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Electroencephalogram-Driven Machine-Learning
Scenario for Assessing Impulse Control Disorder

Comorbidity in Parkinson’s Disease Using a
Low-Cost, Custom LEGO-Like Headset
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Abstract— Patients with Parkinson’s disease (PD) may
develop cognitive symptoms of impulse control disorders
(ICDs) when chronically treated with dopamine agonist (DA)
therapy for motor deficits. Motor and cognitive comor-
bidities critically increase the disability and mortality of
the affected patients. This study proposes an electroen-
cephalogram (EEG)-driven machine-learning scenario to
automatically assess ICD comorbidity in PD. We employed
a classic Go/NoGo task to appraise the capacity of cog-
nitive and motoric inhibition with a low-cost, custom
LEGO-like headset to record task-relevant EEG activity.
Further, we optimized a support vector machine (SVM)
and support vector regression (SVR) pipeline to learn
discriminative EEG spectral signatures for the detection
of ICD comorbidity and the estimation of ICD severity,
respectively. With a dataset of 21 subjects with typical
PD, 9 subjects with PD and ICD comorbidity (ICD), and
25 healthy controls (HC), the study results showed that
the SVM pipeline differentiated subjects with ICD from sub-
jects with PD with an accuracy of 66.3% and returned an
around-chance accuracy of 53.3% for the classification of
PD versus HC subjects without the comorbidity concern.
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Furthermore, the SVR pipeline yielded significantly higher
severity scores for the ICD group than for the PD group
and resembled the ICD vs. PD distinction according to the
clinical questionnaire scores, which was barely replicated
by random guessing. Without a commercial, high-precision
EEG product, our demonstration may facilitate deploying a
wearable computer-aided diagnosis system to assess the
risk of DA-triggered cognitive comorbidity in patients with
PD in their daily environment.

Index Terms— Computer-aided diagnosis, electroen-
cephalogram, impulse control disorder, low-cost headset,
machine learning, Parkinson’s disease.

I. INTRODUCTION

PARKINSON’S disease (PD) is a common neurodegenera-
tive disease that manifests as disabling symptoms of motor

function, such as tremors, rigidity, postural instability, and gait
disturbance [3]. Patients with PD may experience comorbidi-
ties of impulse control disorders (ICDs) when treated with
dopamine agonist (DA) therapy for motor deficits [5], [6],
[7]. ICDs refer to cognitive and motor impulsivity and lead
to entangling dysfunctions in the control of reward-based
decision and motor response inhibition [5], [8], [9], which
may facilitate compulsive gambling, sexual behavior, buying,
and eating [6]. These emergent disorders significantly affect
the quality of life of the affected patients and their families and
caregivers [7]. The main approach to preventing such DA side
effects involves either decreasing the DA dose or switching
to another dopamine replacement therapy, but this undermines
the agonist-treated motor benefits [7] and causes worsening
motor dysfunction [11]. Accordingly, a better understanding of
ICD mechanisms and their objective assessments will benefit
the development of preventive and therapeutic strategies to
ameliorate adverse effects of DA during chronic pharmacother-
apy for PD motor symptoms [6], [7], [8], [12].

Human brain imaging and mapping techniques that analyze
brain signals with or without task engagement of interest, such
as functional magnetic resonance imaging (fMRI) [7], [12]
and electroencephalography (EEG) [5], [8], [13], may shed
light on qualitatively and quantitatively probing the underlying
neural mechanisms of active ICDs in patients with PD. Despite
the unique merits of different imaging modalities in terms
of spatial and temporal details, their reports share common
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evidence that alternation or abnormality of brain activation in
the frontal lobe is associated with impairment of inhibitory
control (i.e., cognitive and motor impulsivity) in patients with
PD and ICD symptoms compared with patients with typical
PD. Pioneering fundamental studies corroborate the potential
of characterizing brain activity markers, offering the capability
to assess individuals with PD who are at risk of developing
ICDs during dopaminergic mediation.

The EEG modality is a cost-efficient and user-friendly
recording scenario for measuring electrical brain activity
with excellent temporal resolution. Its wearability facilitates
the customization of an EEG-sensing module by leveraging
either onboard or remote signal processing and decoding to
preferable EEG markers for different objectives, such as a
standalone brain–computer interface (BCI) control solution
for neuromotor deficits [15], a brain-actuated exoskele-
ton for poststroke rehabilitation [17], and a head-mounted
display-incorporated EEG device to objectively assess visual
deficits in glaucoma [19]. Moreover, an EEG scenario
boosts the leap in clinical assessment from the hospital
to the daily environment, which is challenging with other
imaging modalities (e.g., fMRI). Previous successful demon-
strations of realistic application-deployable EEG-sensing
infrastructure motivate the development of software and
hardware modules tailored to capture ICD-related EEG sig-
natures and diagnose cognitive comorbidities in patients with
PD.

Machine-learning methods are commonly used to learn a
set of discriminative EEG markers and subsequently shape
a predictive model for the automatic diagnosis of motor
and cognitive symptoms in patients with PD. Predictive
decision-making aims to provide a complementary assess-
ment to the traditional diagnostic approaches of subjective
evaluation or questionnaire scales for PD. It is particularly
important because early non-motor symptoms are mild and
often overlooked in clinical practice [2]. Table I lists repre-
sentative EEG studies that have focused on PD assessment
using machine learning. The majority of studies have tackled
the discrimination of patients with PD from healthy con-
trols using resting EEG data and reported high classification
accuracies (81−99%) [1], [2], [4], [10], [14], [16] through
different methodological frameworks (e.g., feature extraction,
classification, and validation procedures). Follow-up attempts
have been devoted to resolving specific PD stages and pro-
gressions (e.g., early vs. late PD [18]) or motor defects (e.g.,
freezing of gait (FOG) vs. normal walking [20]). Moreover,
cognitive impairment is frequently observed in patients with
PD and coincides with motor dysfunctions [23]. Motor and
non-motor comorbidities critically increase disability and mor-
tality in affected patients. The machine-learning scenario is
also applicable to exploiting predictive EEG markers and
classifiers to characterize non-motor symptoms and facili-
tate early diagnosis [21], [22], [23]. Cognitive assessment
scenarios have been reported with an accuracy of 66–88%,
including identifying PD with mild cognitive impairment
(MCI) [21], categorizing the severity of cognitive impairments
into five phenotypes from intact to severely deficient [22],
and predicting future cognitive worsening [23]. Taken together,
the machine-learning framework incorporating EEG signature
processing (e.g., extracting temporal or spectral signatures as
features) enables the learning of targeted EEG markers and

constructs a predictive model for the assessment of motor
and non-motor disabling symptoms or subtypes of PD. This
facilitates the development of a computer-aided diagnosis
(CAD) system for objective screening, prognostic monitoring,
and early detection in clinical practice. Nevertheless, the gen-
eralizability of the CAD pipeline for PD must be thoroughly
demonstrated. Given a limited dataset, cross validation (CV) is
commonly adopted by splitting the data into training and test
folds to optimize and report the performance of a predictive
model. Because data samples from the same individuals inher-
ently resemble each other, a subject-wise CV method should
be considered to prevent suspicious links between the training
and test data to realistically verify the generalizability of the
proposed machine-learning model against unseen/unlearned
data from a new subject [24].

Inspired by encouraging ICD-relevant EEG endeavors [5],
[8], [13] and remarkable success in machine-learning-assisted
diagnosis in PD (particularly for cognitive impairments) [21],
[22], [23], this study attempted to construct an EEG-driven
machine-learning scenario to identify ICD symptoms in
patients with PD and further predict ICD severity (i.e.,
an ICD-aware CAD system) in compliance with a gen-
eralizable subject-wise CV procedure. Unlike most of the
previous machine learning-based studies focusing on different
aspects of PD (e.g., diagnose, staging, MCI comorbidity),
this study is the first one, to the best of our knowledge,
that assesses DA-associated ICD comorbidities in patients
with PD using a machine-learning scenario. Notably, instead
of using commercial high-precision EEG-sensing products,
this study customized a low-cost, compact EEG-sensing hard-
ware assembly to record EEG signals, which is considered
an emerging challenge for user-friendly BCI hardware [25].
From both the therapeutic and prognostic perspectives, the
successful demonstration greatly promotes the deployment of
wearable BCI-based CAD infrastructure to routinely monitor
ICDs of patients with PD as per the targeted EEG markers in
their living environments to prevent ICD worsening or recur-
rence during chronic pharmacological treatments for motor
symptoms.

II. METHODS

This study is a follow-up to a previous study [13] that
preliminarily assessed temporal event-related potential (ERP)
signatures of ICD severity in patients with PD using a simple
univariate linear regression analysis. We followed the same
experimental protocol and data-collection setup to obtain data
from a few more subjects and then demonstrated the applica-
bility of a multivariate machine-learning approach to assess PD
and ICD comorbidities. The following subsections describe the
developed low-cost wearable EEG instrument, cognitive task
used to appraise ICD responses, and data analysis framework.
They also clarify the applicability of the proposed EEG
hardware and software infrastructures to deployable BCI-based
cognitive assessments.

A. Low-Cost LEGO-Like Electrode Headset and
Instrument

Developing a user-friendly, compact, and wearable
EEG-sensing device is considered a major challenge in
facilitating the transition from laboratory demonstrations
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TABLE I
REPRESENTATIVE EEG STUDIES FOCUSING ON MACHINE-LEARNING SCENARIOS IN PD

to practical applications in real-life settings [25]. Instead
of employing expensive commercial medical-grade EEG
recording products with high precision in signal quality,
this study used a cost-efficient, laboratory-developed EEG
instrument consisting of an arm-attached eight-channel
amplifier [26] and a LEGO-like electrode-holder assembly
infrastructure [27] (Fig. 1A). The amplifier measures the
EEG signals with a sampling rate of 250 Hz and in a
bandwidth of 0.6−56.5 Hz and transmits the digitized signals
wirelessly via a Bluetooth protocol. The LEGO assembly
offers the unique capability of unlimitedly (re)assembling an
electrode montage with respect to the number of electrodes
and their positions with a preferred electrode type (e.g., wet,
dry, or semi-dry materials; Fig. 1B). A user can intuitively
adjust it to ensure better electrode–scalp contact and signal
quality iteratively by swapping suitable primary components,
for example, an inter-ring bridge with a different length,
in accordance with the user’s head size and circumference,
if necessary. In contrast, most existing commercial EEG
headsets have a fixed design by default and are challenging to
self-adjust to electrode density and coverage, headset frame
size, and electrode types. The efficacy of the amplifier and
LEGO headset was empirically verified by capturing classic
BCI signatures (e.g., ERP and steady-state visual evoked
potential) in the still [13], [26], [27], [28] and walking [29]
settings. More details for the design and implementation
of the amplifier and LEGO headset can be found in [26]
and [27], respectively.

Fig. 1. Cost-efficient, customized EEG instrument used to record EEG
signals while performing a visual Go/NoGo task. (A) Recording setup.
(B) LEGO-like electrode-holder assembly. (C) 8-ch electrode montage.

In this regard, this study customized an eight-channel LEGO
headset wired to the arm-attached amplifier. It accommodated
the electrodes at the F3, Fz, F4, FCz, C3, Cz, C4, and CPz
locations in the frontocentral area with the left and right ear-
lobes as the reference and ground sites, respectively (Fig. 1C).
The frontocentral placement considered the desired cognitive
task, namely the Go/NoGo protocol, to be attended to by the
participants (described in Section II-B). Dry flexible electrodes
(Cognionics, Inc., San Diego, CA, USA) were embedded for
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EEG measurements. The LEGO-assembled components can
be fabricated using a low-end fused deposition modeling 3D
printer [27]. The eight-electrode LEGO headset grid costs
approximately 10 USD for filament consumption and assembly
accessories (excluding dry electrodes). Considering an ampli-
fier unit (∼150 USD) and its paired event-broadcaster module
(∼50 USD) [26], the cost of the EEG collection setup was
approximately 210 USD. Such a cost-efficient, customizable,
and wearable EEG-sensing hardware infrastructure promotes
the future embodiment of routine assessment for each individ-
ual with PD in a daily environment.

B. Cognitive Task and Data Collection
To appraise ICD, neuroimaging studies are advised to

address task-based and event-related analysis [9]. As men-
tioned in previous EEG studies, the classic Go/NoGo cognitive
task is the prevailing protocol to induce behavioral and neural
responses to cognitive and motor inhibition [30], [31] and its
validity has been verified in PD with ICD [5], [8], [13]. Thus,
this study implemented a Go/NoGo task to record and analyze
ICD-related EEG abnormalities. Taking a simple two-target
embodiment, the Go/NoGo protocol presents a rapid series
of stimulus events (e.g., visual and auditory) with different
occurrences: one is a Go target frequently presented, and the
other is a rare NoGo target. The deviant NoGo target initiates
inhibition control processing (i.e., withholding the prepotent
response) from its accompanying Go target, which forces
a prompt behavioral response. Successful NoGo reactions
ideally result in frontocentral N2 (i.e., a negative deflection
in amplitude of approximately 200–300 ms) and P3 (i.e.,
a positive peak around 300–500 ms) signatures in the ERP
profile [30], [31], [32]. This also explains the practicability
of the LEGO-like electrode grid, which can be assembled to
cover the task-relevant frontocentral region exclusively.

This study implemented a visual Go/NoGo task with target
occurrences of 70% and 30% for the Go and NoGo events,
respectively. A participant was instructed to press the button as
quickly as possible once a green square cue (8.5 cm × 8.5 cm)
is presented on a 16” monitor but withhold the button-pressing
for a red square cue (Fig. 1A). A single session was composed
by three 80-trial blocks (with an inter-trial jitter of 0.5–1.5 s)
and resulted in a total of 168 Go trials and 72 NoGo trials.
Each participant underwent two Go/NoGo sessions with an
approximately one-hour inter-session rest. Each session lasted
approximately 30 minutes, in an attempt to allow the older
subjects to engage in the task attentively.

The dataset in [13] included 59 subjects divided into
three groups: 26 healthy controls (HC group), 23 patients
with typical PD (PD group), and 10 patients with PD
and ICD comorbidities (ICD group). This study followed
the same procedure to recruit more participants from the
HC and PD groups (HC: 2; PD: 1). All patients were
interviewed by neurologists, diagnosed with idiopathic PD
according to the United Kingdom Brain Bank criteria [33],
and screened for ICD comorbidity as per the Questionnaire
for Impulsive-Compulsive Disorders in Parkinson’s Disease
Rating Scale (QUIP-RS) [34]. QUIP-RS is a valid and reliable
rating scale for monitoring ICD severity over time. Before
data collection, each subject completed the QUIP-RS again
for data analysis. Clinical assessment and data collection
were performed at the Kaohsiung Chang Gung Memorial

Hospital (CGMH) in Taiwan. Both the PD and ICD groups
underwent the 1st Go/NoGo session at least 12 hours after
the last dopaminergic medication intake (i.e., off-state) and
were administered their personal medication immediately after
completing it (i.e., on-state). As such, this allowed us to
capture EEG changes related to the DA-triggered motoric and
cognitive inhibition impairments in the 2nd session. Seven
subjects (HC: 3, PD: 3, ICD: 1) discontinued the 2nd session
due to personal issues or severe artifacts during recording
and were excluded (Section II-C). Finally, this study included
55 subjects, including 25 HC (12 men, 13 women; age:
58.6 ± 7.0 years), 21 PD (14 men, 7 women; age: 65.6 ±

8.9 years), and 9 ICD (7 men, 2 women; age: 63.2 ±

7.7 years) subjects for the sequential analysis. The self-
reported QUIP-RS score was significantly higher in the ICD
group than in the PD group (ICD group: 16.0 ± 12.3; PD
group: 0.5 ± 1.1, p< 0.001 assessed by a permutation test,
see Section II-D for details); thus, using a machine-learning
scenario to assess ICD comorbidity in patients with PD was
valid.

C. EEG Preprocessing and Feature Extraction
This study followed the preprocessing procedures adopted

in [13] to prepare artifact-suppressed EEG trials corresponding
to Go and NoGo events per session. The procedure band-pass
filtered raw signals into 1−30 Hz, partitioned the filtered
signals into trials (−200 to 1000 ms) with baseline correction
(-200 to 0 ms), z-score standardized the trials, rejected the
noisy trials using a statistical kurtosis threshold (> 4 stan-
dard deviations), and discarded mistakenly responded trials.
Subjects with less than 80% of completed EEG trials were
discarded. The retained 55 subjects had 90.1 ± 5.6% valid
trials on average per session (Go: 151.3 ± 11.2 trials; NoGo:
64.9.3 ± 4.6 trials). Subsequently, an extended infomax inde-
pendent component analysis (ICA) [35] was separately applied
to each session to mitigate eye movement artifacts during
the visual task. The open-source EEGLab toolbox/scripts [36]
were used to perform the preprocessing and ICA procedures
described above.

Motivated by previous machine-learning demonstrations in
PD (Table I), this study captured EEG spectral contents at
time intervals of N2 (200–400 ms) and P3 (400–600 ms)
components that were found to differ in the Go versus NoGo
contrast in [13]. The spectral power in four frequency bands,
including delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz),
and beta (14–30 Hz), was calculated to encapsulate spectral
changes and their links to patients with PD with or without
ICD comorbidity while engaging in the visual Go/NoGo task.
Time–frequency (TF) analysis was adopted to characterize the
time-evolving spectral perturbations for each trial using the
Morlet wavelet transform. Each Go and NoGo event then
formed an ensemble of TF outcomes from each session. Its
ensemble average can be referred to as the event-related
spectral perturbation (ERSP) [37], which depicts the spec-
tral disparity over time after event onset. Based on the
session-wise Go and NoGo ensembles, two statistical mea-
sures, the peak amplitude and mean amplitude, were used to
summarize the band-specific spectral content associated with
the preferable time intervals for the N2 and P3 signatures. The
between-session contrasts in peak and mean amplitudes (i.e.,
2nd – 1st difference) were also derived. This study assumed
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that patients with PD and ICD comorbidities exhibit inhibitory
control-related EEG spectral signatures disparate from those
of patients with typical PD, which is beneficial for ICD
assessment using machine learning. In short, the aforemen-
tioned spectral feature extraction constituted a 768-dimentional
feature space (8 channels × 4 bands × 2 ERP component time
spans × 2 statistical measures × 2 events (Go and NoGo) ×

3 session settings (1st, 2nd, and 2nd–1st contrast) for sequential
machine-learning modeling.

D. Machine Learning and Validation
This study attempted to demonstrate the applicability of

a machine-learning framework to identify ICD comorbid-
ity and estimate its severity from Go/NoGo task-engaged
EEG oscillations recorded using a low-cost, lab-customized
wearable instrument instead of medical-/research-grade high-
precision commercial products. We implemented a widely
used supervised support vector machine (SVM) algorithm and
further adapted it to learn EEG associations with self-reported
QUIP-RS scores (i.e., the higher the score, the more severe
the ICD) in patients with PD. This issue is addressed by an
SVM regressor called the support vector regression (SVR)
model. SVM and SVR share the same principle of exploiting
a set of hyperplanes (i.e., decision boundaries) to recognize
the given labels of the data in the preferable feature space.
This can be achieved by incorporating a kernel to project the
input data into a higher dimensional space for hyperplane opti-
mization. Once a learning phase is completed, an SVM model
enables to classify an unseen data to one of the predefined
classes, whereas an SVR model outputs numeric values to
the data.

This study constructed two machine-learning scenarios to
address ICD comorbidities in patients with PD: 1) SVM
modeling for binary classification tasks (i.e., PD vs. HC and
ICD vs. PD) and 2) SVR modeling for ICD severity estimation
(i.e., PD and ICD). Both the SVM and SVR models were
implemented using LIBSVM software [38]. Regarding the
SVM tasks, the PD–HC performance was intended to refer
to most machine-learning-based PD studies that typically
distinguish patients with PD from healthy controls [1], [2],
[4], [10], [14], [16] (Table I), whereas the ICD–PD counterpart
was used to demonstrate the potential of recognizing patients
with PD and ICD comorbidities using machine learning,
which has rarely been reported previously. Both the SVM and
SVR outcomes further prove the applicability of estimating
ICD severity using EEG signatures captured by a low-cost
customized EEG-sensing module.

The following procedures were employed to validate the
SVM and SVR pipelines. First, leave-subject-out (LSO) val-
idation was used to derive the classification and regression
performance while considering model generalizability [24].
That is, the LSO recruited N -1 subjects (N : subject size)
as training samples to build and optimize the model and test
its performance against the remaining subject as test sample
who was never seen/learned during model training. The LSO
performance was then derived by averaging N repetitions in
which each subject was tested equally. Second, the sample
size for the paired subject groups could be highly imbal-
anced (e.g., HC/PD vs. ICD). Each LSO repetition further
replicated the model evaluation 10 times, given randomly
selected group-balanced samples, which obviated a plausible

prediction bias due to a group with larger training samples.
Third, a model optimization procedure was implemented
using group-balanced training samples to select the most
discriminative features and effective model kernel parameters.
Performing feature reduction over the initial 768-dimentioanl
feature space by removing redundant or meaningless fea-
tures effectively dispelled the concern of overfitting owing
to the overwhelming feature dimensions against the sample
size in this study. The optimized model was subsequently
evaluated using a completely disjointed test subject. The
other pipeline-specific procedures for feature selection, model
kernel, and performance evaluation are as follows.

1) SVM Modeling for Binary Classification: The binary clas-
sification task employed a feature selection method, namely,
maximum relevance and minimum redundancy (mRMR) [39].
mRMR enables us to iteratively select a subset of features with
the highest dependence on the target class (max relevance) and
also with the lowest correlation among themselves (min redun-
dancy). In other words, the most discriminative features can be
effectively kept given a high dimensional feature space while
trimming the redundant ones for machine-learning modeling
at lower computational complexity. An optimal and minimal
subset of the most discriminative features was retained only
for training an SVM classifier with a linear function in each
LSO repetition. This study used the metrics of sensitivity,
specificity, accuracy, and balanced accuracy (BA) to quantify
the efficacy of the trained classifier in differentiating PD
subjects from HC subjects (PD vs. HC) or ICD subjects from
PD subjects (ICD vs. PD). In particular, the BA quantity is
the average of the sensitivity and specificity, which prevents
the misinterpretation of a predictive model tailored to a certain
group of subjects compared with traditional accuracy.

2) SVR Modeling for ICD Severity Estimation: This study
implemented a polynomial kernel-based SVR model to learn
the relationships between ICD severity and EEG features for
PD subjects (the PD and ICD groups only). ICD severity
was defined according to the QUIP-RS score in the range of
0–64. The mean square error (MSE) was used to quantify
the performance of the trained SVR model by calculating
the average squared difference between the estimated and
actual scores. Additionally, an optimal subset of discriminative
EEG features associated with a lower MSE was identified to
optimize the SVR model. In addition, unlike chance accuracy,
which can be used to benchmark the performance of a classi-
fication task, we alternatively replicated the aforementioned
SVR framework by feeding randomly shuffled EEG-score
pairs to the recruited PD subjects during the model training
and optimization phases. This randomization was conducted
100 times to obtain an average MSE, which was considered
a benchmark for random estimation of ICD severity (named
SVRRandom hereafter).

Finally, a permutation test (implemented in Matlab)
was applied to assess the statistical differences in ICD
scores between behavioral QUIP-RS, SVR-predicted, and
SVRRandom-predicted outcomes for within-group and between-
group comparisons. This test shuffled the scores between
the groups, resulting in a statistical measure. It then formed
a permutation distribution after 10,000 repetitions. The sta-
tistical value was then calculated by comparing the actual
test statistics with the permutation distribution under the null
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Fig. 2. Session-wise Go and NoGo ERSP and their contrast for each subject group. The participants in the PD and ICD groups had their personal
DA treatment after the 1st session.

TABLE II
SVM CLASSIFICATION PERFORMANCE (%)

hypothesis, which was valid for handling statistical assess-
ments with a small subject size in this study.

III. RESULTS

Fig. 2 illustrates the Go and NoGo ERSP per session and
their comparison for each subject group. The single-session
results and between-session contrasts were normalized to
a range of 0–1 for comprehensive comparison. The three
subject groups exhibited dominant spectral changes at low
frequencies, (e.g., delta) for single sessions, yet with distinct
amplitudes for different groups. While both the PD and
ICD groups were treated with their personal DA medication
after the 1st session, only the ICD group had consider-
able spectral disparity distributed across frequencies over
time, as shown in the 2nd –1st session contrast, indicat-
ing the tendency of ICD-associated EEG disparity when
performing the same Go/NoGo task. Most importantly, the
resultant spectral contrast in the ICD group manifested at
distinct frequencies over certain time intervals, for exam-
ple, delta and theta activities approximately at 200–500 ms
for the Go event and relatively broadband modulations at
200–500 ms and 600–900 ms for the NoGo event. The above
qualitative ERSP comparison explained the applicability of
encompassing tempo-spectral EEG oscillations as features to
estimate ICD comorbidity in patients with PD using machine
learning.

Table II lists the performance of the binary classification
tasks (i.e., PD vs. HC and ICD vs. PD) using the SVM.
The ICD versus PD task returned a higher classification

performance than the PD versus HC task for all metrics.
In particular, its sensitivity was inferior to the corresponding
specificity by 7%; that is, correctly recognizing ICD subjects
was relatively challenging compared with recognizing PD
subjects. This explains the marginal drop in balanced accuracy
from accuracy. Nevertheless, the same SVM modeling pipeline
was ineffective in differentiating the EEG signatures of the
PD subjects from those of the HC subjects, leading to metric
values near the chance level of 50%.

Fig. 3 presents the SVR-predicted ICD scores in the PD
and ICD groups with respect to the behavioral QUIP-RS
and SVRRandom settings. There are several findings worth
mentioning as per the within-group (Fig. 3) and between-
group (Table III) comparisons in the methodological settings.
First, as shown in Fig. 3A, the established SVR model
(color-filled) tended to underestimate the actual ICD scores
(QUIP-RS, unfilled) in the ICD group; however, this was not
statistically significant (p = 0.13). In contrast, SVR typically
overestimated the ICD scores (p < 0.01) in the PD group.
Next, random estimation by the SVRRandom model (gray-
filled) was unlikely to replicate the actual SVR estimation in
the ICD group but returned scores far below the QUIP-RS
counterpart (both p < 0.01). The SVRRandom model in the
PD group behaved similarly to the actual SVR model (p =

0.77) and was associated with overestimated ICD scores (p <

0.01). However, as indicated by the between-group compar-
ison in Table III, the ICD group had higher SVR-estimated
ICD scores than the PD group (p = 0.003), which mean-
ingfully resembled the tendency of the ICD–PD contrast
in the QUIP-RS scores (p < 0.001). The randomly esti-
mated ICD scores were comparable between the groups
(p = 0.574).

Finally, despite the SVR-predicted ICD scores (3.86 ± 2.32)
in the PD group being considerably lower on average than the
actual ICD scores (16.00 ± 12.32, p < 0.001) in the ICD
group, a few PD individuals (e.g., subjects 12 and 15) could
be mistakenly treated as having ICD comorbidity considering
the SVR estimation outcome (Fig. 3B). In addition, some ICD
individuals (e.g., subjects 1, 3, 7, and 8) with severe ICD
comorbidities (i.e., a higher QUIP-RS score) were overlooked.
Accordingly, even though misdiagnosis may occur in some
individuals, the aforementioned group analysis remained valid
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Fig. 3. (A) Group-level and (B) individual-level ICD scores of the PD and ICD groups using behavioral, SVRRandom, and SVR settings. ∗∗ indicates
the statistical difference (p < 0.01) for the within-group comparison.

TABLE III
ICD SCORES (MEAN AND STANDARD DEVIATION) OF THE PD AND ICD

GROUPS USING BEHAVIORAL, SVR RANDOM , AND SVR SETTINGS

to demonstrate that the proposed SVR pipeline is applicable
for estimating ICD severity to some extent in PD using EEG
signals.

IV. DISCUSSION

This study empirically demonstrated the applicability of a
machine-learning scenario for assessing ICD comorbidities
in patients with PD using spectral disparity while engag-
ing attentively in a simple cognitive Go/NoGo task. Such
a conceived EEG-based scenario consisting of task engage-
ment, data measurement, and automatic estimation potentially
provides an objective neurological assessment along with
traditional diagnostic approaches, such as subjective interviews
and questionnaires (e.g., QUIP-RS) in clinical practice. To the
best of our knowledge, this is the first study to address
DA-associated ICD comorbidity in PD, which complements
previous machine-learning-assisted endeavors focusing on PD
identification, PD staging, or other cognitive aspects of PD [1],
[2], [4], [10], [14], [16], [18], [20], [21], [22], [23]. Notably,
the EEG measurements in this study were performed using a
low-cost, custom EEG headset (a LEGO-like headset) instead
of a commercial high-precision medical product. Our demon-
stration bridges the gap in how to deploy a user-friendly
wearable BCI-based CAD device for each individual with
PD in a daily environment to routinely monitor ICD risk
during pharmacological treatment. The following subsections
discuss the validity of the machine-learning outcomes and
shape potential future efforts.

A. EEG Spectral Disparity of PD and ICD Comorbidities
Patients with PD and cognitive dysfunction have been

reported to exhibit increased low-frequency power in the
delta and theta bands and decreased high-frequency power
in the alpha and beta bands compared to cognitively typical
patients [40]. Spectral changes tended to spread across the
scalp instead of focal regions. The middle frontal gyrus-based
functional connectivity in the theta band and its altered con-
nectivity patterns have been found to act as reliable markers
to identify cognitive impairment [41]. These fundamental
findings may explain the rationale of existing machine-learning
studies [21], [22], [23] that commonly exploit spectral dynam-
ics as features for estimating cognitive deficits in patients with
PD using EEG signals (Table I). For example, a classification
model benefited more from the theta activity in the left
sensorimotor cortex to distinguish patients with PD that had
MCI [21]. Increased delta and theta power can contribute to
assessing the severity of cognitive impairment [22]. By con-
trast, the implemented Go/NoGo task effectively induces an
inhibitory process and manifests as frontocentral N2 and P3
alteration [30], [31], [32]. Its applicability has been demon-
strated in exploring EEG markers in patients with PD with and
without ICDs [5], [8], [13]. While attending to the Go/NoGo
protocol, ICDs were associated with decreased beta activity
in the precuneus and in the medial frontal cortex over the
supplementary motor area (SMA) [5], reflecting the dysfunc-
tion of proactive inhibitory control. Even during task-free rest,
SMA beta changes have been found to reflect ICD severity [8].
Taken together, PD and ICD comorbidities lead not only to
cognitive dysfunction facilitating choice impulsivity but also
to motor dysfunctions for action impulsivity [8].

Standing upon aforementioned endeavors in spectral corre-
lates of cognitive capability in patients with PD, this study was
motivated to leverage the spectral EEG contents of the fronto-
central N2 and P3 signatures to assess ICD comorbidity and
its severity. As per the between-group ERSP profiles (Fig. 2),
after DA treatment, the ICD group exhibited distinct spectral
patterns along with preferable N2 and P3 time spans compared
with the PD group, for example delta and theta activities
for the Go event and broadband modulations for the NoGo
event. By contrast, the PD group without ICD comorbidity
was similar the HC group. Thus, a high-dimensional feature
space of 768 spectral attributes constituted by N2 and P3
signatures at different frequency bands (i.e., delta, theta, alpha,
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and beta) over eight frontocentral electrodes was constructed in
this study to boost the capacity to capture ICD-related spectral
disparity and sequentially actuate a machine-learning pipeline.

B. Validity of Machine-Learning Findings
In this study, an EEG-based machine-learning scenario was

created to detect patients with PD and ICD comorbidity and to
estimate the ICD severity. Because no reports have addressed
this issue, we attempted to discuss the validity of our scenario
and findings by benchmarking those that also performed
classification tasks in patients with PD. By incorporating
the same SVM-basis feature engineering and classification
pipeline to learn informative EEG spectral signatures, our
results showed that the PD−HC task retuned a worse accuracy
(53.3%) compared with the ICD−PD counterpart (66.3%).
Two aspects can explain these findings and support their
validity. First, the engaged Go/NoGo task in this study induced
cognitive and motor inhibition and concurrent EEG changes.
The typical PD group without ICD comorbidity complications
(QUIP-RS score: 0.5 ± 1.1) presumably behaved similarly to
the HC group in terms of the inhibition control capability.
This explained the around-chance accuracy of our PD−HC
task and a noticeably large gap compared to previous PD
studies [1], [2], [4], [10], [14], [16] that distinguished PD
from HC subjects using task-free resting EEG data (sample-
wise and subject-wise validation accuracy: 81−99%; Table I).
Second, the ICD group (i.e., QUIP-RS score: 16.0 ± 12.3) did
conform to the preferable Go/NoGo rationale. Thus, the SVM
pipeline was allowed to learn the underlying EEG distinction
in the ICD−PD task, leading to an above-chance accuracy
of 66.3%. The studies listed in Table I suggest that it is
more challenging to differentiate between motor or non-motor
subtypes in patients with PD than to solely diagnose subjects
as having PD or not; classifying, for example, early or late
stage for 86.4% [18], presence of cognitive worsening for
82% [23], FOG or normal walking for 80.2% [20], and
presence of MCI for 66% [21]. Furthermore, [21] not only
tackled a cognitive comorbidity in patients with PD but also
conceived a similar methodological framework in terms of
EEG spectral features, SVM modeling, and realistic subject-
wise CV, which could be regarded a direct support to our
ICD−PD classification outcome.

By contrast, this study implemented an SVR pipeline to esti-
mate the ICD severity of individuals with PD by learning the
links between EEG spectral disparity and the clinical QUIP-RS
score. Given the lack of relevant reports, this study verified the
effectiveness by comparison with random guessing. The ICD
group corresponded to higher SVR-estimated scores than the
PD group. This tendency significantly resembled the ICD−PD
gap in the clinical questionnaire score, which was barely
replicated by random estimation (Table III). Nevertheless,
as indicated by the individual outcomes, the implemented SVR
modeling likely underestimated the patients with severe ICD
comorbidity or misestimated typical patients to have mild ICD
comorbidity (i.e., overestimated scores). This outcome could
be mainly attributed to the small sample size of the ICD
group (9 subjects) versus the PD group (21 subjects) recruited
in this study. Most critically, the annotated QUIP-RS data
manifested dominantly in minor scores (patients with typical
PD without ICD) but sparsely from mild to severe scores
(patients with PD and ICD) within the range of 0–64. Thus, the
diversity-limited score spectrum could introduce challenges in

learning a highly skewed ICD score distribution using SVR.
The sparseness of ICD subjects may also explain, in part, the
suboptimal performance in distinguishing them from typical
PD subjects (sensitivity: 61.1%; specificity: 68.6%) in the
ICD−PD classification task (Table II).

In short, despite follow-up efforts required to enhance
the performance, both the demonstrated SVM-basis ICD−PD
classification and SVR-basis ICD severity estimation were
encouraging and explainable. We believe that this study is
valid for proving the applicability of objectively assessing ICD
comorbidities in PD during pharmacological intervention using
an EEG-driven machine-learning scenario.

C. Future Work
The encouraging results warrant future efforts to develop an

accurate BCI-based ICD comorbidity detection infrastructure
and deploy it as a neurological evidence-based CAD system
to assist traditional diagnostic approaches. First, enlarging the
patient sample size is one of the dominant factors in improving
machine-learning efficacy, particularly for those with severe
ICD comorbidities. In addition, a longitudinal study of the
same individual with PD during their chronic DA intervention
is required to appraise the generalizability of a pre-trained
predictive model over time, given the realistic intra-individual
EEG variability [42], [43]. Second, recent BCI studies have
reported the success of advanced spectral feature mining [44],
deep learning [45], and transfer learning [46], facilitating the
modeling of EEG activity in response to tasks of interest.
These methodological advantages could potentially augment
ICD modeling in individuals with PD. Finally, follow-up
reinforcement for the hardware aspect may reinvent a LEGO
headset-mounted miniature amplifier and incorporate a display
goggle. An all-in-one, standalone EEG headset is an easy-
to-access, user-friendly wearable CAD device for objective
screening, prognostic monitoring, and early detection of cog-
nitive comorbidities in clinical practice or at home.

V. CONCLUSION

This study proposed an EEG-driven machine-learning sce-
nario to assess ICD symptoms in patients with PD when
attentively engaging in a cognitive Go/NoGo task. Moreover,
EEG measurements were performed using a low-cost custom
device rather than a commercial high-precision product. The
results showed that our scenario enabled the effective iden-
tification of patients with PD and ICD comorbidities and
estimated the ICD comorbidity severity, which was barely
replicated by analytical benchmarks without actual ICD infor-
mation. Such a demonstration facilitates the deployment of
a wearable BCI-based CAD system to routinely monitor the
adverse cognitive effects of ICD comorbidities in patients with
PD during chronic DA intervention for motor symptoms.
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