip flexor providing active
resistance during the extension phase, which is not desired.
Further investigation revealed that the problem may arise due
to the extension velocity during AAN therapy being too high.
Thus, the metric enables useful assessment of the effect of
various control strategies on the patient performance.

An important consideration when using the presented work
metrics is that patient activity level and performance are not

only related to neuromuscular impairment, but also effort,
cognitive impairment, and fatigue state [51], [52], [53]. While
the above described measures give an estimate of patient
activity and physical performance, extending the method to
include psychophysiological parameters may provide a way
to distinguish whether poor performance is due to lack of
effort, fatigue, or true physical limitation. One reason this is
important is because it has been observed that full robotic
support during therapy can lead to effort reduction, likely due
to the lack of movement error [52].

The main limitation of this work is that only the flexion
phase could be validated due to limitations of muscles from
which sEMG could be measured. It is also important to note
that, based on the sEMG sensor placement, it is possible
that some signal was coming from the proximal m. rectus
femoris. It has been previously shown that the muscle activity
measured from the proximal RF is hip flexion-specific [54];
thus, the current results are likely not negatively impacted by
this potential cross talk.

VI. CONCLUSION

The results of this work demonstrate, on the basis of twelve
healthy subject and two patient data sets, that the presented
robot-based and EMG-based metrics are both valid estimates
of the work performed by a patient during robotic rehabil-
itation therapy. Given that only robot-integrated sensors are
required for the robot-based work metric, this is an excellent
option for application in an ICU or general hospital setting
when used in conjunction with a robot specifically designed
for this setting. Thus, the robot-based work metric may be
useful for evaluating the effectiveness of AAN in appropriately
challenging the patient during a therapy session.
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