
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023 4051

A Data-Driven and Personalized Stance
Symmetry Controller for Robotic Ankle-Foot

Prostheses: A Preliminary Investigation
Christopher Prasanna , Jonathan Realmuto , Member, IEEE, Anthony Anderson ,

Eric Rombokas , Member, IEEE, and Glenn Klute , Member, IEEE

Abstract— People with unilateral transtibial amputation
generally exhibit asymmetric gait, likely due to inadequate
prosthetic ankle function. This results in compensatory
behavior, leading to long-term musculoskeletal impair-
ments (e.g., osteoarthritis in the joints of the intact limb).
Powered prostheses can better emulate biological ankles,
however, control methods are over-reliant on non-disabled
data, require extensive amounts of tuning by experts, and
cannot adapt to each user’s unique gait patterns. This work
directly addresses all these limitations with a personal-
ized and data-driven control strategy. Our controller uses
a virtual setpoint trajectory within an impedance-inspired
formula to adjust the dynamics of the robotic ankle-foot
prosthesis as a function of stance phase. A single sensor
measuring thigh motion is used to estimate the gait phase
in real time. The virtual setpoint trajectory is modified via a
data-driven iterative learning strategy aimed at optimizing
ankle angle symmetry. The controller was experimentally
evaluated on two people with transtibial amputation. The
control scheme successfully increased ankle angle sym-
metry about the two limbs by 24.4% when compared to
the passive condition. In addition, the symmetry controller
significantly increased peak prosthetic ankle power out-
put at push-off by 0.52 W/kg and significantly reduced
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biomechanical risk factors associated with osteoarthritis
(i.e., knee and hip abduction moments) in the intact limb.
This research demonstrates the benefits of personalized
and data-driven symmetry controllers for robotic ankle-foot
prostheses.

Index Terms— Powered prosthetics, control systems,
biomechanics, iterative learning control.

I. INTRODUCTION

TRADITIONALLY prescribed passive ankle-foot pros-
theses cannot completely replicate proper human ankle

function since the passive components responsible for plan-
tarflexion do not have the ability to generate mechanical power
unlike human ankles [1]. Rather, passive ankle-foot prostheses
can only store and return energy. As a result, individuals
with transtibial amputation exhibit a number of neuromuscular
adaptations to compensate for the loss of ankle function
[2]. One of the most significant consequences of transtibial
amputation is asymmetrical loading of the lower limbs during
walking which can lead to a number of secondary conditions
[3], including osteoarthritis (OA) in their intact knee and
hip joints [4]. Studies have reported much larger peak knee
abduction moments (KAM) and peak hip abduction moments
(HAM), two well-studied risk factors of OA, in the intact
limb of individuals with transtibial amputation when compared
to their prosthesis side [5], [6]. Ankle-foot prostheses with
improved push-off performance have shown to promote better
walking patterns and reduce some of the risk factors associated
with the degenerative diseases [7]. Therefore, there is a need
to explore prosthesis designs that include and control actively-
powered ankles, which have the potential to increase mobility
and prevent secondary musculoskeletal conditions.

Powered ankle-foot prostheses (PAFPs) can potentially
replicate human ankle behavior, however, current approaches
are limited in their abilities to adapt and personalize to each
individual. Many PAFPs utilize non-disabled gait data for
determining controller parameters [8], [9]. However, metabolic
rate, gait mechanics, and muscle activity can vary widely
across non-disabled users as well as those with amputation
[10]. Even when nominal non-disabled data are used, control
parameter adjustments still need to be made, usually through
trial and error [8], [9]. However, discovering the best user
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parameters is time-consuming and challenging since tuning
during clinical evaluations fails to demonstrate the same
benefits as found in the laboratory [11]. Current PAFP devices
are also limited in terms of how they can adapt to the user
and their environment. These devices are typically restricted
to changes in slopes [8] or speed [9].

Human-in-the-loop optimization (HILO) algorithms, where
the prosthesis control commands are learned based on the
human-robot response, could allow for long-term and more
generalizable adaptations [12]. An important decision to make
when designing a HILO algorithm is choosing the metric that
the algorithm optimizes. Metabolic rate is a common optimiza-
tion metric in HILO studies with lower limb exoskeletons [13].
However, a recent series of case studies were unsuccessful in
extending HILO methods to powered prosthesis control for
individuals with transtibial amputation when metabolic rate
was used as an optimization target [14]. Though metabolic rate
is important, other optimization targets may be more appro-
priate for people with transtibial amputation. The kinetic and
kinematic gait deviations of this population have been studied
extensively [15], [16], and are related to secondary mus-
culoskeletal disease [4]. Therefore, HILO algorithms aimed
at reducing gait asymmetries may be beneficial for PAFP
controllers. One previous study explored transfemoral prosthe-
sis controller personalization using HILO methods, however,
the method used pre-collected gait data to fit parameters
via linear regression [17]. This approach is limited, as it
does not account for human adaptations to the control signal
and the control law should adapt to these behaviors. Other
studies have investigated HILO algorithms for personalized
prosthesis control, but the methods have only been tested
using prosthesis adapters with healthy control subjects thus
far [18], [19].

The individual’s ability to adapt and learn how to best use
a powered prosthesis may play a key role in the outcomes.
One study found that K4 ambulators could learn how to
harness the power output of a powered prosthesis while K3
ambulators could not [11]. This could be an argument for
personalized controllers since prosthesis assistance is learned
based on observed human-robot responses, which may resolve
the problems that K3 ambulators have in learning to use
a powered prosthesis. Another study found that, for all ten
individuals with unilateral transtibial amputation included in
the experimental protocol, the best tested power setting for the
BiOM prosthesis (BiOM T2 Ankle, BionX Medical Technolo-
gies Inc., Cambridge, MA) was consistently higher than the
prosthetist-chosen setting [20]. This resulted in a statistically
significant difference in metabolic cost between the best tested
and prosthetist-chosen power settings. This finding further
supports the argument for PAFP controllers that automatically
personalize to the individual and do not rely on manual
tuning.

One of the most popular PAFP control approach is to use
a finite-state machine (FSM) [21]. Using sensor feedback to
detect easily identifiable gait events (e.g., heel-strike, toe-
off), these controllers decompose the periodic gait cycle into
distinct phases. Each sub-phase (e.g., early stance, middle
stance, and late stance) has its own controller, which typically

is composed of a set of fixed parameters and a feedback con-
trol law (e.g., position control, impedance control). However,
human locomotion is a continuous control process and it is
difficult to emulate this natural behavior using distinct control
laws. Additionally, as the number of sub-phases increases,
the number of tunable control parameters may increase [22].
Current robotic prosthesis controllers are limited as they
use a large amount of parameters that affect ankle torque
output, even though manual tuning processes are only feasible
with a handful of control parameters and predefined tasks.
In addition, re-tuning sessions would be required as the user
adapts their gait to the device over time. One study outlined
an approach towards individual personalization and automatic
control parameter tuning based on inverse reinforcement learn-
ing [23]. However, this method was only tested in simulation.

PAFPs have in general been shown to provide biomechan-
ical advantages over passive devices, including increasing
symmetry and ankle power production [24]. However, powered
devices do not automatically confer these benefits, as they
require careful tuning of the personalized controller parame-
ters [21]. An outstanding challenge is to achieve these benefits
automatically without expert tuning and it is this challenge
that this work aims to address. The main contribution is a
controller for a PAFP that optimizes ankle kinematic symmetry
during stance phase using gait data from each individual.
This method uses an offline iterative learning algorithm to
optimize a virtual kinematic setpoint trajectory within an
impedance control law. The control strategy directly addresses
the limitations of using non-disabled gait data and the need
for manual tuning by a clinical expert since the controller
automatically learns and tunes the dynamics of the PAFP based
on each individual. State estimation based on a biomechanical
phase variable is also used, which enables the control law
to be time-invariant and adapt to variations in the user’s
gait. Additionally, the controller acts continuously, eliminating
the need to discretize the gait cycle and tune parameters to
each sub-phase. The proposed controller was experimentally
assessed with a prototype PAFP and two subjects with unilat-
eral transtibial amputation. We hypothesized that the symmetry
controller would (1) reduce ankle angle asymmetry, (2) reduce
ankle power asymmetry, (3) reduce the intact peak KAM,
and (4) reduce the intact peak HAM when compared to the
prototype PAFP while in its passive mode (i.e., without active
assistance from the electrical motor).

II. METHODS

The real-time controller architecture is illustrated as a block
diagram in Fig. 1. The offline symmetry learning method
is displayed in Fig. 2. This research is an expansion of a
previously-developed symmetry learning controller aimed at
adjusting the PAFPs torque to match the achieved intact ankle
torque using an adaptive gain iterative learning control strategy
[25]. For this study, the learning approach was modified to
target ankle angle symmetry rather than ankle torque symme-
try because ankle kinematics are potentially easier to measure
outside a laboratory setting, which is a future aim for this
work. The contributions of the symmetry learning controller
used in this study are the use of data-driven iterative learning
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Fig. 1. Real-time PAFP control system architecture. Sensor measurements are fed to the control and state estimation algorithms. Global thigh
angle estimations θh from the IMU signals and heel strike detections from the force plate signal vGRF are used to compute the phase-based state
estimation. The phase variable value is then mapped to an instance along the gait cycle and its corresponding virtual setpoint signal value θv via
a lookup table. The gait cycle information and the PAFP angle θa, measured from an encoder sensor, are then fed into the impedance-inspired
feedback control law (Equation (1)). This formula outputs a desired active ankle torque τa which is fed into the inverse actuator model, which
computes the motor current command id. Finally, this command is sent to the motor servo controller and the motor generates an assistive torque τm.

and phase-based state estimation to build a personalized and
time-invariant impedance control law for the user.

A. Symmetry Control Strategy
1) Impedance-Inspired Feedback Control Law: This work

proposes an impedance-inspired strategy for real-time feed-
back control of PAFPs. Impedance-based control was chosen
since it is a flexible strategy based on the dynamic relation-
ship between a change in the position of a joint and the
corresponding torque response [26]. This allows the incor-
poration of both the motion and torque of the robotic joint
into the control strategy at the same time. For this reason,
impedance control is particularly well-suited for human-robot
interaction and environmental interaction tasks. Additionally,
prior research has shown that the human ankle displays
time-varying mechanical impedance behavior [27], [28]. Thus,
an impedance-based PAFP control law is biologically-inspired
and has the potential to emulate human ankles. In order to
adapt the control command signal to achieve the desired active
assistance from the PAFP, an impedance-inspired formula was
used as a feedback control law.

τa(t) = K (θa(t) − θv(t)) (1)

where K is the virtual ankle stiffness parameter, θa is the
prosthetic ankle angle, and θv is a virtual setpoint signal. The
desired active torque τa is then used within an inverse model
of the prototype PAFP’s actuator to produce a motor control
command. Damping and inertia parameters were neglected
from Equation (1) since stiffness dominates ankle behav-
iors within the sagittal plane [27], [28], and to reduce the
overall controller complexity. The prosthetic ankle angle θa

was measured in real time using an ankle-mounted 12-bit
capacitive encoder (CUI Devices, AMT113S-V). The virtual
setpoint signal θv is a learned trajectory that varies across
the gait cycle and adjusts the quasi-stiffness behavior of
the PAFP. In hardware, the virtual setpoint is discretized
and encoded as a lookup table indexed by percent gait,
which is estimated in real-time with the phase-based state
estimator (§II-A.2).

In a previous study, the stiffness gain was defined as a
time-varying parameter to estimate ankle impedance [28].
However, the impedance parameters were fit using data from
ten young, active, and non-disabled subjects. It is well-
understood that gait mechanics vary widely not only between
those with and without amputations, but also within the
general population [10]. Therefore, rather than relying on
pre-determined stiffness trajectories, we instead chose to vary
the virtual setpoint signal θv across the gait cycle and person-
alize its trajectory based on each user’s unique biomechanics
(i.e., iteratively adapt the trajectory based on ankle angle
asymmetry measured by a motion capture system). Since
θv is time-varying, any arbitrary quasi-stiffness (i.e., ankle
torque-angle relationship) during walking can be achieved
during walking. The virtual stiffness parameter K was held
constant during this experiment. The value of the virtual
stiffness parameter was determined based on pilot testing on a
bench setup prior to human subject experiments. Quantifying
the time-varying behavior of K and the prosthetic ankle’s
response to perturbations is outside the scope of this study.
Finally, a static inverse actuator model, derived based on
the PAFP’s physical geometry, and the motor and drivetrain
characteristics, was implemented to compute the motor current
command given the desired active torque.
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Fig. 2. Offline data processing and symmetry learning protocol. Motion capture marker and force plates data are processed offline after the
completion of an experimental walking trial. Joint kinematics and kinetics are computed with inverse dynamics principles. In addition, heel strike
events are computed from the force plate data and all biomechanical data are time-normalized using these instances. The time-normalized error
signal ek is then computed (Equation (5)) and fed into the iterative learning algorithm (Equation (3)). This algorithm outputs the updated virtual
setpoint signal θv for the next walking trial. A pattern generator is then used to map the gait cycle to θv in the form of a lookup table. This new lookup
table is then deployed to the PAFP’s embedded system software for the next walking trial.

2) Phase-Based State Estimation: Since ankle impedance
varies as a function of the gait cycle, the controller developed
in this work included a phase variable calculator which acts as
a time-invariant gait phase state estimator [29]. This technique
required that the phase variable have a monotonic trajectory
during steady state walking and be able to be computed from
an unactuated state of the system. For this study, continu-
ous phase-based control of the virtual setpoint trajectory is
synchronized to the prosthesis-side thigh angle [30]. Using
thigh angular position and its integral, the phase variable ϑ is
computed in real time as

ϑ[t] =
atan2(z Y [t], X [t]) − ϑ+

ϑ− − ϑ+

X [t] = − (θh[t] − γ )

Y [t] = X [t] dt + Y [t − 1]

(2)

where θh represents the global thigh angle measured by a
single thigh-mounted inertial measurement unit (IMU) sensor.
Variables ϑ+ and ϑ− normalize the phase variable trajectory
across the gait cycle, i.e., ϑ ∈ [0, 1]. The “+” and “–
” superscripts indicate the phase variable starting value of
the prosthetic-side stance period and ending value of the
prosthetic-side swing period respectively. The phase variable is
also clipped at an upper limit of 1 in order to avoid wraparound
effects (i.e., discontinuities) caused by variations in thigh angle
range of motion across gait cycles. Once the phase variable
reaches a value of 1, it is held at this value until the next heel-
strike (HS) event occurs which then resets the value to 0. The
parameter z is a scale factor that increases the monotonicity of
the phase variable while γ is a phase shift value that centers
the thigh orbit around the origin of the phase portrait. These
adaptive parameters are computed at each HS event based on
the maximum and minimum values of X and Y across the
previous gait cycle.

HS events were computed using vertical ground reaction
force (vGRF) signals from an instrumented treadmill. The raw
vGRF signal is digitally filtered using two digital low-pass
Butterworth filters in series, each with a cutoff and sampling
frequency of 50 and 500 Hz respectively. An estimate of the

force rate of change is calculated as the difference between the
first low-pass filter’s output and the final filtered output. A HS
event is determined by thresholding the vGRF signal and the
force rate of change estimate. The vGRF signal during walking
typically consists of two peaks: the impact peak during weight
acceptance and active peak at push-off. In order to avoid false
HS detection during the active peak, the vGRF signal was
clipped at a magnitude lower than the magnitude of the two
peaks. This resulted in a force rate of change signal with two
distinct peaks which could be easily thresholded and used to
estimate HS events.

3) Offline Data-Driven Iterative Learning: The goal of this
study was to develop a controller that targets gait asymmetries.
To achieve this, the controller must produce a control signal
such that the dynamics of the PAFP match the dynamics of
the biological ankle (i.e., intact ankle). The control signal (i.e.,
virtual setpoint trajectory), which modulates the active torque
produced by the PAFP, is computed using Equation (1) where
θv modifies the dynamical behavior of the PAFP over the gait
cycle. An offline iterative learning control (ILC) method is
used to update θv over learning iterations k in the frequency
domain:

θv,k+1(ω) = θv,k(ω) + ρk(ω) ek(ω) (3)

where ρk is the adaptive learning gain, ω represents the fre-
quency components of the discrete Fourier transform that form
the signals, and ek is the error signal. Note that the frequencies
ω depend on the discretization of the time-normalization and
the mean stride period T (i.e., mean time between HS events
computed per walking trial), and are related by

ω ϵ
[
0 ω0 2ω0 . . . N

2 ω0
]
, ω0 =

2π

T
(4)

where N is the number of points in the time-normalized gait
cycle and ω0 is the fundamental frequency of the mean stride
period. Note that these frequencies are computed from the
signals and not directly from cadence (e.g., stride period).

The error signal ek in Equation (3) represents the ankle
kinematic asymmetry, measured offline by an optical motion
capture (MoCap) system, and is defined as the difference
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between the time-normalized mean biological ankle angle
signal θ̄b,k and the mean prosthetic ankle angle signal θ̄p,k ,

ek(ω) = θ̄b,k(ω) − θ̄p,k(ω) (5)

In practice, the mean ankle kinematic signals at each iteration
k are computed over an experimental 30-second walking trial
by taking the mean value, at each discrete percent gait, over all
full gait cycles. It was determined in preliminary experiments
that 30-seconds of walking allowed for a sufficient number of
steps to compute an average with high certainty, while not too
long as to tire the participant.

Ideally, the ILC update law (Equation (3)) will be able
to achieve convergence of the error signal by repeatedly
executing the walking task. Convergence of the update law
can be achieved at each frequency ω provided the reference
signal (i.e., θ̄b,k) is fixed. Since the control signal affects
the biological kinematics θb, the reference signal can vary
and thus, it may not be possible to guarantee convergence
under these criterion. The reference signal θ̄b,k is driven
by the human-response dynamics so the frequency-dependent
learning gain ρk must be adapted such that the control signal
remains bounded. The ILC update law in Equation (3) with
a fixed learning gain could result in an unbounded actuator
response, and poses a safety risk for the user.

To address this issue, an adaptive gain is applied to the
ILC update law. The main purpose of the adaptive learning
gain is to avoid potential divergence of the control input u
which could risk the safety of the user. In previous studies,
iteration conditions and convergence were investigated based
on the selection of a frequency-dependent learning gain ρk
for a human-robot collaborative task [31]. The results showed
that the error achieved by the proposed adaptive learning
gain was less than that of closed-loop tracking error. This
adaptive learning gain monitors the output tracking error
within the frequency domain across training iterations and
reduces the magnitude of the gain if the tracking error
increases. If the error e is decreasing at a specific frequency
in training iteration k, then the learning gain at the specified
frequency will not change from iteration k − 1 to k. How-
ever, if the error increases at iteration step k for a specific
frequency, then ρ at that frequency is scaled down until it
converges to zero or the error decreases below the value
at iteration step k − 1. By monitoring the kinematic error
signal ek and adjusting the frequency-dependent learning gain
ρk accordingly, the algorithm accounts for adaptations in
the human response to the controller and the potential for
divergence in the control signal is eliminated. Note that the
frequency-dependent learning gain ρk adapts to changes in the
error signal ek offline to create a new virtual setpoint signal
θv that is deployed to the PAFP system for the next walking
trial. The adaptive learning gain is not used in the real-time
PAFP control law and thus, does not adapt during stride.

B. Prototype PAFP Device
A prototype PAFP was used in this research and Fig. 3

shows the device and its subcomponents [25]. A cam-based
spring acts across the ankle joint and provides a nonlinear elas-
tic response which mimics the elastic response of a biological

Fig. 3. Illustrative rendering of the prototype PAFP with major com-
ponents labeled (note some components are transparent for ease in
visualization).

TABLE I
SUBJECT-SPECIFIC PARAMETERS

ankle [32]. The spring acts in parallel to the powered drivetrain
which provides active torque and consists of a motorized
link acting across the shank and ankle links. Including a
passive element parallel to the actuator decreases the power
requirements on the active component and also allows the
device to function without assistance from the motor (i.e., acts
as a passive device). The drivetrain consists of the following:
a brushless DC motor, attached to a pin joint on the shank
link, in series with a planetary gearhead, and followed by a
linear ball screw attached to a pin joint on the ankle link that
acts with a moment arm from the ankle joint. A compliant
bumper, located between the ball screw nut and ball screw
housing, protects the transmission from shocks, i.e., it engages
near maximum plantarflexion. The mass of the prototype is
3.01 kg.

C. Human Subject Experiments
The experimental setup consisted of an AMTI split-belt

force-sensing treadmill, Vicon MoCap system with 16 Vantage
V8 cameras, 63 reflective MoCap markers, and a human
subject wearing the prototype PAFP connected to a custom
embedded system and tethered power supply. Marker trajec-
tories and ground reaction force (GRF) data were recorded
at 120 Hz and 1200 Hz respectively. The raw data were
filtered using a digital, fourth order, low-pass Butterworth
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Fig. 4. Experimental protocol divided into three parts: setup (fitting, alignment, and choosing the bias current), walking trials (data collection), and
offline computations (data processing and learning algorithm).

filter with cutoff frequencies of 25, 6, 50, and 50 Hz for
kinetics, kinematics, GRF, and embedded system signals (i.e.,
motor currents and sensor signals) respectively. A custom
15-segment whole body model was created in Visual 3D and
the markers on the prosthetic limb mirrored the markers on the
intact limb. The model was adjusted by adding the difference
between the masses of the prosthesis and the default foot
segment to the prosthesis side shank mass, thereby manually
compensating for the prosthesis mass within the model. The
default segment masses are calculated as fractions of the total
mass of the subject [33]. This method does not perfectly
capture the inertial properties of the prosthesis. However, since
the total prosthesis mass is concentrated along the shank and
since inertial compensation model choice has been shown
to have a small effect on the measured outcomes during
stance phase [34], the error is likely small. Joint angles were
calculated using inverse kinematics and joint moments were
calculated using standard inverse dynamics [35] and normal-
ized by the subject’s body mass. Joint power contributions
from deforming structures of the prosthesis were taken into
account with the unified deformable segment method, enabling
a better direct comparison between the variable prosthetic
structural components and the anatomical properties of an
intact ankle-foot system [36].

The prosthetic device was fit to the amputated limb of each
subject by a certified prosthetist. The protocol was performed
with two subjects with unilateral traumatic transtibial ampu-
tation who provided written informed consent to participate
in the experimental protocol, approved by the Department
of Veteran Affairs Institutional Review Board. Table I shows
the subject-specific parameters. The subjects were healthy
and active males (K3-level). This study can demonstrate
the algorithm’s performance, but future studies with more
subjects will be needed to make broad conclusions about the
controller’s efficacy.

1) Protocol: Fig. 4 visualizes the experimental protocol and
includes time estimates for each stage. At the start of the
experiment, the prototype PAFP was fitted to the subject
and they were asked to choose a bias current (i.e., offset in
motor current that effectively shifts the equilibrium) for the
device which felt comfortable during static standing. Due to
the preload of the PAFP’s nonlinear spring, which causes the
prosthetic foot’s resting position to be plantarflexed, this bias
current was necessary in order to overcome the preload and
adjust the neutral position of the prosthetic foot, which helps
avoid toe drag during swing phases. Since the proposed control
strategy is based on an iterative learning algorithm, there is no

guarantee that the controller would learn to lift the toe high
enough to clear the ground during swing for earlier learning
iterations. This could risk the safety of the user and for this
reason, we opted for the more stable and predictable approach
of choosing a constant bias current before data collection and
applying this current during swing phases. Choosing the bias
current value took approximately 10 minutes. Afterwards, the
subject walked on the treadmill at their self-selected speed
for approximately 5 minutes and during this period, the bias
current was then verified and adjusted further if necessary.
Once the bias current had been determined, the experimental
walking trials were collected, where each learning iteration k
consisted of 30 seconds of steady state walking. Note that a
control signal was not used during the first learning iteration
(k = 0) and collected data from this trial represented the
passive condition.

After each learning iteration k, the subject was allowed
to rest while data were processed. HS events were identified
post-hoc from the force plate data. All data were then time-
normalized, via interpolation, to both 100% of gait and 100%
of stance for statistical analysis. The mean time-normalized
biological ankle angles and mean time-normalized prosthetic
ankle angles were used to compute the error signal for the
iterative learning algorithm. Since the PAFP is controlled via
impedance control only during stance, the error signal was set
to zero during 70-100% of the gait cycle. Using this technique,
the swing phase errors did not directly influence the learned
signal and the algorithm could better make improvements to
the virtual trajectory during the phase where the controller is
active. After each learning iteration, the new virtual setpoint
trajectory was uploaded to the PAFP’s embedded system. Prior
to collecting the next trial, the subject first began walking
while the PAFP was in its passive mode. Next, the new control
signal was introduced over the course of 30−60 seconds (i.e.,
by linearly scaling the signal). Once the subject had walked
with the new control signal for 1-2 minutes, data for the next
walking trial were collected. This process was repeated until
the measured error signal could no longer be reduced, i.e., the
learning signal converged.

2) Data Analysis: For this study, lower-limb joint kinematics
and kinetics were processed in Visual 3D. The processed
data were then exported to MATLAB for further analysis.
For each gait variable, each individual gait cycle is assigned
an asymmetry measurement (AM) by computing the average
norm difference of the step of interest and the step of the
contralateral limb occurring immediately before and after the
step of interest. The AM for gait cycle s of some gait variable
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Fig. 5. Time domain evolution of the learned virtual (setpoint) trajectory θv,k (left column), iteration error ek (center column), and relative error
magnitude (right column) shown for each iteration k for both subject A01 (top row) and A02 (bottom row). Iteration k = 0 is black and subsequent
iterations are increasingly lighter shades of red, as denoted by the X-axis label of the relative error magnitude plots (right column).

X can be computed as

AM(Xs) =
1
2
∥Xs − Y −

∥2 +
1
2
∥Xs − Y +

∥2 (6)

where X is the time series data of the gait variable of interest
(e.g., prosthetic ankle angles) over gait cycle s and Y is the
corresponding time series data of the contralateral limb (e.g.,
biological ankle angles). The “−” and “+” superscripts of
variable Y indicate the vectors of data for the gait cycles before
and after gait cycle s respectively. The 2-norm is defined as
∥ · ∥2 =

√
(·)2. Note that this process is applied to each gait

cycle within each walking trial and the result is a distribution
of AMs for each trial. Therefore, it is possible to conduct
statistical analysis comparing the AM distributions between
experimental conditions (i.e., passive and active). However,
due to the small sample size of this study (n = 2), the
statistical results cannot be generalized to the entire target
population. In an absolute best-case scenario (i.e., perfect
symmetry), the AM value is equal to 0.

Hypothesis testing to detect pair-wise differences within
each subject and overall differences for each outcome (e.g.,
peak PAFP angles, ankle angle asymmetry, peak PAFP powers,
ankle power asymmetry, peak intact KAM, or peak intact
HAM) and experimental condition (i.e., passive or active) were
carried out using t-tests. The Benjamini-Hochberg correction
was applied to the p-values to maintain a false discovery rate of
5%. No outliers were removed from the data using manual or
systematic methods. The statistical significance criterion was
p < 0.05. Results are presented as means for each outcome
by condition and mean pairwise differences among conditions.

III. RESULTS

This research demonstrates the potential for personalized
PAFP control strategies. Hypothesis (1) was supported with
significant reductions in ankle angle asymmetry when powered
assistance was introduced. Hypothesis (2) was partially sup-
ported: powered assistance reduced asymmetries in ankle

power for subject A02 but not for subject A01. Hypotheses (3)
and (4) were supported with significant reductions in KAM
and HAM on the intact limb when comparing the active
condition to the passive condition.

A. Algorithm Performance
Fig. 5 shows the time domain signal traces at each learning

iteration k. The learning algorithm produced bounded control
signals for both subjects and all iterations k despite human
adaptations. The differences in the virtual setpoint trajectory
(left column of Fig. 5) across the two subjects is very apparent,
which supports the concept that personalization is important
for PAFP controllers. Also, each subject adapted to the con-
troller very differently, indicating that each individual has their
own ideal virtual setpoint trajectory. Subject A02’s virtual
setpoint trajectory noticeably changed only at the first learning
iteration (i.e., k = 1) and changes in subsequent iterations
were very small. Comparatively, subject A01 adapted much
later into the experiment. Despite these variations in learning,
the learning algorithm was able to avoid divergence in the
control signal and reduce the error signal (center column
of Fig. 5). The relative magnitude of each iteration error,
calculated as ∥ek∥2 /∥e0∥2, can be seen in the right column of
Fig. 5. In subsequent analysis, the final iterations, k = 6 and
k = 3 for A01 and A02 respectively, are used as the active
condition trials.

B. Ankle Angle
Fig. 6 shows that the active assistance had an effect on

the prosthesis-side ankle kinematics. There was no significant
change in peak prosthetic plantarflexion angle or the peak
intact plantarflexion between the passive and active conditions.
The active condition significantly reduced the peak prosthetic
dorsiflexion angle when compared to the passive condition
(p < 0.01), however, this result may be skewed due to the
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Fig. 6. Sagittal plane ankle angles for the two subjects during the two experimental conditions. Width of the traces represent ±1 standard deviation.
Introducing active PAFP assistance resulted in a stabilization of the intact ankle (i.e., reduction in standard deviation) for subject A01 and a significant
increase in prosthetic ankle plantarflexion during late stance for subject A02.

TABLE II
MEAN ANKLE ASYMMETRY OUTCOME MEASURES

large reduction in prosthesis-side ankle dorsiflexion during
subject A02’s experiment (bottom row of Fig. 6).

Table II shows the ankle angle asymmetry measurement
outcomes within each subject and overall. Ankle angle asym-
metry was significantly different between the two conditions,
with the active condition having lower ankle angle AM value
(i.e., the active condition achieved better ankle angle sym-
metry). These results indicate that the symmetry controller
successfully targeted and minimized ankle angle asymmetries.

C. Ankle Power
Peak positive and negative prosthetic ankle power out-

comes were significantly altered across the two conditions
(see Fig. 7 and 8). Peak positive prosthetic ankle power (i.e.,
ankle power generation) increased by 0.52 W/kg on average
from the passive to active condition (p < 0.01). Negative
prosthetic ankle power (i.e., ankle power dissipation) also
significantly decreased by an average of 0.26 W/kg between
these two conditions (p < 0.01). Peak PAFP power outcomes
are shown in Table III and Fig. 8. Table II shows the ankle
power asymmetry measurement outcomes within each subject
and overall. Overall, the active condition did not significantly

reduce ankle power asymmetry when compared to the passive
condition (p = 0.21). We found that ankle power asymmetry
significantly increased for subject A02 (p < 0.01), but not for
subject A01 (p = 0.77).

D. Osteoarthritis Risk Factors in Intact Limb
Fig. 9 shows the peak intact-side KAM and HAM outcomes

for the subjects and conditions. The active condition reduced
the mean intact peak KAM from 0.48 Nm/kg to 0.43 Nm/kg,
but did not reach the level of significance (p = 0.14).
However, within each individual intact peak KAM was
significantly reduced from 0.68 Nm/kg to 0.56 Nm/kg
(p < 0.01) and from 0.29 Nm/kg to 0.26 (p = 0.01) for
A01 and A02, respectively. Differences in peak HAM were
also statistically significant across the two conditions. The
active condition reduced the mean intact peak HAM from
0.54 Nm/kg to 0.48 Nm/kg (p < 0.01). Table III shows the
peak intact KAM and HAM outcomes.

IV. DISCUSSION

There is currently no single standardized approach for
reliably tuning powered lower-limb prostheses [21]. Our
results indicate that the proposed symmetry controller, which
combines an impedance type control law with a phase variable
approach, achieves self-tuning behavior via iterative learning
control. The controller demonstrated that directly targeting
ankle kinematic symmetry through an impedance controller
with a self-adjusting virtual trajectory is sufficient to realize
many of the biomechanical advantages observed with expert
tuning [24]. This work provides a new avenue for exploration
to achieve advanced, capable, and personalized lower-limb
prostheses.

A. Biomechanics
There was no significant change in peak prosthetic plan-

tarflexion angle between the passive and active conditions but
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Fig. 7. Sagittal plane ankle power for the two subjects during the two experimental conditions. Ankle power is normalized by subject mass. Ankle
power generation and dissipation are represented as positive and negative values respectively. Width of the traces represent ±1 standard deviation.
For both subjects, introducing active PAFP assistance resulted in significantly greater peak positive prosthetic ankle power during late stance and
reductions in negative prosthetic ankle power during mid-stance.

TABLE III
MEAN PEAK OUTCOME MEASURES

this could be attributed to the different trends in each subject.
Qualitatively, it is evident that the prosthetic ankle is actively
plantarflexed near 70% gait during the active condition for
subject A02. This was true for subject A01 as well, albeit, to a
much lesser degree. The increase in plantarflexion is notable
and suggests the advantages of PAFPs since common passive
prostheses are not able to actively promote plantarflexion.

The active condition resulted in modified biological ankle
angle trajectories for both subjects when compared to the
passive condition (Fig. 6), although our statistical tests did
not reach significance. This finding supports the notion that
the behavior of the limbs are coupled, therefore, modifying
and improving the behavior of the prosthetic limb can benefit

the biomechanics of the intact limb [2], [15], [16]. Even
though the prosthesis ankle kinematics look similar between
conditions for subject A01, the active assistance appeared to
decrease the variance of their biological ankle kinematics.
This can be observed by the decrease in standard deviation
(red shaded regions in Fig. 6) from the passive condition
to the active condition. This observation further illustrates
how improving the functionality of the prosthetic limb can
benefit the other limb as well [2], [15], [16]. Furthermore, the
reduction in peak prosthetic dorsiflexion angle as a result of
active assistance suggests that the algorithm learned to support
the users throughout mid-stance.

The results of this experiment also indicate that the kine-
matic symmetry learning controller improves prosthetic ankle
power outcomes (i.e., increases positive power and decreases
negative power). Interestingly, peak prosthetic ankle power
at late stance significantly increased even though the learn-
ing algorithm was never explicitly programmed to prescribe
an increase in ankle power. Yet, this behavior emerges
from the symmetry controller, which is very desirable since
ankle plantar flexors produce over 80% of the mechani-
cal power generated during walking [1]. However, many
clinically-prescribed prostheses fail to offer proper ankle push
off power. This further supports the notion that powered
ankle-foot prostheses can better emulate the dynamics of a
human ankle. In this case, the learning algorithm is effectively
improving PAFP power completely on its own using only ankle
angles as a metric.

The symmetry controller also adapted to significantly reduce
peak KAM and HAM in the intact limb without explicit
programming. The reduction in these two well-studied risk
factors associated with OA illustrate the clinical benefits of
PAFPs and the proposed control method. All lower-limb joint
biomechanics are affected by PAFP control as evident by this
research, even when only targeting ankle angle asymmetries.
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Fig. 8. Peak negative (dissipative) and positive (generative) prosthetic
ankle power outcomes for each subject and the two experimental
conditions. Each marker represents the outcome for a particular gait
cycle and the asterisks indicate statistical significance (p < 0.01). The
active condition resulted in significantly lower peak negative prosthetic
ankle power outcomes and significantly greater peak positive pros-
thetic ankle power outcomes for both subjects.

This suggests that lower-limb joints are strongly coupled and
therefore, improving prosthetic ankle function via powered
assistance can reduce compensations at the hip and knee.

B. Limitations and Future Work
The biological ankle position adapted significantly during

learning, particularly for subject A01’s experiment. This is
evident by the smaller standard deviation of the ankle angle
results for the active condition compared to the passive con-
dition. However, since the passive condition was the first
condition tested, it is possible that the participant grew accus-
tomed to the device over time and this could explain the
lower variance in the active condition’s ankle angle results.
Conversely, it is possible that not enough time was given to
rest between walking trials. Subject A01 experienced some
swelling and pain in the residual limb due to the demands
of the experimental protocol, which could have affected the
results at later learning iterations. Additionally, it is possible
that not enough time was given to acclimate to the learned
signal at each iteration before collecting data. Furthermore, the
algorithm is sensitive to the frequency-dependent error. As the
error grows in certain frequencies, on the next iteration, those
frequencies will become less sensitive to error and therefore,
stop changing. If, on the other hand, the error continues to
decrease at a certain frequency, learning will continue in those
frequencies. It is likely the error for subject A02 increased for
many (but not all) of the frequencies at each iteration but
decreased for subject A01.

While the current experimental protocol shows that symme-
try ILC has a lot of potential to improve walking mechanics,
future experimental protocols can be improved. The underlying
ILC algorithm [32] is limited in the number of possible iter-
ations since the frequency-dependent learning gain is reduced
aggressively if an increase in error is observed. The conserva-
tive nature of the algorithm is intended to prevent divergence
of the control signal, however, future implementations with
some relaxations may provide enhanced learning, including the
possibility of more learning iterations. A long-term protocol,

Fig. 9. Peak intact-side knee and hip abduction moment outcomes
for each subject and the two experimental conditions. Each marker
represents the outcome for a particular gait cycle and the asterisks
indicate statistical significance (p < 0.01). The active condition resulted
in a significant decrease in peak intact-side knee and hip abduction
moments for both subjects.

where more learning iterations are collected over the course
of multiple sessions, would allow more time for the user
to acclimate to the controller. This would also assist in
convergence of the learned signal.

A limitation of our phased-based state estimation is the
requirement that the phase variable, computed from the
prosthesis-side thigh angle, have a monotonic trajectory. While
this requirement was not violated during our preliminary work,
simulations, and experiments involving steady-state walking
on a treadmill, other situations where the user’s gait is not
consistent may require a different approach. The use of rigid
body biomechanics models to calculate ankle angles is also
limiting [36]. Future studies should also include experiments
with more than two subjects in order to analyze more meaning-
ful and generalizable biomechanical trends across conditions.
The statistical results from this study only apply to the sample
population and cannot be generalized to the larger population
with transtibial amputation. In addition, adding new exper-
imental conditions (e.g., load carriage, stair walking, ramp
walking, etc.) may demonstrate the benefits of the symmetry
controller to a greater degree.

The proposed method still requires that the subject complete
an experimental protocol in the laboratory. However, by elim-
inating the need for iterative, multi-parameter tuning, there
is much less lab time effort when compared to the process
of tuning state-based controllers. The proposed symmetry
learning control strategy avoids key limitations that could
exclude PAFPs from future clinical application including the
need for subject-specific tuning, non-disabled trajectory data,
and allows both the human and controller to jointly adapt.

A limitation of the proposed learning approach is the use
of inverse kinematics for estimating ankle angle asymmetry.
This is restrictive since learning can only be conducted in a
gait laboratory setting. While it is possible to estimate the
ankle angles in real-time with external sensors, we opted to
use MoCap because of its proven reliability, accuracy, ease
of use, and direct availability to the research team. Our goal
was to demonstrate the underlying algorithm and therefore we
sought to minimize confounding challenges when possible.
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Future embodiments would fully embed the required sen-
sors for online implementations. Improvements to the inverse
dynamics model can be made (e.g., accounting for the elastic
behavior of the foot keel, using the PAFP mass as a model
parameter, and setting a custom ankle joint center for the
PAFP) and this is an ongoing research topic in the field of
biomechanics [36]. Furthermore, the current learning protocols
are run offline since MoCap data needs to be manually labeled
and processed. Future development could include the use of
a high-fidelity model (e.g., neural network) or sensors (e.g.,
wearables) to enable online HILO methods (e.g., [37]). This
way, study subjects could use the PAFP controller outside
the laboratory and we can assess its benefits in this setting.
Furthermore, long-term learning protocols could be conducted
with continuous learning and without any reliance on optical
MoCap, which could provide insights into long-term co-
adaptations between users and PAFPs.

In this study, despite the experimental protocol only includ-
ing steady state walking, co-adaptations were observed as
evidenced by the intact ankle kinematics adapting as the
control signal was iteratively modified (results not shown).
Future implementations should consider co-adaptations, for
example, to increase or decrease the learning time scale
(i.e., time between updates) and allow the human user to
fully adapt to the control signal before the next learning
iteration. One possibility is to monitor the rate of change of
the intact ankle angle adaptations and scale the timing of the
controller updates accordingly. This could further decrease the
required time to complete the experiment (if the human adapts
quickly) and prevent a situation where the learned signals
diverge (if the human adapts slowing), e.g., applying a new
learning update before the human fully adapts could produce a
divergent control signal. Another improvement to the control
system would be to include a phase-varying stiffness parame-
ter. In the current control scheme, only the virtual setpoint
trajectory is varied and therefore, only the quasi-stiffness
characteristics of the PAFP can be modified [38]. A phase-
varying stiffness parameter could be used to render biomimetic
ankle impedance properties while the learned virtual setpoint
trajectory used in this study would adapt to personalize PAFP
assistance to each user. However, ankle impedance during
walking for people with unilateral transtibial amputation needs
to be determined before implementing a phase-varying stiff-
ness parameter into the impedance control law. In addition,
a more complex impedance model that includes dampening is
worth exploring in the future. Another avenue is addressing the
ideal virtual trajectory, which is unknown and most likely per-
sonalized for each individual. Impedance system identification
methods that include estimation of a virtual trajectory could
provide estimates on the mean and variance, subsequently
bootstrapping our algorithm with an initial guess.

V. CONCLUSION

This work proposes a symmetry control strategy for robotic
ankle-foot prostheses. The novelty of this methodology is the
personalization of an impedance-inspired feedback control law
based on each individual’s unique gait data. This data is used
to adjust the dynamics of the PAFP to match the dynamics of

the individual’s biological ankle. By automatically tuning the
control trajectory, this approach does not rely on non-disabled
gait data, which is a common limitation found in state-
of-the-art PAFP controllers. In addition, this method does
not require precise tuning of a large amount of parameters.
An experimental study (n = 2) was conducted to test if the
learning algorithm and control strategy would reduce ankle
asymmetries and loading factors on the intact limb associated
with OA. The results indicate that the proposed control method
was able to significantly improve ankle angle and ankle power
symmetry when compared to using the prototype PAFP with
no active assistance. Additionally, the proposed approach sig-
nificantly reduced intact-side KAM and HAM when compared
to the passive condition. Therefore, this research demonstrates
that designing controllers to improve symmetry about the
ankle joints can result in improvements at other joints of the
lower limb (e.g., intact ankle, knee, and hip), which motivates
further investigation toward personalized PAFP symmetry
controllers.
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