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A Novel Sleep Staging Method Based on EEG
and ECG Multimodal Features Combination
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Abstract— Accurate sleep staging evaluates the quality
of sleep, supporting the clinical diagnosis and intervention
of sleep disorders and related diseases. Although previ-
ous attempts to classify sleep stages have achieved high
classification performance, little attention has been paid to
integrating the rich information in brain and heart dynamics
during sleep for sleep staging. In this study, we propose a
generalized EEG and ECG multimodal feature combination
to classify sleep stages with high efficiency and accuracy.
Briefly, a hybrid features combination in terms of multiscale
entropy and intrinsic mode function are used to reflect
nonlinear dynamics in multichannel EEGs, along with heart
rate variability measures over time/frequency domains,
and sample entropy across scales are applied for ECGs.
For both the max-relevance and min-redundancy method
and principal component analysis were used for dimen-
sionality reduction. The selected features were classified
by four traditional machine learning classifiers. Macro-F1
score, macro-geometric mean, and Cohen kappa value are
adopted to evaluate the classification performance of each
class in an imbalanced dataset. Experimental results show
that EEG features contribute more to wake stage classifi-
cation while ECG features contribute more to deep sleep
stages. The proposed combination achieves the highest
accuracy of 84.3% and the highest kappa value of 0.794 on
the support vector machine in the ISRUC-S3 dataset, sug-
gesting the proposed multimodal features combination is
promising in accuracy and efficiency compared to other
state-of-the-art methods.
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I. INTRODUCTION

SLEEP takes up the majority of our lifetime. Well-
organized sleep at night ensures the well-function of the

body and matters in maintaining physical and mental health
[1], [2], [3]. Inversely, insufficient/ineffective sleep deteriorates
cognition, learning, and memory [4]. As the population suffer-
ing from sleep disorders is on the rise, developing multimodal
sleep staging techniques (e.g., light sleep and deep sleep) are
of special importance to monitoring health in the immune
system, memory, metabolism, etc. [5], [6], [7].

Polysomnography (PSG) is commonly manually scored by
sleep experts and has multiple types of physiological sig-
nals including electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), and electrocardiogram (ECG)
[8]. Typically, PSG recordings are divided into 30-s epochs,
and each epoch is manually scored by sleep experts with five
stages being classified, i.e., awake (W), rapid eye movement
(REM), and non-REM stages (N1, N2, and N3) [9]. Such a
manual scoring process is quite time-consuming and highly
depends on personal clinical experience. Thus, to address the
above problems, it is an urgent need to develop automatic
methods for sleep classification tasks.

II. RELATED WORKS AND PRELIMINARY

A. Related Works
Automatic sleep staging methods or systems can greatly

improve the efficiency and accuracy of traditional sleep scoring
and monitoring, meanwhile to further support the diagnosis
of sleep disorders. Many studies have attempted to develop
automated sleep stage classification systems or methods based
on cutting-edge machine learning technologies, which extract
features from physiological signals, especially the EEG signal.
Recently, deep learning methods have drawn much atten-
tion to the field owing to their ability in extracting abstract
features automatically. For instance, Jia et al. [10] designed
a multi-view spatial-temporal graph convolutional network
(MSTGCN) with domain generalization for sleep stage classi-
fication, utilizing time-varying spatial and temporal features
from multichannel brain signals, and achieved an accuracy
of 89.5% and 82.1% in the MASS-SS3 and ISRUC-S3
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datasets respectively. Eldele et al. [11] proposed an attention-
based two-module architecture—AttnSleep to finely extract
features in single-channel EEG signals. A multi-resolution
convolution neural network (CNN) and adaptive feature
recalibration as the first module, then a temporal context
encoder that leverages a multi-head attention mechanism is
the second. AttnSleep achieved an accuracy of 84.4%, 81.3%,
and 84.2% in the Sleep-EDF-20, Sleep-EDF-78, and SHHS
datasets respectively, outperforming state-of-the-art models
(e.g., DeepSleepNet [12], SleepEEGNet [13], and ResnetL-
STM [14], etc.). Other pieces of literature also employed
sequential structure [15] or hybrid CNN [16] in sleep clas-
sification, which also presented a fair performance in sleep
staging. Although these studies demonstrated the potential of
deep-learning methods to sleep classification, their heavy train-
ing time cost, complicated architecture, interpretability, and
massive datasets for training prohibit deep-learning methods
from being direct application in clinical scenarios.

On the other hand, developing reliable features with a
precise physiological inference or statistical significance using
physiological signals could leave out complicated architecture
design meanwhile reduce the training procedure with much
less data. Many studies have proposed single-mode analysis
methods that rely on EEG or ECG signals; briefly, extracting
statistical, temporal, and spectral features, then adopting con-
ventional machine-learning methods, such as random forest
(RF) [17], support vector machine (SVM) [18], [19], and
linear discriminant analysis (LDA) [20], etc., for sleep staging.
For example, Hassan et al. [21] decomposed EEG segments
using Ensemble Empirical Mode Decomposition (EEMD) and
extracted various statistical moment-based features, by using
random under-sampling boosting (RUSBoost), reaching an
accuracy of 88.07%. Long et al. [22] calculated the spectral
features of RR intervals from ECG signals, improving the
discrimination ability of heart rate variability (HRV) spectral
features by increasing the spectral boundary resolution, thus
achieving higher accuracy on sleep classification. Some studies
even achieved an accuracy above 90% in the sleep classifi-
cation task. In [23], the tunable-Q factor wavelet transform
(TQWT) was applied to decompose sleep-EEG signal seg-
ments into TQWT sub-bands. Normal inverse Gaussian (NIG)
distribution modeling was then used in feature extraction along
with an adaptive boosting (Adaboost) technique as a classifier
to obtain an accuracy rate of 90.01%. Hassan et al. [24]
employed complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) and bootstrap aggregat-
ing (Bagging) methods to extract statistical features from a
single-channel EEG signal, which achieved an accuracy of
90.69% in a 5-class sleep stage classification task on the Sleep-
EDF dataset.

Although existing methods achieved high accuracy for sleep
stage classification by using traditional machine-learning tech-
niques, these methods have not solved the following points: 1)
Previous studies mainly focused on using a single-mode signal
like EEG signal only, while other electrophysiological signals
also reveal distinctive characteristics during sleep. For exam-
ple, an ECG signal can retrieve autonomic nerve system (ANS)
activity, which reflects cardiovascular activities during sleep.

Combining features from other physiological signals may
further help to improve the performance of sleep staging. 2)
Physiological signals contribute to sleep staging from various
aspects, however, little attention has been paid to elucidating
the contribution of different modalities. 3) Nonlinear dynamics
of these physiological signals across frequencies and time
scales during sleep still matter.

To address these points, we propose a novel multimodal fea-
tures combination by integrating time-frequency and nonlinear
features derived from the brain and heart during sleep. The
multimodal features combination can provide better insight
into sleep from both the central nervous system and the
autonomic nervous system, hence improving the performance
of the sleep stage classification scheme. The contribution of
this study is threefold: Firstly, we characterize crucial biomark-
ers from brain/heart oscillatory dynamics during sleep using
time-frequency analysis and nonlinear approaches, in which
the multiscale entropy method is applied to extract nonlinear
features of EEG/ECG at different frequencies or scale ranges.
Secondly, we propose an optimized generalized multimodal
features combination to drive classifiers for sleep staging.
Thirdly, we investigate the contribution of the extracted fea-
tures from each modality. We also interpret our results in terms
of the physiological meanings of the extracted features.

B. Preliminaries
1) Multiscale Entropy Method: Sample Entropy (SampEn)

is a well-known measure of entropy rate and is useful
for short-time series analysis in particular [25]. As per
Grassberger and Procaccia’s definition [26], SampEn is fun-
damentally a regularity statistic, an improvement of the
approximate entropy method, which is known to be biased
[27], [28]. Two important parameters to determine sample
entropy are the embedding dimension m and a threshold
value r [29], [30]. Computation of SampEn (m, r, N ) given
a data sequence x (n) = {x (1) , x (2) , . . . , x (N )} of length
N is as follows: Firstly, reconstruct the m-dimension vector
xm (i) (i = 1, 2, . . . , N − m + 1), where

xm (i) = [x (i) , x (i + 1) , x (i + 2) , . . . , x (i + m − 1)] (1)

Next, determine the distance between xm (i) and xm ( j), which
is defined as the maximum distance between each of the
elements in the two vectors, i.e.,

d
[
xm (i) , xm ( j)

]
= max

∣∣xi+k − x j+k
∣∣ , 0 ≤ k ≤ m − 1

(2)

For each vector xm (i), calculate the probability that any vector
xm ( j) is close to it, i.e.,

Bm
i (r) =

Bi

N − m − 1
(3)

where Bi represents the number of vectors that satisfy

d
[
xm (i) , xm ( j)

]
≤ r, i ̸= j (4)

and the density is

Bm (r) =
1

N − m

N−m∑
i=1

Bm
i (r) (5)
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Similarly, Am
i (r) =

Ai
N−m−1 and Am (r) =

1
N−m

N−m∑
i=1

Am
i (r)

represent the probability and density for xm+1 (i). The total
number of template matches in a m-dimensional ((m + 1)-
dimensional) state space within a tolerance r can be calculated
as

B (r) =
1
2

(N − m − 1) (N − m) Bm (r) (6)

And

A (r) =
1
2

(N − m − 1) (N − m) Am (r) (7)

Finally, the sample entropy is mathematically stated as

SampEn (m, r, N ) = − log
(

A (r)

B (r)

)
(8)

Classical multiscale entropy (MSE) is an extension of
SampEn to a multiscale fashion. In terms of the time series
defined above, scaled versions of x (n) are obtained by the
coarse-grain procedure. The coarse-grained time series are
denoted as {yτ } at scale τ . Then, SampEn is calculated for
sequentially scaled time series, resulting in a curve of entropy
versus scale as

yτ ( j) =
1
τ

jτ∑
i=( j−1)τ+1

x (i) , 1 ≤ j ≤ [N/τ ] (9)

2) Intrinsic Mode Function: Physiological signals comprise
multiple frequency modulations. Decomposed elementary
components provide finer insight into the key characteristics of
these frequency dynamics [31], [32]. Thus, appropriate signal
decomposition method is carefully considered in this study.

Several advanced adaptive signal decomposition meth-
ods, including empirical mode decomposition (EMD) [33],
empirical wavelet transform (EWT) [34], and the Fourier
decomposition method (FDM) [35], [36], were developed and
used for medical signal processing. Among them, the EWT
and FDM use either wavelet or Fourier basis to construct
adaptive filter banks and decompose a signal as per its spectral
characteristics. These two methods do perform competently
in nonlinear and nonstationary physiological signal analyses,
especially for FDM which invalidate the perception that the
Fourier theory fails to be used for non-stationary signal
analysis. FDM obtains decompositions by two frequency-
scan techniques, i.e., FDM-LTH and FDM-HTL, however,
this requires a relatively larger computational cost [37]. For
EWT, its empirical wavelet function may cause mode mixing
problems with the number of predefined components being
difficult to determine.

The EMD is an empirical algorithm that extracts non-sine
waves by the so-called “sifting process”. It simply requires
local extrema to generate the upper and lower envelopes for
the “sifting process”. In this study, competitive performances
among EMD, EWT, and FDM methods in signal decomposing
were carefully pre-validated. We decomposed the signal using
these methods to extract delta and alpha waves that were
further proceeded for feature extractions and performed sleep
classification tasks using these features. Our results show
that EMD achieves a better result in overall performance

and is easier to implement in terms of computational time
(presented in the “Experimental Results and Discussions”
section). Considering constructing an efficient multimodal
features combination in practical use, we use the EMD method
for feature extraction in the following analyses.

EMD unveils the nonlinear dynamics of a signal by decom-
posing it into elementary components referred to as intrinsic
mode functions (IMFs) [33]. Every IMF satisfies two prop-
erties: (1) the number of extrema and the number of zero
crossings are either equal or differ by one; (2) the mean value
of the envelope defined by the local maxima and the envelope
defined by the local maxima is constant zero. The steps of an
EMD algorithm for a given input x (t) are as follows:

(1) Generating local mean curve: the algorithm begins with
identifying all the local maxima and minima. The upper
envelope u (t) is generated by connecting all the local maxima
using a cubic spline curve. Likewise, all the local minima are
connected to obtain the lower envelope v (t). Then, the mean
m1 (t) of these two envelopes is constructed as

m1 (t) =
[u (t) + v (t)]

2
(10)

(2) Sifting process: the first step of a sifting process is to
calculate the difference h1 (t) as

h1 (t) = x (t) − m1 (t) (11)

However, given h1 (t) rarely directly satisfies the two IMF
properties to serve as the first IMF of the input. The sifting
process requires repeated on h1 (t) until it meets the two IMF
properties. After recursively applying the above step on h1 (t),
the sifting process terminated once the shortest-period com-
ponent c1 (t) is obtained. Noted the sifting process terminated
when the sum of the difference is zero. Then, c1 (t) is removed
from the input x (t) to obtain the first residue r1 (t), i.e.,

r1 (t) = x (t) − c1 (t) (12)

(3) Generating all IMFs: If the residue r1 (t) still contains
information in greater scales, it is treated as a new input to
the next sifting process. Such a process is repeated on all
IMFs ci (t) with the subsequent residues. The whole procedure
is terminated once the residue r (t) is either a constant or
monotonic slope or a function with only one extremum. When
the decomposition procedure is to the end, the input signal can
be expressed as:

x (t) =

∑n

i=1
ci (t) + rn (t) (13)

where c1 (t) , c2 (t) , . . . , cn (t) correspond to the IMFs in
order, and rn (t) is a negligible residue.

3) Time-Domain HRV Measures: Time-domain HRV mea-
sures, which analyze the variation of RR intervals through
statistical methods, are the simplest and most intuitive mea-
sures to characterize HRV. The most global HRV measure
could be the standard deviation of all NN intervals (SDNN),
which evaluates general HRV and is relatively insensitive to
small errors in scanning. Other time-domain HRV measures
characterize short-term variations in heart rate. The degree
to which HRV changes on a beat-to-beat basis is reflected
in the average change in the interbeat interval between beats
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TABLE I
FEATURES EXTRACTED FROM THE EEG AND ECG SIGNALS

(RMSSD). Heart rate also reflects the varying parasympathetic
nerve system (PNS) and sympathetic nerve system (SNS)
activities, associates respiratory frequency, and provides infor-
mation on cardiac activity during sleep [38].

4) Frequency-Domain HRV Measures: Frequency-domain
HRV features are critical indicators to reflect the activity of
ANS. Largescale underlying periodicities of every 5 min to
24 hr in the (heart rate) HR signal are reflected by ultra-
low-frequency power (ULF), while very-low-frequency power
(VLF) corresponds to a shorter scale of every 25 sec to every
5 min (i.e., 0.0033 to 0.04 Hz). In addition, VLF could imply
the underlying frequency of most sleep-disordered breathing
and periodic limb movements. Faster underlying periodicities
in HR patterns are captured by low frequency (LF) power
(0.04-0.15 Hz) and high frequency (HF) power (0.15-0.4 Hz).
The power in LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) bands
were related to the regulation of SNS and PNS nervous
systems, respectively [39]. LF/HF ratio is used to assess
changes in autonomic function between sleep stages, which
generally increases with increased SNS activity during the
transition from non-rapid eye movement (NREM) to rapid eye
movement (REM) sleep [40], thus capturing subtle changes in
different sleep stages in cardiac dynamics.

III. MULTIMODAL FEATURES COMBINATION

A. Feature Extraction
A brief description of the features used in this work is given

in Table I. A total of 40 features were extracted from each 30-s
segment, including 16 ECG features, 24 EEG features based
on two types of signal processing techniques as well as two
sets of measures associated with cardiac dynamics.

1) EEG Features: Since EEG signals behave irregularly,
entropy measures were considered to quantify the amount of
roughness captured inside a signal [41], [42], [43]. In this
study, the multiscale entropy analysis was applied to the pre-
processed EEG signals, generating a curve of sample entropy
versus scale factors. Sample entropy parameters were set to
m = 2 and r = 15% of the signal standard deviation. Then,
the areas in the delta and alpha frequency bands under the
curve were calculated, serving as the delta-entropy and alpha-
entropy features for classification. The range of scale factors
under the alpha and delta bands were calculated according to
the formula as follows [44]:

fN ,τSF =
fS,1

2 × τSF
(14)

where fN ,τSF is the frequency corresponds to the scale factor
τSF , fS,1 is the sampling frequency at time scale 1 or the
original time series.

As the frequencies of EEG components vary across different
sleep stages, grouping these components can help better sleep
staging from a spectral perspective. Therefore, the IMFs’
peaking frequency bands in delta (0.5-4 Hz) and alpha (8-
13 Hz), were extracted using the EMD method. Then, the
average envelope power of the delta- and alpha-peaking IMFs
were estimated using the Welch method. The envelope power
of delta- and alpha-peaking IMFs then served as features for
sleep staging.

2) ECG Features: The fractal and entropy methods are
commonly used in the analysis of complex systems. The
multiscale entropy method evaluates the nonlinear dynamics of
HRV, giving an insight into its complexity across time scales



LYU et al.: NOVEL SLEEP STAGING METHOD BASED ON EEG AND ECG MULTIMODAL FEATURES COMBINATION 4077

TABLE II
DETAILED DESCRIPTION OF DATASETS USED IN OUR EXPERIMENT

during sleep. Thus, MSE was also applied for ECG feature
extraction in this experiment.

RR intervals were first interpolated at a sampling frequency
of 4 Hz with the cubic spline function, to fulfill the require-
ment in data length [29], [30]. The MSE of RR intervals
at scale 1-20 was calculated, which generated a curve of
entropy versus scale. Both short (1-5) and long (6-20) time
scales of the MSE curve for RR intervals were assessed. Then,
we calculated the area under the curve in different time scale
ranges of interest, including 1-5, 6-10, 11-15, 16-20, and 1-20
as features. Sample Entropy parameters were set to m = 2,
and r = 25% of the standard deviation of an input signal.

Apart from the cross-scaled entropies, six time-domain
HRV measures and five frequency-domain HRV measures
were included as features for sleep classification. To meet the
requirement of data length for calculating HRV time-domain
and frequency-domain measures, the whole RR sequence was
segmented into sections in 5 min centered around every 30-s
sleep epoch. With a 30-s step size, every overlapping 5-min
RR sequence section belongs to a specific sleep stage, which is
the RR sequence to be analyzed for HRV measures calculation.

B. Feature Selection
The min-redundancy and max-relevance (mRMR) feature

selection algorithm was employed in a k-fold manner to
analyze the importance of features in the sleep classification
task. The mRMR feature selection is a method that selects the
features with the highest relevance to the target classes while
it minimizes the redundancy among the selected features [45].
Top-ranking features were selected and integrated based on
the weights and rankings obtained from the mRMR feature
selection method.

IV. EXPERIMENTAL PREPARATIONS

A. Dataset Acquisition
Two publicly available datasets were employed in this

experiment: 1) ISRUC-S3 dataset [46] contains 10 healthy
subjects (gender: 9 male and 1 female; age: 40±10 years).
Each recording includes 6 EEG channels, 2 EOG channels, 3
EMG channels, and 1 ECG channel. All EEG, EOG, and chin
EMG signals were sampled at 200 Hz. 2) MASS-SS3 [47]
dataset contains 62 healthy subjects (28 male and 34 female).
Each recording contains 20 EEG channels, 2EOG channels, 3
EMG channels, and 1 ECG channel. All recordings of the two
datasets were segmented into 30-s epochs, and visually scored
into five sleep stages: awake, NREM (N1, N2, and N3), and

REM sleep, by sleep experts according to the guideline of the
American Academy of Sleep Medicine (AASM) [46]. Details
of the datasets used in our experiments are summarized in
Table II. Informed consents of all subjects were obtained in
both datasets.

B. Data Preprocessing
Data preprocessing is a prerequisite for feature extraction.

Removing artifacts and noises helps improve the quality of
the extracted features, thus ensuring the accuracy of classi-
fication. For the ISRUC-S3 cohort, by the EEG and ECG
preprocessed steps, 6827 epochs were extracted in total,
of which 974 epochs were annotated as W stage, 775 epochs
as N1 stage, 2298 epochs as N2 stage, 1779 epochs as
N3 stage, and 1001 epochs as REM stage. For the MASS-
SS3 dataset, 55852 epochs were extracted in total, of which
5844 epochs were labeled as W stage, 4526 epochs as N1
stage, 27946 epochs as N2 stage, 7378 epochs as N3 stage,
and 10158 epochs as REM stage.

1) EEG Data Preprocessing: EEG signal preprocessing is
crucial for further feature extraction. Typically, Butterworth
bandpass filtering is implemented to achieve signal denoising.
Recently, several novel signal denoise techniques have been
proposed by using adaptive signal decomposition methods
like FDM [48], which can effectively remove baseline wander
and artifacts that are commonly encountered in physiological
signals. Let the FDM signal denoise method as an example,
it decomposes a signal into Fourier intrinsic band func-
tions (FIFBs) by frequency scanning. Baseline wandering and
power-line interference occur in a very low-frequency range
(< 0.7 Hz). By removing corresponding components in FIFBs
and reconstructing signals, artifact removal can be effectively
carried out.

To assure a satisfactory performance in signal denoising,
we compared the denoise results of bandpass filtering with
FDM. As illustrated in Fig 1, Butterworth bandpass filtering
and FDM can both remove a certain level of baseline wander
and artifacts. The power spectra by these two methods showed
resemble landscapes, wherein the FDM presented a sharper
cutoff frequency in component elimination. Considering a
large amount of computation for frequency scanning, plus the
similarity in performances of these two approaches for sleep
EEGs, noting the very low-frequency range is beyond our
interest in EEG analyses during sleep, we implemented the
Butterworth bandpass filter for the following signal-denoising.

Fig. 2 (a) shows a representative segment of a raw EEG
signal from subject 1, which contained large and prolonged
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Fig. 1. Performance comparisons of bandpass filtering and FDM in denoising. (a-b) EEG raw data (demonstrated by subject 1) in F3 channel with
the corresponding power spectrum. (c-d) The denoised EEG oscillation by 0.5-40 Hz Butterworth bandpass filtering with the corresponding power
spectrum. (e-f) The denoised EEG oscillation by Fourier decomposition method with the corresponding power spectrum.

artifacts. These were considered to be the bad segments in
a recording that required manual removal. The corresponding
power spectrum estimated by the Welch method is shown by
the right side of the time series, presenting a higher power
in the low-frequency band (< 0.5 Hz). The low-frequency
artifacts possibly by limb movement were required to be
excluded as the next.

To this end, bad segment rejection was first performed
manually according to their amplitude. Bad segments or
epochs were interpolated using the cubic spline interpolation
method by a predetermined threshold. Then, the data was
further denoised by 0.5-40 Hz Butterworth bandpass filtering
to remove both low- and high-frequency noise. The time series
and frequency spectrum of the preprocessed data is illustrated
in Fig. 2(b), where outliers and artifacts were removed, and
low-frequency noise (< 0.5 Hz) were eliminated as well.

Then, we compared the sleep stages scoring results evalu-
ated by the two sleep experts. If consistent then the annotation
of the epoch remains as it is. Otherwise, the epoch was
removed.

2) ECG Data Preprocessing: QRS complex analysis with an
order-static filter was used to perform peak detection to extract
R waves from ECG signals [49], as shown in Fig. 3(a). Then
RR wave intervals were calculated as per the adjacent R peaks
differences. RR preprocessing is a prerequisite for extracting
reliable HRV features. To remove the outliers, each RR value
was compared to the corresponding mean value of RR intervals
(mRR) within a 21-points window centered around the tested
value. If the RR is either less than 0.5×mRR or larger than
1.5×mRR, it is replaced by mRR, otherwise, it remains as it
was. Next, each RR sequence was sectioned. Each RR record
was divided into 30-s epochs synchronizing in time with the

Fig. 2. EEG data preprocessing procedure. (a) EEG raw data (demon-
strated by subject 1) in F3 channel with the corresponding power
spectrum. Bad segments rejection was performed manually to remove
artifacts. Next, single-point outliers were interpolated under a threshold.
Then data was denoised by 0.5-40 Hz Butterworth bandpass filtering.
(b) The preprocessed data and the corresponding power spectrum.

corresponding sleep staging annotation. RR sequence before
and after the preprocessing step is illustrated in Fig. 3(b).

C. System Performance Evaluation
To estimate the classification performance of all features

combination-driven classifier, we adopted four metrics to eval-
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Fig. 3. The performance of ECG preprocessing. (a) QRS complex
detection with order-static filter was used to obtain the RR sequence.
(b) Comparison of RR sequence before and after preprocessing step.

uate the performances of various sets of features for sleep stage
classification, namely, the accuracy (ACC), macro-averaged
F1-score (MF1) and Cohen Kappa (κ) [50]. The MF1 metric
is commonly used to assess model performance on imbalanced
datasets [51]. Given the True Positives (TP), False Positives
(FP), True Negatives (TN), and False Negatives (FN) for the
i -th class, the overall accuracy ACC, MF1, and MGm are
defined as follows:

ACC =

∑K
i=1 T Pi

M
(15)

M F1 =
1
K

K∑
i=1

2 × Precisioni × Recalli
Precisioni + Recalli

(16)

where Precisioni =
T Pi

T Pi +F Pi
, Recalli =

T Pi
T Pi +F Ni

and
Speci f ici t yi =

T Ni
T Ni +F Pi

. M represents the total number of
samples, and K stands for the number of classes or sleep
stages.

We also employed per-class precision (PR), per-class recall
(RE) and per-class F1-score (F1) to evaluate each of our
combination-driven classifiers. These metrics were calculated
by treating one class as positive and the other four classes
as negative in binary classification. The metrics were then
calculated by averaging scoring values of the testing data
across k folds.

D. Classification
Multiple traditional machine learning classifiers were used

for sleep stages classification to investigate the generalization
ability of the proposed multi-modal features combination,
including support vector machine (SVM), random forest (RF),

k-nearest neighbor (kNN), and linear discriminant analysis
(LDA). To evaluate the performance of our multimodal fea-
tures combination, we performed a k-fold cross-validation
process in the classification tasks. The datasets were divided
randomly into k equal-size subsets. At each iteration, the (k-1)
subsets were used as the training and validating data and
1 subset was used for testing. In the experiment using the
ISRUC-S3 dataset, 9 subsets were for training and 1 subset
was for testing. In the experiment using the MASS-SS3
dataset, 31 subsets were for training and 1 subset was for test-
ing. To further reduce the dimensions of features in the training
procedure, principal component analysis was performed after
the feature selection step. 99% of the principal components
were kept.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Comparisons With State-of-the-Art Methods
We evaluated the performance of our multi-modal features

combination-driven classifiers against various state-of-the-
art (SOTA) approaches that have emerged in recent years.
We compared their performances in terms of overall accuracy,
macro F1-score, and Cohen Kappa value on the ISRUC-S3
dataset as well as the MASS-SS3 dataset.

Table III presents a comparison in the ISRUC-S3 dataset
among cutting-edge deep learning methods including [12],
[15], [52], [53], [54], [10], as well as other traditional machine
learning-based approaches such as [17] and [18]. We observed
that our multimodal feature combination-driven classifiers
outperformed traditional machine learning approaches in terms
of accuracy, F1-score, and kappa value. In particular, SVM
and RF models with this combination achieved the optimal
and suboptimal macro-F1 score and kappa value respectively
among the state-of-the-art methods. Additionally, other clas-
sification models like LDA and kNN also outperformed the
SOTA traditional machine learning methods [17] and [18]
under various evaluation metrics, indicating that the proposed
combination is capable of handling imbalanced data as well
as model generalization.

As shown in Table IV, in the MASS-SS3 dataset, the
performance of our multimodal features combination in most
classifiers achieved an accuracy of above 80%. Although the
proposed method may not outperform partial deep learning
methods, its performance is superior to all the baselines
with standard machine learning methods [17] and [18]. Our
multimodal combination reached fair performances in both
cohorts, indicating its generalization ability.

Although the proposed combination-driven classifiers
demonstrated success in overall performance, they failed to
meet expectations in the N1 stage classification in both
datasets, similar to other baseline models. The reasons may
be twofold. Firstly, the N1 stage is a transitional period
between W and N2 stages, and the sample size of the N1
stage is relatively small. Secondly, the traditional machine
learning methods may be inadequate to learn complex spatial
or temporal features, whereas deep learning approaches such
as CNN and GCN may favor extracting spatial or temporal
features from multichannel EEG signals, N1 stage classifica-
tion in particular. Nevertheless, the classification performance
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TABLE III
THE PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART METHODS ON THE ISRUC-S3 DATASET

TABLE IV
THE PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART METHODS ON THE MASS-SS3 DATASET

of our combination-driven classifiers for the N1 stage still
outperforms most of the baseline models.

B. Effectiveness of EEG/ECG Features Combination
To disclose the key factors potentially contributing to the

optimized feature combination, all EEG/ECG and EEG+ECG
feature combinations were first widely explored from dif-
ferent perspectives. EEG features combination included all
features from the EEG feature set in Table I, and the ECG
feature combination performed likewise. EEG+ECG features
combination involved all features in Table I. As shown in
Table V, EEG features outperformed ECG features in the
awake stage classification, which is reflected by the accuracies
of EEG (89.4%) and ECG (79.1%) features in the awake
staging. ECG features, on the other side, performed superior in
deep sleep (N3) staging than EEG features. When integrating
all EEG/ECG features as a combination to drive the sleep-
stage classifier, the performance of both the awake-sleep and

the light-deep sleep classification were much improved (N1
stage: from 11.9% in EEG and 40.6% in ECG to 49.1% in
EEG/ECG combination; N3 stage: reached to 91.8%; REM
stage: reached to 85.7%), indicating EEG/ECG features may
both boost the performance of sleep classifier from different
aspects. In addition, a higher kappa value was also achieved
(EEG+ECG: 0.7909; EEG: 0.6593; ECG: 0.7890), reflecting
a higher consistency with manual scoring.

C. Investigating the Causes of Improvement in the
Awake and Sleep Status Classification

Most notably, the proposed multimodal features combina-
tion, when applied with traditional machine learning methods,
has achieved remarkable improvements in W, N2, and N3
staging performance compared to the state-of-the-art (SOTA)
methods in ISRUC-S3 dataset, as illustrated in Table III.
Moreover, N2 and N3 stages were better classified among
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TABLE V
PERFORMANCE OF SLEEP CLASSIFICATION TASK USING DIFFERENT

FEATURES COMBINATIONS AT ALL SLEEP STAGES

other sleep stages, suggesting that the proposed multimodal
features can extract and integrate key factors in both deep
sleep and awake stages. Similar results were also shown on
the MASS-SS3 dataset, in which performances of N2 and N3
stages outperformed the traditional machine learning baseline
models [17] and [18] (Table IV).

Since alpha and delta waves represent the predominant
frequency components of EEG during the awake and deep
sleep status respectively [55], nonlinear and frequency-domain
features derived from oscillations in these two frequency bands
may greatly account for the relatively high accuracies in these
two statuses. Furthermore, the information from the autonomic
nervous system also plays an essential role in distinguishing
awake/sleep status with features of heart rate variability, which
reflects the dynamics of sympathovagal balance from the
parasympathetic predominant drive during NREM sleep to
increased sympathetic activity during REM sleep [38]. Hence,
integrating information from both central and autonomic ner-
vous systems may ultimately support differentiation between
light-deep sleep as well as awake-sleep status.

D. Performance Comparison of Different Classifiers
To investigate the model generalization ability of the pro-

posed multimodal features combination, we utilized four
standard machine learning classifiers to perform sleep clas-
sification tasks on both ISRUC-S3 and MASS-S3 datasets.
Specifically, we investigated the optimal number of sorted
features generated by the k-fold mRMR feature selection
method. A stage-wise performance comparison was also pro-
vided across different classifiers evaluated by F1-score.

TABLE VI
THE AVERAGED TOP 25 SCORED FEATURES OVER K FOLDS ON

ISRUC-S3 DATASET

Fig. 4 shows the performance of each classifier with a dif-
ferent number of top-ranking features on both ISRUC-S3 and
MASS-SS3 datasets. Generally, the optimal number of features
for a small-sample-size cohort (ISRUC-S3) was around 25 to
30. Thus, we set the average of the top 25 scored features over
kfolds (Table VI). While in MASS-SS3, the performances of
the four classifiers all showed upward trends in accordance
with the number of top-ranking features. Our results indicate
that the performances of the proposed multimodal features
combination are prone to converge for a smaller cohort, and
more features can improve performances further for a larger
cohort.

Next, each classifier optimized the number of top-ranking
features, as per Fig. 4, to achieve its best performance in sleep
staging. Then, the F1-scores were compared among these four
classifiers grouped by the five sleep stages (Fig. 5). Overall,
the four classifiers all presented satisfactory performances in
sleep staging (higher or near 80%), except for the N1 stage.
This could be explained by the imbalanced number of epochs,
where the epoch number of the N1 stage is much fewer than
the rest stages. Data augmentation may help to improve N1
staging further in future works [56].

E. Effectiveness of IMF-Based Features
To further validate the usefulness of IMF-based features by

EMD in sleep classification tasks, we then experimented to
compare EMD, EWT, FDM, and bandpass filters in sleep
classification tasks on the ISRUC-S3 dataset. For signal
decompositions, the components with their peaking frequency
in delta (0.5-4 Hz) and alpha (8-13 Hz) were extracted
by EMD, EWT, and FDM methods, respectively. Then, the
average envelope power of the delta- and alpha-peaking IMFs
or FIBFs were estimated by the Welch method. The envelope
power of delta- and alpha-peaking IMFs and FIBFs then
served as features for sleep staging. For the bandpass-filtered
approach, signal components at delta (0.5-4 Hz) and alpha
bands (8-13 Hz) were extracted using the Butterworth band-
pass filter. Likewise, the envelope power of these components
served as a feature. These features were then fed into SVM
classifier in a k-fold manner resembling our prior setting in
the classification section. The average values of accuracy, F1-
score, and Kappa value over k folds were used to compare
these methods. The experimental result is summarized in
Table VII, showing EMD and bandpass filter methods out-
perform FDM and EWT.

EMD is proven to behave as adaptive filter banks [57],
which decomposes a signal in a data-driven approach. FDM
and EWT also decompose signal adaptively, however, FDM
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Fig. 4. Performances of four different classifiers using top ranking features from k-fold mRMR feature selection method. (a) Performances of
classifiers on ISRUC-S3 dataset. The red vertical dash line annotates the number of sorted features with the best results. (b) Performances of
classifiers on MASS-SS3 dataset. The performances of all classifiers show upward trends in accordance with the number of top ranking features.

Fig. 5. Performance comparisons of four different classifiers under different sleep stages. Optimized numder of top-ranking features were applied
by classifier. (a) Performances of classifiers on ISRUC-S3 dataset. (b) Performances of classifiers on MASS-SS3 dataset.

TABLE VII
PERFORMANCE COMPARISONS AMONG EWT, EMD, FDM AND

BANDPASS FILTERING METHODS ON ISRUC-S3 DATASET

generates a large number of FIBFs that hinders the recon-
struction of the wanted components; whereas EWT requires a

predefined number of modes that is difficult to pre-determine.
These factors may result in the performances of FDM and
EWT failing to achieve expectations. Bandpass filter and EMD
share similar performances in classification tasks. The reason
for this may be our input has components with strong and con-
centrated power in delta (0.5-4 Hz) and alpha (8-13Hz) bands
(power spectrum in Fig 2(b)), thus the nonlinear waveform
distortion by filtering is reduced.

F. Limitations and Future Directions
By extracting and integrating the information in central

nervous systems (CNS) and autonomic nervous system (ANS)



LYU et al.: NOVEL SLEEP STAGING METHOD BASED ON EEG AND ECG MULTIMODAL FEATURES COMBINATION 4083

derived from EEG and ECG signals, the proposed multi-
modal features combination exhibited superior performance
against various evaluation metrics compared to the SOTA
methods, suggesting its effectiveness and efficiency in sleep
stage classification task. However, certain limitations should
be acknowledged.

Although the multimodal features combination achieved
convergent and satisfactory performances in sleep staging
on small-sample-size EEG recordings, which is a challenge
commonly encountered in clinical scenarios, the performance
of a larger dataset requires more candidate features to reach
the expectation. Additionally, the EEG features in this study
predominantly focused on delta and alpha bands, and the
inclusion of features from other frequency bands could further
enhance the classification performance. Future research should
explore the efficacy of incorporating features from other
frequency bands to improve the performance of the proposed
multimodal feature combination in classification tasks.

In the present study, we simply extracted and concatenated
features from EEG and ECG modalities associated with CNS
and ANS functioning, ignoring the interplay between brain and
heart that may provide subtle and vital details during sleep.
A recent study also revealed that our body is an integrating
system that involves interactions from each organ [58]. The
dynamic coupling between CNS and ANS may be presented in
the electroactivity of the brain and heart. Some studies reported
that baroreflex has an essential role in sleep modulation,
reflecting a neural pathway associated with cardiovascular and
central nervous activities during sleep [59], [60]. Therefore,
exploring potential couplings of rhythmicities from these two
organs during sleep may provide further insight.

VI. CONCLUSION

In this study, nonlinear time-frequency analyses and com-
plexity measures were introduced to access the key features
derived from the brain/heart signals during sleep. A multi-
modal feature combination with higher precision and effec-
tiveness was constructed. By using the multi-modal feature
combination-driven machine learning classifiers, we achieved
a maximum accuracy of 84.3% and a kappa value of 0.794 on
the sleep classification task with both the EEG and ECG
records on the ISRUC-S3 dataset, indicating the effectiveness
and precision of our proposed multimodal features combina-
tion. On the MASS-SS3 dataset with a larger sample size,
our proposed multimodal features combination still yielded an
average level of accuracy (around 80∼83%), further suggest-
ing its generalization ability.

The proposed multimodal feature combination incorporates
brain/heart oscillatory features of the most important, thus
improving the classification of multiple sleep stages than the
single-mode feature combinations (EEG or ECG features). Our
proposed multimodal features combination supports classify-
ing between light and deep sleep states, as well as wakeful
states, in particular.

The proposed multimodal feature combination was validated
to prevail over different classifiers, sharing a high classification
accuracy and fair model generalization ability. We expect that

the proposed feature combination-driven automatic sleep clas-
sifiers to be flexibly implemented in various sleep monitoring
systems, either for the healthy or the diseased states (e.g.,
depression, insomnia, narcolepsy, etc.), in supporting clinical
diagnosis and treatment.
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