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Abstract— Steady-state visual evoked potential (SSVEP)
based brain-computer interfaces (BCIs) have achieved an
information transfer rate (ITR) of over 300 bits/min, but
abundant training data is required. The performance of
SSVEP algorithms deteriorates greatly under limited data,
and the existing time-shift data augmentation method
fails to improve it because the phase-locked requirement
between training samples is violated. To address this
issue, this study proposes a novel augmentation method,
namely phase-locked time-shift (PLTS), for SSVEP-BCI. The
similarity between epochs at different time moments was
evaluated, and a unique time-shift step was calculated for
each class to augment additional data epochs in each trial.
The results showed that the PLTS significantly improved
the classification performance of SSVEP algorithms on the
BETA SSVEP datasets. Moreover, under the condition of
one calibration block, by slightly prolonging the calibration
duration (from 48 s to 51.5 s), the ITR increased from
40.88±4.54 bits/min to 122.61±7.05 bits/min with the PLTS.
This study provides a new perspective on augmenting data
epochs for training-based SSVEP-BCI, promotes the classi-
fication accuracy and ITR under limited training data, and
thus facilitates the real-life applications of SSVEP-based
brain spellers.

Index Terms— Brain-computer interfaces (BCIs), data
augmentation, phase-locked time-shift (PLTS), steady-state
visual evoked potential (SSVEP).

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) directly decode
users’ intentions from electrophysiological signals to

control the external devices without the neuromuscular path-
way [1]. Among the noninvasive modalities, the steady-state
visual evoked potential (SSVEP)-based BCI has attracted
widespread attention due to its advantages in high signal-to-
noise rate (SNR) and little user training time [2]. In recent
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years, SSVEP-BCI has been successfully developed in brain-
actuated wheelchairs [3], [4], robotic arms [5], [6], spellers
[7], [8], and rehabilitations [9], [10].

Target detection methods play an important role in enhanc-
ing the performance of SSVEP-BCI [11]. In the past few
decades, the detection methods have evolved from detecting
with single channel, e.g., power spectrum density analysis
(PSDA) [12], into detecting with multiple channels, e.g.,
canonical correlation analysis (CCA) [13], minimum energy
combination (MEC) [14], multivariate synchronization index
(MSI) [15], improved versions of CCA [16], [17], and filter-
bank canonical correlation analysis (FBCCA) [7]. Moreover,
training-based detection methods, especially spatial filtering-
based algorithms, have been developed recently. The spatial
filtering methods have gained wide attention and have proved
to be effective in the field of BCI [18], [19]. In SSVEP-BCI,
the spatial filters are calculated using the individual training
data to reduce the non-relevant brain activities and noises, and
extract the relevant SSVEP activity to improve the signal-to-
noise ratio (SNR) from the given multi-channel EEG signal.
The extended CCA (eCCA) proposed by Chen et al. [20]
calculated the spatial filters using CCA between temporal
templates, artificial reference signal, and the test data. The
ensemble task-related component analysis (eTRCA) proposed
by Nakanishi et al. [8] derived the spatial filters by solving the
inter-trial covariance maximization problem, and it greatly pro-
moted the classification performance. The extended versions of
eTRCA [21], [22] were proposed thereafter to further improve
the performance of eTRCA. The task-discriminant component
analysis (TDCA) proposed by Liu et al. [23] sought to find a
uniform spatial filter of all classes with a discriminative model,
and it significantly outperformed eTRCA in public datasets
and self-collected dataset. Despite the fact that spatial filtering
based detection methods have achieved high performance in
SSVEP-BCI, they require a large amount of individual training
data. For example, the eCCA and eTRCA require a calibration
session of 12 blocks with each block containing 40 trials
before applying the SSVEP-BCI system for online detection.
The collection of sufficient training data is time-consuming
and might cause a visual fatigue, resulting in user’s low
acceptance of the BCI system.
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Therefore, researchers have explored the feasibility of
detecting targets under limited SSVEP training data. For exam-
ple, transfer learning-based methods [24], [25] can use the
training data from existing subjects in the same experiment or
training data collected from other experiments using different
acquisition devices to train the detection model for the new
subject directly. Generative adversarial networks (GAN) [26]
can generate multiple synthetic data given the existing data
from other subjects or experiments and little data from the new
subject. By doing so, the new subject can be free from the long
training time. However, these methods still need to collect a
large amount of data in advance, and fine-tuning is required for
numerous parameters in the model. Some researchers utilize
the existing but unused data for detection model training,
including using data from other classes which had the neighbor
frequencies [27] or locations on the screen [28] to the target
class to train the spatial filters or using the unlabeled test data
for obtaining new spatial filters for detection [29]. Another
attempt is to perform data transformation to the data epochs
to obtain multiple new augmented epochs. Luo et al. [30] pro-
posed source aliasing matrix estimation (SAME) to augment
new data by combining the derived SSVEP source component
from the training data and the estimated Gaussian noise.
Li et al. [31] augmented new data by performing sample-based
transformations, including performance-measure-based (PMB)
time wrap, frequency noise addition, and frequency masking
onto the data epochs.

Time-shift augmentation on the experimental data is another
frequently used method in BCI field to extract more training
samples for the model training [32], [33]. In the offline
calibration data of SSVEP-BCI, each trial duration is set to
3 s or 5 s, and data epochs of [d, d + Tw] s in each trial
is extracted for training the spatial filtering algorithms. d
indicates the SSVEP latency of 0.13 s or 0.14 s [34], [35], and
Tw indicates the selected window length for online decoding,
which is set to around 0.6 s and is much shorter than the
trial duration. However, low classification performance was
obtained in previous SSVEP studies [36], [37] when time-
shift augmentation method was directly used to augment more
data epochs for training the spatial filtering algorithm. The
possible reason is that it violates the time- and phase-locked
requirement between different data epochs [30], [36], [37].
Since subjects steadily gaze at the cued stimulation target
for the entire trial, multiple epochs with similar SSVEP
characteristics could be extracted within one trial. Thus, the
feasibility of applying the time-shift augmentation method
to spatial filtering-based algorithms needs to be explored
further.

This study proposes a novel time-shift data augmentation
method to augment more data epochs for training-based
SSVEP algorithms. In detail, the similarity between the orig-
inal data epoch [d, d + Tw] s and data epochs at different
time moment [at , at + Tw] s within one trial was evaluated.
Based on the similarity results, the phase-locked time-shift
(PLTS) data augmentation method was proposed, in which
a unique time-shift step for each SSVEP class was set to
augment additional epochs within one trial. Then, the proposed
PLTS augmentation method was verified on the state-of-the-art

(SOTA) spatial filtering algorithms, i.e., eTRCA and TDCA,
for the Benchmark and the BETA dataset. Finally, PLTS
was implemented in a situation of short calibration time, the
single calibration block condition, and it showed significant
improvement, which promoted the real-life applications of
SSVEP-BCI.

The paper is organized as follows. The training-based
SSVEP-BCI, the data augmentation process, the used public
datasets, and evaluation metrics are described in Section II.
The results are presented in Section III, with discussion and
conclusion followed in Sections IV and V, respectively.

II. METHODS

A. Training-Based Method in SSVEP-BCI
As shown in Fig. 1, in SSVEP-BCIs, N f visual stimuli

are presented to subjects, and the experiment consists of Nb
blocks, each including N f trials corresponding to N f stimuli.
Each trial starts with a visual cue indicating the target stimulus,
which lasts for 0.5s. Subjects are instructed to shift their
gaze to the target within the cue duration and gaze at it.
After the cue, all stimuli start to flicker for Tn s. Then, the
screen is blank for 0.5s before the next trial begins. Epoch
of [d, d + Tw] s in each trial is extracted, in which the time
moment 0 indicates the stimulus onset, d indicates the SSVEP
response latency [34], and Tw indicates the time window
length for training and decoding.

The SSVEP detection model can be trained using the
individual calibration data X( j)

n ∈ RNch×Ns (n ∈
[
1, N f

]
, j ∈

[1, Nb] , n, j ∈ N∗). n indicates the stimulus class index, and
N f is the number of stimulus classes in total; j indicates the
index of the training sample, and Nb is the number of blocks
/ training samples for each class; Nch indicates the number
of channels for each epoch, and Ns indicates the data length
extracted in each trial (which is equal to Tw× fs , fs indicates
the sampling rate). First, the spatial filter Wn ∈ RNch×1 is
calculated (the detailed calculation process of spatial filter in
eTRCA and TDCA could be found in [8] and [23]):

Wn = f
(

X(1)
n , X(2)

n , . . . , X(Nb)
n

)
, n = 1, 2, . . . , N f (1)

Then, the temporal template for each class is obtained by
averaging across different training samples:

Xn =
1

Nb

Nb∑
j=1

X( j)
n , n = 1, 2, . . . , N f (2)

Finally, given a test data X t ∈ RNch×Ns , the correlation
coefficient between the projected temporal template and the
projected test data is calculated:

ρn = corr
(

Xn
T Wn, XT

t Wn

)
(3)

and the target class can be identified by choosing the following
equation:

τ = argmax
n

ρn, n = 1, 2, . . . , N f (4)

The filter bank technique is usually implemented along
with the training-based SSVEP detection methods, in which
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Fig. 1. Methodology overview. In SSVEP-BCI, the calibration session includes Nb blocks, each containing Nf trials corresponding to all Nf visual
stimuli with different frequencies and phases. In each trial, subjects are required to gaze at the cued stimulus for Tns. Conventionally, data epoch of
[d,d+Tw]s in each trial is extracted for model training, where d indicates the SSVEP response latency and Tw indicates the data length for training
and decoding. In the proposed PLTS augmentation method, a unique time-shift step is assigned for each SSVEP class and therefore (1 + Na)
epochs can be extracted in each trial, providing more data for training the model.

data are decomposed into Nm sub-band components to utilize
the harmonic information. In detail, the m-th zero-phase
Chebyshev Type I infinite impulse response (IIR) filters
with the lower and upper cut-off frequencies of [8m, 90]
Hz is applied to both the training data and the test data.
After calculating the above-mentioned spatial filters, tem-
poral templates, and the correlation coefficients in each
sub-band component, a weighted sum of squares of the
combined correlation coefficients is calculated and the class
with the maximum weighted correlation is selected as the
target class:

ρi =

Nm∑
m=1

wm

(
ρ

(m)
i

)2
(5)

wm is defined according to [7]:

wm = m−1.25
+ 0.25, m = 1, 2, . . . , Nm . (6)

B. Data Augmentation
1) Finding Epochs With High Similarity: To fully utilize the

experiment data, apart from the original epoch xo[d, d+Tw] s,
we hypothesize that data in [d+Tw, Tn] s in each trial can also
be extracted for SSVEP detection model training since subjects
steadily gaze at the flickering stimulus, and the SSVEP is
evoked for the entire trial. In detail, the augmented epoch xa
extracted from [at , at + Tw] s should have similar SSVEP
characteristics with xo, and can be served as a new training
sample for the detection model. at indicates the start time
moment for extracting the augmented epoch, and (at + Tw)

indicates the end time moment for extracting it. The optimal

augmented epoch xa can be determined by finding the time
moment a with the maximum similarity (where a = at × fs):

a = argmax Similarity (xo, xa) (7)

The similarity is measured by the correlation between xo
and xa :

Similarity (xo, xa) =

∑Ns
i=1 (xo[i]−xo)(xa [i]−xa)

N−1√∑Ns
i=1 (xa [i]−xa)2

Ns−1

√∑Ns
i=1 (xa [i]−xa)2

Ns−1

(8)

The grid search method can be used, in which the time
moment a is set to d× fs +1, d× fs +2, . . . , (Tn − Tw)× fs
to calculate the similarity between xo and all possible xa , and
the time moment with the maximum similarity is selected to
be the optimal a.

2) PLTS Augmentation Method: In SSVEP-BCI, the aug-
mented epoch xa shows high similarity with the original
epoch xo periodically with the change of time moment a,
and this period is equal to the reciprocal of the stimulation
frequency of the trial (see Section III-A for detail). There-
fore, the phase-locked time-shift (PLTS) SSVEP augmentation
method is proposed in this study: given a trial data of n-th
class (the stimulation frequency is fn Hz), in addition to the
original epoch, time-shift augmentation can be performed with
a unique step 1sn :

1sn =
fs

fn
(9)
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and augmented epochs [at , at + Tw] s can be severed as
additional training samples. The time moment a is:

a = at × fs = p ×1sn, p = 1, 2, . . . Na (10)

In practice, total Na augmented epochs are extracted within
one trial (the value of Na is determined in Section III-B).
Note that the PLTS SSVEP augmentation method is different
from the conventional time-shift augmentation method because
the step 1s of time shift in PLTS is different for each class,
whereas 1s in the conventional method is set to a fixed value,
e.g., time samples of 50ms or 100ms, for all class.

By implementing the PLTS augmentation method, the num-
ber of training samples for each class in Nb blocks can be
enlarged from Nb to Nb×(1+Na). The pseudo code for PLTS
augmentation and model training is described as follows, and
the process of PLTS is summarized in Fig. 1.

Algorithm 1 PLTS Data Augmentation
Input: the original four-dimension data matrix Xo ∈

RN×Nch×Nb×N f (N is the total data sample number; Nch is the
channel number), the na-th augmented epoch extracted from
nb-th block X ∈ RNs×Nch , the stimulation frequency for n-th
class fn , the time-shift step for n-th class 1sn , the sampling
rate fs , the data sample number for each extracted epoch Ns ,
the number of training block Nb, the number of augmented
epochs Na
Output: the augmented data matrix Xa ∈

RNs×Nch×(N b Na)×N f

1 for n← 1 to N f do
2 Compute the unique step 1sn =

fs
fn

3 for nb ← 1 to Nb do
4 for na ← 1 to Na do
5 Extract augmented epoch X from Xo
6 Append X into Xa
7 Train the detection model using Xa

C. Evaluation
1) Data Used in This Study: The similarities between the

original epoch and the augmented epochs were evaluated
by analyzing the SSVEP public dataset [38]. Ten healthy
subjects participated in 15 blocks of a cued-spelling task on a
4×3 matrix of a virtual keypad, each block contained 12 trials.
The frequencies of the flickering stimuli ranged from 9.25Hz
to 14.75Hz with an interval of 0.5Hz, and the phase was set to
0 initially and incremented with 0.5π for different stimuli. The
stimulation duration of each trial was 4 s, and the sampling
rate was 256 Hz. The epoch data of channel Oz was used to
calculate the similarity.

The value of Na in the proposed PLTS data augmentation
method was determined using the Benchmark dataset [34],
and the performance of PLTS was verified on the BETA
dataset [35]. For the Benchmark dataset, 35 subjects partic-
ipated in six blocks of a cued-spelling task on a 5× 8 matrix
of a virtual keyboard. For the BETA dataset, 70 subjects par-
ticipated in four blocks of a cued-spelling task on a QWERTY
virtual keyboard. The stimulus frequencies for Benchmark and

BETA dataset ranged from 8.0Hz to 15.8Hz with an interval
of 0.2Hz, and the phase was set to 0 initially and incremented
with 0.5π for different stimuli. The stimulation duration was
5s in the Benchmark dataset, and 2s or 3s in the BETA dataset.
The sampling rate was 250Hz. Signals from nine classical EEG
channels (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2)
were chosen for detection. The SSVEP response latency d was
set to 140ms in the Benchmark and 130ms in the BETA. Time
window length Tw was set to 0.3s, 0.4s, . . . , 1s.

2) Performance Comparison: In this study, the SSVEP
detection methods (eTRCA [8] and TDCA [23]) with and
without the proposed PLTS data augmentation method were
compared to evaluate the performance of PLTS. Moreover, the
SAME [30] data augmentation method used in SSVEP BCI
was also included for comparison.

3) Evaluation Metrics: The correlation coefficient was used
to evaluate the similarity between the original epoch and aug-
mented epochs. The classification accuracy and information
transfer rate (ITR) were evaluated using k-fold cross-validation
(k = 6 for the Benchmark dataset, and k = 4 for the BETA
dataset). The ITR in units of bits per min (bpm) is calculated
by [39]:

I T R =
(

log2 M + Plog2 P + (1− P) log2
1− P
M − 1

)
×

60
T

where M indicates the number of classes, P indicates the
classification accuracy, and T in a unit of second indicates
the target selection time, which is the sum of gaze time Tw

and the 0.5s gaze shifting time.
4) Statistical Analysis: When applicable, results were

expressed as mean ± SEM (standard error of the mean) unless
otherwise stated. The error bars shown in the figures indicated
the SEM. One-way and two-way repeated measures analysis of
variance (ANOVA) was applied to test the difference in clas-
sification accuracy and ITR of eTRCA and TDCA in different
numbers of training blocks Nb and different augmentation
conditions. The Greenhouse-Geisser correction was used if the
data didn’t conform to the sphericity assumption by Mauchly’s
test of sphericity. All post hoc pairwise comparisons were
Bonferroni corrected. The alpha level of statistical significance
was set at 0.05.

III. RESULTS

A. Similarity Between Original AND Augmented Epochs
To find the optimal augmented epoch, the similarity between

original epoch x0 and augmented epoch xa at the time moment
a of [d × fs + 1, d × fs + 256] time samples was computed.
Fig. 2(a) shows examples of similarity changes with the time
moment a at 9.75Hz, 10.75Hz, and 14.75Hz respectively. The
blue dotted curve indicates the calculated similarity for each
subject, and the black curve indicates the average similarity
across all subjects. It can be seen that the maximum similarity
occurs periodically at all three frequency conditions. The time
moments of the first three maximum similarity was 26, 52,
79 for 9.75Hz, 24, 48, 72 for 10.75Hz, and 18, 34, 52 for
14.75Hz, respectively. The period, i.e., the interval between the
time moments, decreases with the increase of the stimulation
frequency, and moreover, it is equal to the period of the
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Fig. 2. Similarity between the original epoch and the augmented
epochs. The time moment of the augmented epochs ranges from
d × fs + 1 to d × fs + fs. (a) Example similarity calculated using class
data of 9.75 Hz, 10.75Hz, and 14.75 Hz, respectively. The blue dotted
curve indicates the calculated similarity for each subject, and the black
curve indicates the average similarity across all subjects. (b) Similarity
of all classes from 9.25 Hz to 14.75 Hz. Color indicates the similarity at
each time moment of each class.

Fig. 3. The change of periodically occurred maximum similarity. The
x-axis indicates the ordinal number p of the augmented epochs, the
y-axis indicates the similarity between the original epoch and
the pth augmented epoch.

stimulation frequency fs
fn

. Furthermore, the similarity for all
stimulation frequencies is illustrated in Fig. 2(b), in which
the phenomenon of periodic maximum similarity exists at all
frequency conditions, and the period is also decreased with
the increase of the stimulation frequency. Therefore, given
a trial data of stimulation frequency fn , optimal augmented
epochs can be obtained by extracting epochs at time moment
a = p × fs

fn
, p = 1, 2, . . . , which show maximum similarity

to the original epoch. p indicates the ordinal number of
augmented epochs.

To evaluate the changes of periodically occurred maximum
similarity, the first 15 similarity between the original epoch
and p-th augmented epoch for each stimulation frequency and
each subject was calculated and averaged, as shown in Fig. 3.
The similarity shows a trend of decrease with the increase of

Fig. 4. The classification accuracy of eTRCA under different training
block number Nb and different augmentation number Na for the Bench-
mark dataset presented in (a) heatmap figure and (b) curve figure. The
accuracy value in the heatmap was normalized to [0, 1] for each Nb to
better illustrate the accuracy change with different Na.

ordinal number p, but it remains above 0.4 for all augmented
epochs.

B. PLTS Parameter Optimization
To explore the classification accuracy improvement when

using PLTS augmentation method with different augment
number Na , a grid search method was conducted to evaluate
eTRCA with PLTS for the Benchmark dataset. As shown in
Fig. 4, with the increase of augment number Na , the classifi-
cation accuracy first increased, then remained stable or slightly
decreased. Two-way repeated measures ANOVA revealed that
two within-subject factors Nb and Na and their interaction
were statistically significant for the Benchmark dataset (Nb :

F (1.10, 37.40) = 333.68, p < 0.001, Na : F (1.40, 47.43) =

149.32, p < 0.001, Nb × Na : F (1.66, 56.34) = 204.61, p <

0.001). The Na in which the accuracy reached maximum or
became stable was selected as the optimal parameter to reduce
the computation cost in training. Therefore, Na was set to 6,
5, 5, 3, and 3 for 1, 2, 3, 4, and 5 training blocks, respectively.

C. Classification Performance With PLTS
To testify the efficacy of PLTS augmentation method, the

eTRCA and TDCA performance without any data augmenta-
tion method (Original), with PLTS (w/PLTS), and with SAME
(w/SAME) were compared, as shown in Table I. The results
showed that PLTS promoted the classification accuracy of
eTRCA by 49.60%, 9.80%, and 5.00% for 1, 2, and 3 training
blocks respectively, and it promoted the classification accuracy
of TDCA by 33.67%, 2.86%, and 0.57%. When compared to
the SAME, the PLTS promoted the classification accuracy of
eTRCA by 12.78%,−0.43%, and−1.04% for 1, 2, and 3 train-
ing blocks respectively, and it promoted the classification
accuracy of TDCA by 4.95%, 0.19%, and −0.92%. Two-way
repeated measures ANOVA showed that augment methods,
training blocks, and their interaction were statistically signif-
icant for both eTRCA and TDCA (p < 0.001). One-way
repeated measures ANOVA and post hoc test revealed that
the classification accuracy of PLTS was significantly higher
than that without any data augmentation for both eTRCA
and TDCA for all training blocks conditions (p < 0.001);
compared with the SAME, classification accuracy of PLTS
for both eTRCA and TDCA was significantly higher for one
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TABLE I
CLASSIFICATION PERFORMANCE COMPARISON AMONG ALGORITHMS WITH DIFFERENT

AUGMENTATION METHODS INCLUDING ORIGINAL, SAME, AND PLTS

Fig. 5. The classification accuracy distribution of all subjects for the
BETA dataset when (a) Nb = 1, (b) Nb = 1, and (c) Nb = 1, respectively.
Each blue circle indicated the accuracy for each subject. The x value
indicates the accuracy obtained by the subject without the PLTS, the
y value indicates the accuracy obtained with the PLTS.

training block (p < 0.001), comparable for two training blocks
(p = 0.456, p = 1.000) and significantly lower for three
training blocks (p = 0.005, p = 0.009) with a difference
of around 1%.

Fig. 5 demonstrates the detail of eTRCA performance in
the BETA dataset with and without PLTS. Each blue circle
indicated the accuracy for each subject. It can be seen that
when one block of data was available for training, all blue
circles scattered at the upper left area, indicating that the
performance of all subjects was greatly promoted by the PLTS.
With the increase of the number of training blocks, circles
were closer to the central line (y = x), indicating that the
PLTS had lower accuracy improvement.

Fig. 6. The classification accuracy under different augmentation con-
ditions, for (a) eTRCA and (b) TDCA, respectively. Conditions include
the algorithm without PLTS (Original), with updated temporal templates
(w/PLTS-t), with updated spatial filters (w/PLTS-sf), and with both the
updated temporal templates and updated spatial filters (w/PLTS). The
green brackets indicate p < 0.05, the blue brackets indicate p < 0.01,
and the red brackets indicate p < 0.001.

D. Spatial Filters and Temporal Templates
Improvement by PLTS

To further explore the contribution of PLTS to SSVEP
detection methods, four augmentation conditions were con-
sidered, including classification without PLTS augmentation
(w/oPLTS), classification with updated spatial filters after uti-
lizing PLTS (w/PLTS-sf), classification with updated temporal
templates after utilizing PLTS (w/PLTS-t), classification with
both updated spatial filters Wn and temporal templates χn after
utilizing PLTS (w/PLTS). As shown in Fig. 6, performance
without PLTS had the lowest performance, and that with PLTS
achieved the highest performance for both eTRCA and TDCA,
and all numbers of training blocks Nb. Two-way repeated
measures ANOVA revealed that two within-subject factors
Nb and augmentation conditions and their interaction were
statistically significant in eTRCA and TDCA (p < 0.001).
One-way repeated measures ANOVA and the post hoc test
showed that the performance with PLTS was significnatly
higher than all other three conditions in both eTRCA and
TDCA for all training block conditions, except for Nb = 3
in TDCA. The performance of w/PLTS-sf was significantly
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higher than that of w/PLTS-t in both eTRCA and TDCA for
Nb = 1.

E. Performance Under Single Calibration Block
It is necessary for training-based SSVEP-BCI to diminish

the calibration time before online application since a long cal-
ibration time causes visual fatigue and users’ low acceptance
of the BCI system. In this study, four simulated conditions of
calibration session before the online decoding were compared,
including (1) only one calibration block with a trial duration
of To (Nb = 1); (2) only one calibration block with the
expanded trial duration of (To+ 1× 1

fn
), in which PLTS with

one augmented epoch was implemented (Nb = 1, Na = 1);
(3) only one calibration block with the expanded trial duration
of (To + Na ×

1
fn

), in which PLTS with a total of Na
augmented epochs was implemented (Nb = 1, Na = 6);
(4) two calibration blocks (Nb = 2). Supposing that the gaze
shift time for each trial was 0.5 s, and the rest time between
training blocks was 60 s, then the calibration time D (unit:
second) for the four conditions were: (1) N f × (To + 0.5);

(2) N f ×(To + 0.5)+
N f∑

n=1

1
fn

; (3) N f ×(To + 0.5)+6×
N f∑

n=1

1
fn

;

(4) 2× N f × (To + 0.5)+ 60, respectively.
Fig. 7 illustrates classification accuracy and ITR under dif-

ferent time window length To for online decoding and different
calibration conditions. For To = 0.7 s, the condition (Nb = 1)

required a short calibration time D1 = 48 s, but it had
extremely low ITR for eTRCA and TDCA, which was imprac-
tical for online applications. The condition (Nb = 1, Na = 1)

required a slightly longer calibration time D2 = 48+ 3.50 =
51.5 s, but achieved much higher ITR compared to the
condition (N b = 1), i.e., 95.56± 7.34 vs 6.47± 1.30 bits/min
for eTRCA, and 122.61 ± 7.05 vs 40.88 ± 4.54 bits/min for
TDCA. The condition (Nb = 1, Na = 6) required a calibration
time D3 = 48 + 21.0 = 69s, and had comparable ITR, and
lower ITR compared to the condition (Nb = 2) for eTRCA and
TDCA, respectively (note that the calibration time D4 = 156 s
for the condition Nb = 2). One-way repeated measures
ANOVA was used to evaluate the difference among the maxi-
mum ITR achieved by different calibration conditions, and the
results revealed that the calibration condition was statistically
significant in eTRCA (F (1.28, 88.40) = 375.65, p < 0.001)

and TDCA (F (1.23, 84.93) = 589.22, p < 0.001)). These
results indicated that the problem of low SSVEP performance
with one training block can be solved by slightly prolonging
the calibration time by 3.5 s and implementing the PLTS
augmentation method.

IV. DISCUSSION

This study proposes the PLTS augmentation method for
SSVEP-BCI under limited training data. The state-of-the-art
algorithms eTRCA and TDCA showed improved performance
when combined with the PLTS. Especially when the training
block was one, the classification accuracy improvement of
eTRCA was 49.60%, and TDCA’s was 33.67%. Moreover,
the PLTS significantly outperformed the SAME by 12.78%
and 4.95% for eTRCA and TDCA, respectively. The results

Fig. 7. The classification performance achieved by different calibration
conditions. Sub-figures (a) and (b) indicated the accuracy of eTRCA
and TDCA, and sub-figures (c) and (d) indicated the ITR of eTRCA
and TDCA, respectively. The orange line indicates the condition of only
one calibration block with the trial duration of optimal window length To,
which is selected by the offline analysis. The purple line indicates the
condition of only one calibration block with a prolonged trial duration of
To +

1
fn

for each class of fn Hz. The blue line indicates the condition of

only one calibration block with a prolonged trial duration of To + 6× 1
fn

.
The green line indicates the condition of two calibration block with the
trial duration of To. Note that PLTS is implemented in the conditions
with the prolonged trial duration, whereas the conditions with the trial
duration of To do not allow for PLTS implementation due to the lack of
extra data in each trial.

validated the efficacy of the proposed PLTS data augmentation
method.

A. New Time-Shift Augmentation Strategy – PLTS
Data augmentation method could improve the classification

performance given the limited amount of training data [40].
Particularly, the time-shift data augmentation method with
a fixed step of 50 ms or 100 ms is usually implemented
in the BCI field to extract additional training samples in
limited training data [32], [33]. However, this augmentation
method resulted in low performance when combined with the
spatial filtering-based SSVEP algorithms [36], [37]. One of the
reasons is that, in spatial filtering-based SSVEP algorithms, all
the training samples in one class are temporally averaged to
eliminate the noise contained in EEG signals and to obtain the
pure SSVEP component, i.e., the temporal templates referred
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to in this study. To do so, the initial phases between training
samples must maintain the phase-locked requirement, or the
SSVEP component would be canceled out. For example, the
sum of two signals with the same period but a phase difference
of π is 0. The same initial phase of stimulation in each trial and
the precise timing in the SSVEP-BCI experiment guarantee
the phase-locked requirement [34], [35], but the augmenting
process causes different phases between the original training
samples and the augmented training samples, resulting in low
classification performance.

In this study, PLTS augmentation method augmented new
epochs based on the period of the stimulation frequency fn Hz,
so that the phase difference between the SSVEP component
contained in the original epochs and those contained in the
augmented epochs were integers of 2π , which was equivalent
to 0, so that the phase-locked requirement was maintained
and the additional augmented training samples enhanced the
classification performance. The main difference between the
PLTS augmentation method and the conventional augmenta-
tion method is that, by utilizing the stimulation frequency
information of each class, the time-shift step in PLTS is unique
for each class, which is fs

fn
data samples rather than a fixed

step of 50 ms or 100 ms, so that the SSVEP component can
be obtained after the temporal averaging and the target can be
decoded accurately.

B. Single Calibration Block in SSVEP-BCI
The training-based SSVEP detection methods show

advanced classification performance compared to the training-
free methods [35], but they need sufficient calibration data
to train the detection model. Previous studies reported low
performance obtained by the training-based methods when
only one training block was available [8], [23]. Since a
relatively long stimulation duration of 3 s or 5 s was set
in the offline dataset, instead of extracting only one epoch
as the conventional studies did, this study proposed the
PLTS augmentation method to extract multiple epochs within
one trial. Therefore, the eTRCA and TDCA with the PLTS
achieved significantly higher classification accuracy, with the
improvement ranging from 34.1% to 62.5%.

When conducting a calibration session before the online
SSVEP-BCI, the stimulation duration in each trial is set
to the optimal time window To determined in the offline
analysis, so the PLTS can’t be implemented directly since
there is no additional data in each trial to perform the time
shift. Nevertheless, with a slightly prolonged trial duration
(To +

1
fn

) and PLTS implementation, the classification perfor-
mance can be greatly improved. In this study, the ITR was
5.42-40.88 bits/min when only one calibration block
was used for training, and the ITR was enhanced to
95.56-163.57 bits/min by PLTS when still one calibration
block but with a slightly prolonged duration was used for
training. Note that given the stimulation frequency ranging
from 8 to 15.8Hz, the extra stimulation time 1

fn
in each trial

was 0.064-0.125 s, which is nearly imperceptible since the
average human reaction time is 0.2 s [41]. The total extra time
was 3.5s, which was small compared to the one-block duration

of 48 s (less than 8 %). To sum up, by slightly prolonging
the stimulation duration in each trial and implementing the
PLTS, the online SSVEP-BCI system with a high ITR can be
achieved under one calibration block.

C. Explanation of the Periodic Similarity
In this study, the similarity between the original epoch

xo and augmented epochs xa at different time moment in
each trial was measured by the Pearson correlation coefficient,
and results showed that the maximum correlation occurred
periodically, and the period was equal to fs

fn
, where fn is the

stimulation frequency of the given trial. Given two signals,
their Pearson correlation coefficient can be high only if they
have a similar period and phase. Since the evoked SSVEP in
each trial was a periodic signal, xo and xa at different time
moments, all had the same period; their correlation reached the
maximum when the time moment difference between xo and
xa was integer multiples of period k × fs

fn
, in which they had

the same phase (phase-locked to each other). Since the non-
stationary characteristics and noise contained in the measured
SSVEP signals, the maximum correlation was less than 1 and
varied with time.

Consider the case of zero mean and unit variance in
equation (8), it can be simplified into:

Similarity (xo, xa) =

∑Ns
i=1 (xo [i]) (xa [i])

N − 1

=
1

N − 1

∑Ns

i=1
(xo [i]) (xo [i + a])

(11)

which was equivalent to the definition of the autocorrelation
function (ACF) Rx,x (n):

Rx,x (n) =

+∞∑
n=−∞

x (m) x (m + n). (12)

The ACF response of a signal with the period Tn is also a
periodic signal, and the maximum correlation occurs peri-
odically at k × Tn , which coincided with our calculated
similarity in Fig. 2. Therefore, these results validated the
rationality of extracting epochs at time moments k× fs

fn
for data

augmentation.

D. PLTS Implementation
PLTS is an augmentation data method for SSVEP-BCI and

can be effectively combined with the spatial filtering based
training methods. With the PLTS, additional time is required to
train the detection model since the number of epochs increases
from N f×Nb×1 to N f×Nb×(1+ N a). Still, the training time
is acceptable since the original training time of eTRCA and
TDCA is relatively short. When a PC with a 2.90 GHz CPU
is equipped, and time window is set to 0.7 s and the training
block number is 5, the training time is 0.21 s for eTRCA
and 1.16 s for TDCA, and the training time with PLTS of
Na = 3 is 0.82 s for eTRCA and 5.89 s for TDCA. Besides,
it is easy to implement PLTS into the training-based SSVEP-
BCI because only one additional step of the time-shift process
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to extract augmented epochs in each trial is required, and the
spatial filtering calculation, temporal template calculation, and
the detection are all the same with the conventional algorithm
implementation.

E. Limitations and Future Works
Despite the efficacy of the proposed PLTS was validated

in this study, there is still room for further improvement.
First, as shown in Fig. 2(b), the similarity level between the
augmented and original epochs was different for classes of
different stimulus frequencies. This indicates that the optimal
augmentation number Na might be different for each class,
and finding the optimal Na for each individual class could
further improve the performance of the PLTS. Second, when
the training block Nb was one, the performance improvement
brought by the PLTS augmented epochs was mainly achieved
by estimating valid spatial filters, rather than valid temporal
templates, as Fig. 6 indicated. Similar phenomenon was also
found in the SAME study [30].The possibility of acquiring
a valid temporal template using augmented epochs will be
investigated in the future. Third, the performance enhancement
of the PLTS was less superior when Nb > 1 compared to the
condition of Nb = 1. Meanwhile, the SAME was comparable
to the PLTS when Nb = 2, and it outperformed the PLTS
by 1% when Nb = 3. Therefore, the proposed PLTS and the
existing data augmentation methods, e.g., the SAME, might
be combined using feature fusion technique [42], which may
further promote the classification performance, and will also
be explored in our future study.

V. CONCLUSION

This study proposes a new time-shift data augmentation
method, PLTS, for SSVEP-BCI. By setting a unique time-
shift step for each SSVEP class, the new augmented epochs
retain similar SSVEP characteristics to the original epochs,
and, therefore, can be used for training the spatial filtering-
based detection model. The results on two public datasets
illustrate that PLTS can significantly improve the performance
of the SOTA algorithms, eTRCA and TDCA. Furthermore, the
PLTS can solve the insufficient performance problem under
a single calibration block, which promotes the ITR from
34.90 ± 6.25 bits/min to 163.57 ± 6.25 bits/min. Therefore,
PLTS advances the SSVEP-BCI performance under limited
training data and facilitates real-life applications in high-speed
brain spellers.
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