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Abstract— Integrating the brain structural and functional
connectivity features is of great significance in both explor-
ing brain science and analyzing cognitive impairment
clinically. However, it remains a challenge to effectively
fuse structural and functional features in exploring the
complex brain network. In this paper, a novel brain
structure-function fusing-representation learning (BSFL)
model is proposed to effectively learn fused representa-
tion from diffusion tensor imaging (DTI) and resting-state
functional magnetic resonance imaging (fMRI) for mild
cognitive impairment (MCI) analysis. Specifically, the
decomposition-fusion framework is developed to first
decompose the feature space into the union of the uniform
and unique spaces for each modality, and then adap-
tively fuse the decomposed features to learn MCI-related
representation. Moreover, a knowledge-aware transformer
module is designed to automatically capture local and
global connectivity features throughout the brain. Also,
a uniform-unique contrastive loss is further devised to
make the decomposition more effective and enhance the
complementarity of structural and functional features. The
extensive experiments demonstrate that the proposed
model achieves better performance than other competitive
methods in predicting and analyzing MCI. More importantly,
the proposed model could be a potential tool for recon-
structing unified brain networks and predicting abnormal
connections during the degenerative processes in MCI.
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I. INTRODUCTION

M ILD cognitive impairment (MCI) is considered an
early stage of Alzheimer’s Disease (AD) among older

people [1]. It is characterized by memory loss, aphasia, and
other brain function decline. Although not all older adults with
MCI will develop AD, the annual conversion rate is 10%-15%.
As the stage of AD is irreversible and incurable, early cog-
nitive training and rehabilitation treatment are the keys to
delaying or preventing the onset of dementia. Therefore, it is
essential to develop effective methods for the diagnosis of
MCI [2], [3], [4].

The brain network is suitable for characterizing the struc-
tural or functional relationships between brain regions by
diffusion tensor imaging (DTI) or resting-state functional
magnetic resonance imaging (fMRI) [6]. As parts of the brain’s
structural or functional connections may alter in people with
MCI [7], it is common to extract connectivity-based features
for early cognitive disease detection. Different from extracting
features in Euclidean space [8], [9], [10], the general way of
describing these features is to first split the whole brain into
several spatially distributed regions of interest (ROIs) and then
compute the connection strength between them from imaging
data. Previous studies extracted the connectivity-based features
from unimodal data and then built a classifier for cognitive
disease detection. Since neuroimages from different modal-
ities carry complementary information, current works [11],
[12], [13] mainly focus on multimodal fusion by graph
convolutional networks (GCN) and have achieved superior per-
formance in disease diagnosis. However, these works heavily
depend on the structural connectivity by empirical methods,
which may lead to a large error in connection strength calcu-
lation because of the manually different parameter settings in
certain software toolboxes. It may lose valuable information
for disease prediction. Besides, the high noise and changing
connectives derived from fMRI make it difficult to fuse with
DTI, which cannot fully capture the complex brain network
features in cognitive disease analysis.

The generative artificial intelligence has attracted
widespread attention in medical image computing [5], [14],
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[15], [16]. We combine the generative adversarial network
(GAN) and variational autoencoder (VAE) for constructing
brain networks from imaging data. As the transformer net-
work [17] has an excellent ability to capture global information
and model longer-distance dependencies for image recogni-
tion [18], [19], it is more suitable to automatically extract
structural features of the spatially distributed brain ROIs and
determine the connection strength among them. Since the
common and complementary information from unimodal data
is often mixed together, the multimodal fusion effect has been
dramatically improved by decomposition-fusion representation
learning via VAE in disease analysis [20], [21]. However,
these works focus on image feature extraction in Euclidean
space and ignore representation learning in topological space.
It cannot analyze the connectivity features among spatially
distributed ROIs in brain disease prediction. Moreover,
the decomposed representations need to be adaptively
integrated to learn effective connectivity features for disease
analysis.

Inspired by the above observations, in this paper, a novel
model termed brain structure-function fusing-representation
learning (BSFL) is proposed to generate unified brain net-
works for predicting abnormal brain connections based on
fMRI and DTI. Specifically, the knowledge-aware transformer
network is designed to extract structural features for each
ROI from DTI. Then the structural and functional features
extracted from fMRI are sent to the decomposed variational
graph autoencoders to decompose the feature space into
uniform and unique spaces representing the common and
complementary information for each modality. After that, the
decomposed representations are utilized to reconstruct the
input features to retain the unimodal information. Meanwhile,
the representation-fusing generator combines these representa-
tions and generates unified brain networks, which are sent to
the dual discriminator to make them class-discriminative and
distribution-consistent. To ensure the effectiveness of decom-
position, a uniform-unique contrastive loss function is utilized
to constrain the distance in the decomposed representations
within each modality and between modalities. As a result,
the unified connectivity-based features are obtained to fully
capture MCI-related information and provide reliable analysis
of brain network abnormalities. The main contributions of this
framework are as follows:
• The novel BSFL model is proposed to first learn the

uniform and unique representations of each modality in
topological spaces, and then adaptively integrate them to
generate unified brain networks. It can greatly enhance
the structural-functional feature fusion and effectively
recognize the connectivity features that are highly related
to MCI.

• The uniform-unique contrastive loss is devised to max-
imize the distance of the uniform and unique represen-
tations within each modality and minimize the distance
of uniform representations between modalities, which
makes the decomposition more effective and enhances the
complementarity of structural and functional features.

• The knowledge-aware transformer (KAT) is designed to
extract brain region features from DTI by introducing

knowledge of the brain parcellation atlas. The proposed
KAT can automatically learn the local and global con-
nectivity features and capture the MCI-related structural
information.

The rest of this paper is organized as follows: The related
works are briefly described in Section II. The details of the
proposed model are presented in Section III. In Section IV,
the proposed BSFL and other competing methods are com-
pared, and experimental results are presented on the public
database. The reliability of the experimental results and
the limitations of the proposed model are discussed in
Section V. Finally, Section VI concludes the remarks of this
study.

II. RELATED WORK

The current brain network analysis methods for cognitive
disease can be summarized in three categories: structural
connectivity-based, functional connectivity-based, and mul-
timodal connectivity-based approaches. The first approach
focuses on morphology or water diffusion information to
extract interrelated features of predefined ROIs for AD
analysis. Pereira et al. [22] utilized cortical thickness infor-
mation from T1-MRI to construct brain networks to analyze
the abnormal topology properties between patient groups
and healthy controls. Similarly, Wang et al. [23] constructed
structural brain networks from DTI data to evaluate graph
topological coefficients and demonstrated that the AD group
had decreased global efficiency and local efficiency com-
pared with normal controls. The brain network can also be
characterized by the neural activity measured in each brain
region. The second approach constructed functional connec-
tivity from fMRI or Electroencephalogram (EEG) data and
built classifiers to diagnose early AD. The work in [24]
investigated subgroups of functional connectivities using EEG
data and found abnormal changes in hub regions in AD
patients. By defining spatially distributed ROIs, Jie et al. [25]
utilized fMRI to extract connectivity-based features with
multiple ROIs, which improved MCI diagnosis accuracy
and provided valuable biomarkers for treatment. Considering
multimodal data provides complementary information, the
third approach used structural and functional connectivity to
construct unified brain networks for AD diagnosis and treat-
ment. To discover interpretable connections, Lei et al. [26]
presented an auto-weighted centralized multi-task model to
combine the two kinds of connectivities for the MCI study,
which has achieved excellent diagnosis performance and
estimated essential brain connections for further treatment.
Nevertheless, the previous models adopted structural connec-
tivity directly from the empirical methods, which may be
inaccurate and ineffective for downstream feature extraction
because of different manual parameter settings. Moreover,
the functional connections from fMRI may be influenced
by the selection of sliding time windows and the high
noise.

There are two strategies to learn representations from multi-
modal images for brain disease analysis: mixed representation
learning and decomposed representation learning. The former
strategy extracts latent features from unimodal data separately
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Fig. 1. The overall framework of the proposed BSFL for MCI diagnosis using fMRI, DTI, and the knowledge of template-segmented brain
regions. It consists of eight components: a transformer, two encoders, two decoders, a generator, and two discriminators. The output of the
representation-fusing generator is the unified brain network, which is used for MCI analysis.

and fuses these features by concatenation or other specific
mechanisms (i.e., averaging or weighting). Zhou et al. [27]
used the combination of volumetric measures calculated
from T1-weighted MRI, metabolic measures generated
from positron emission tomography (PET), and genetic
measurements extracted from single nucleotide polymorphism
(SNP) as input features to diagnose AD. Also, the work in [26]
merged structural connectivity features with functional con-
nectivity features using a weighting scheme and then adopted
an SVM classifier for early AD diagnosis. Decomposed
representation learning via VAE has shown great potential and
has become mainstream in medical image analysis [28], [29].
It jointly encodes each modal image into latent representations
with separate meanings and combines these multimodal rep-
resentations for downstream tasks. Zhang et al. [30] proposed
a VAE-based model to decompose multi-view brain networks
from DTI and learn a unified representation, which improves
MCI diagnosis performance. Similarly, Cheng et al. [31]
applied multimodal VAE to learn common and distinctive
representations from preoperative multimodal images for
glioma grading. In general, mixed representation learning
may lead to common information redundancy and the
degradation of the fusion effect. And because decomposed
representation learning concentrates on the euclidian space
for disease diagnosis, it is not suitable for brain disease
analysis in terms of brain topological characteristics.

III. METHOD

A. Overview
The flowchart of BSFL is shown in Fig. 1. After some

preprocessing steps, given the fMRI and DTI, the proposed

model learns a complicated non-linear mapping network
to transform the bimodal images into brain networks for
detecting abnormal brain connections at different stages of
MCI. The proposed model consists of four parts: 1) the
knowledge-aware transformer; 2) the decomposed variational
graph autoencoders; 3) the representation-fusing generator;
and 4) the dual discriminator. The last three parts are
defined as the decomposition-fusion framework. First, the
transformer-based network extracts structural features from
DTI by incorporating location and volume information for
predefined ROIs. Then, the feature space is decomposed into
unique and uniform spaces for each modality by the decom-
posed variational graph autoencoders. Finally, the decomposed
representations are fused to generate unified brain networks by
the representation-fusing generator and the dual discriminator.
The proposed model is featured by incorporating the following
objective functions: the Kullback-Leibler (KL) loss, the recon-
struction loss, the adversarial loss, the classification loss, and
the uniform-unique contrastive loss. These loss functions aim
to ensure decomposition thoroughness and enhance structural-
functional fusion.

B. Architectures
1) Knowledge-Aware Transformer: In this section, the

transformer-based network is adopted to extract structural fea-
tures for each predefined ROI from DTI. The knowledge-aware
transformer consists of a stem module, a prior knowledge
normalization (PKN) module, and a transformer block. A stem
is a common form of convolution with defined kernels and
strides that is applied to extract low-level features from the
fraction anisotropy (FA) image (as described in Section IV-A).
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Fig. 2. The detailed structure of the transformer block in KAT. The stem
embedding does not correspond to the ROIs. The output of this module
is the ROI’s structural features.

Suppose the brain is divided into N ROIs. In the proposed
model, the 3 × 3 × 3 convolutions [32], [33] are stacked
with 2-stride and 1-stride at intervals, followed by a single
1 × 1 × 1 convolution in the penultimate layer to match the
N -channel feature for ROIs. The filter numbers are 8, 8,
16, 16, 32, 64, and N for the seven convolutional layers.
In the last layer of the stem module, a one-layer linear
mapping (LM) network transforms the flattened ROI feature
into d-dimensional embedding and inputs it to the transformer
block.

Prior knowledge refers to the spatial location and mor-
phology information of the predefined ROIs. According to
the standard anatomical template, it can provide the central
location (i.e., x, y, and z) and volume (i.e., v) information
for each ROI. The PKN module normalizes the location and
volume information into the range −1 ∼ 1. For example,
P K N (xi ) = 2(xi −min(x))/(max(x)−min(x))− 1, where
x ∈ RN , N is the number of ROIs. This formula can be applied
to other prior knowledge (i.e., y, z, and v).

As illustrated in Fig. 2, both outputs of the stem and PKN
are sent to the transformer block to learn spatial and morpho-
logical features for each ROI. One stage of the transformer
block consists of prior multi-head self-attention (PMS) and
feed-forward networks (FFN). Here, the Fe ∈ RN×d and
Fp ∈ RN×4 are denoted as the embedding of the Stem
and PKN modules, respectively, where d indicates the output
dimension of the stem module. The output of each transformer
block is:

Eout = Ehidden + F F N (L M(Ehidden)) (1)
Ehidden = Fe + P M S(L M(Fe, Fp)) (2)

Fig. 3. The network structure of the structural encoder. It accepts
both structural connectivity and structural features and outputs two pairs
of variables: (µf, σf), and (µq, σq). Each pair is used to obtain the
decomposed representations (i.e., uniform and unique).

where, Ehidden ∈ RN×d and Eout ∈ RN×d . In particular,
the embedding Fe is projected to get value V by applying
k parallel linear mapping layers (i.e., heads). Also, the query
Q and key K are obtained in the same way by concatenating
the embeddings Fe and Fp as the input of the linear mapping
layers. The dimension of the three tokens is d ′, where d ′ =
d/k. For example, k = 1, and the PMS can be simplified to
prior single-head self-attention (PSS). It can be defined as:

P SS(Q, K, V) = Sof tmax(QKT /
√

d ′)V (3)

The output values of each PSS are concatenated and linearly
transformed to generate the hidden result Ehidden . Then, it is
sent to FFN with one linear mapping layer and a tanh acti-
vation function. Finally, the output Eout is combined with the
normalized prior knowledge Fp to input the next transformer
block. The output Eout of the last transformer block is linearly
mapped into Xs with the dimension d.

2) Decomposed Variational Graph Autoencoders: After the
structural features Xs ∈ RN×d and the functional features
X f ∈ RN×d extracted from the empirical method have
been mined separately, decomposing the bimodal features
can significantly improve the common and complementary
information fusion for representation learning. Given features
extracted from two modalities, this section can learn about
decomposed representations among modalities. There are two
parts: two encoders and two decoders.

The two encoders share the same structure in Fig. 1. Firstly,
the structural connectivity As is constructed by the matrix
inner product: As = σ(Xs X T

s ). The functional connectiv-
ity A f is constructed by the matrix inner product: A f =

σ(X f X T
f ). Then, each modal graph feature (i.e., Xs, As) is

sent to the encoder to get a pair of variables (i.e., σ, µ).
After that, the pair of variables is inferred to learn decom-
posed representations. Finally, the decomposed representations
are utilized to reconstruct the input features. The detailed
information on the structural encoder is shown in Fig. 3. The
GCN is a two-layer network with 128 and 64 neurons. Each
layer is followed by the rectified linear unit (ReLU ) activation
function. The brain connectivity and central attention (BCCA)
block is added to capture the global correlation between two
ROIs iteratively. Every ROI’s feature is updated by combing its
feature with other ROIs’ features. The linear mapping is one
dense layer with 64 neurons. The dual graph convolutional



ZUO et al.: BSFL USING ADVERSARIAL DECOMPOSED-VAE FOR ANALYZING MCI 4021

network (DGCN) block is added to generate a pair of latent
variables. It consists of two separate GCNs with one h-neuron
layer and can output one pair of latent variables representing
common and complementary information. The outputs of the
structural encoder are µs f , σs f , µsq , and σsq , and the outputs
of the functional encoder are µ f f , σ f f , µ f q , and σ f q .

To infer representations in latent space, a standard normal
distribution constraint at the end of the encoder is added to
get latent representations. The formula can be expressed as:

Zs f = µs f + σs f ⊙ ε1, and Zsq = µsq + σsq ⊙ ε2 (4)
Z f f = µ f f + σ f f ⊙ ε3, and Z f q = µ f q + σ f q ⊙ ε4 (5)

where, µsq , σsq are the mean and standard deviation matrix
of the structure-specific component, while µs f and σs f are the
mean and standard deviation matrix of the uniform component
in the structural encoder. The symbols in the functional
encoder also have the same meaning. ⊙ denotes an element-
wise product. εi (i ∈ 1, 2, 3, 4) means a matrix sampled from
a Gaussian distribution. Zs f , Zsq , Z f f , and Z f q share the
same size N × h.

The reconstruction module can retain unimodal information
and enhance the stability of the model. For structural decoder,
it accepts both structure-specific representation Zsq and uni-
form representation Zs f and outputs structural adjacent matrix
A′e with the dimension size N×N . The network is the reverse
operation of the structural encoder, followed by an inner
product operation and a sigmoid activation function. Simi-
larly, the functional decoder transforms the function-specific
representation Z f q and uniform representation Z f f into the
original function time series X ′f ∈ RN×d by using the inverse
network structure of the functional encoder.

3) Representation-Fusing Generator: Since the latent rep-
resentations have been decomposed into unique and uniform
components, it is easy to find the best weighting parameters
between different components in the fusion process. The
Multi-Layer Perceptron (MLP)-based generator is designed to
fuse the decomposed representations to generate unified brain
networks Ap. The generator can adaptively adjust the weight
between decomposed representations, which fully reflects the
common and complementary information among modalities.

In the representation-fusing generator, the uniform repre-
sentations from structural-functional data are first added with
certain weight values, then concatenated with the unique
representations. The formula can be expressed as:

Zc = (Zsq || Zm || Z f q) (6)
Zm = λ1 Zs f + λ2 Z f f (7)

where λ1 and λ2 determine the relative importance of the
uniform representations from the bimodal data. In the exper-
iment, both of them are set to 0.5. || means concatenation.
Zc ∈ RN×3h is the concatenated representation. After that,
a two-layer linear mapping network with 2h and h neurons
is designed to adaptively fuse the learned representations and
obtain the fused representation Zg:

Zg = L M(Zc) (8)

Finally, the fused representation Zg ∈ RN×h is transformed
into the unified brain network through inner product (IP)

Fig. 4. The illustration of the dual discriminator in the overall framework.
The label-aware discriminator is used for disease prediction.

operation. The predictive unified brain network Ap ∈ RN×N

is expressed as:

Ap = σ(Zg Z T
g ) (9)

where, the σ is a sigmoid function.
4) Dual Discriminator: As shown in Fig. 4, the conventional

discriminator is used to keep the output (i.e., Ap) consis-
tent with the real sample (i.e., Ab) distribution, where the
real sample is computed using the graph-based deep model
(GBDM) [34]. The filter numbers are 8, 16, 32, and 64,
and the fully connected (FC) layer has 1024 neurons. The
label-aware discriminator can classify if the input matrix is
normal control or patients. It consists of one convolution layer,
three residual attention blocks (RAB), and a fully connected
layer. The kernel numbers of 4 × 4, 3 × 3 and 1 × 1 in this
discriminator are 8, 8, and 16, respectively. After three RABs,
a 576-neuron FC layer and a softmax layer are added to make
the feature Ap discriminative.

C. Hybrid Loss Function

In this study, the KAT, encoders, decoders, generator, and
discriminators are combined into the BSFL model to learn
MCI-related representations and jointly trained with the fol-
lowing losses.

1) KL Loss: Assuming the latent representations obey the
normal Gaussian distribution N(0, 1), the output of encoders is
defined by Es(Xs) and E f (X f ). KL divergence is adapted to
constrain the output to match a Gaussian distribution by intro-
ducing the reparameterization technique [35]. The expression
is defined below:

LK L = LK L1 + LK L2

= EXs∼PDT I (Xs )
[∅K L(E(Es(Xs))|N(0, 1))]

+ EX f∼P f M RI (X f )
[∅K L(E(E f (X f ))|N(0, 1))] (10)

where, E indicates expected value, ∅ indicates KL divergence.
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2) Reconstruction Loss: The reconstruction can stabilize the
representation learning. The uniform and unique represen-
tations are combined to reconstruct structural or functional
features. Here, the Ds and D f are denoted as the structural and
functional decoders, respectively. Ae is the empirical structural
connectivity computed from the PANDA toolbox. The loss is
defined as:

LRE = LRE1 + LRE2

= [EZs f∼P(Zs f ),Zsq∼P(Zsq )
||Ae − Ds(Zs f , Zsq)||2

+ EXs∼P(Xs )
||Ae − σ(Xs X T

s ))||2]

+ EZ f f∼P(Z f f ),Z f q∼P(Z f q )
||X f − D f (Z f f , Z f q)||2

(11)

3) Adversarial Loss: The output of the representation-fusing
generator is the unified brain network, which is defined
as Ap. Here, Ap = G(Zs f , Zsq , Z f f , Z f q). The benchmark
brain network is denoted as Ab, computed from the GBDM
method by deeply fusing fMRI and DTI. The conventional
discriminator is represented as Dc. The adversarial loss can
be written as:

LD = EAp∼PA p
[(Dc(Ap))

2
] + EAb∼PAb

[(Dc(Ab)− 1)2
]

(12)

LG = EAp∼PA p
[(Dc(Ap)− 1)2

] (13)

LADV = LG + 0.1LD (14)

4) Classification Loss: To discriminate the unified brain
network, a label-aware discriminator is defined as Dl to
classify if Ap and Ar are normal controls or patients. The
formula is defined as:

LC L = LR
L D + L

P
L D

= EAb∼P(Ab)
[−I · log(Dl(Ab))]

+ EAp∼P(A p )
[−I · log(Dl(Ap))] (15)

where, I is the truth label.
5) Uniform-Unique Contrastive Loss: To constrain the

learned decomposed representations, a uniform-unique con-
trastive (UC) loss function is applied to constrain the distance
between them. The expression is defined as:

LUC =
1
4
(LUC1 + LUC2)+

1
2
LUC3

=
1
4

EZsq ,Zs f [max(margin − ||(Zsq − Zs f )||2, 0)]

+
1
4

EZ f q ,Z f f [max(margin − ||(Z f q − Z f f )||2, 0)]

+
1
2

EZs f ,Z f f (||Zs f − Z f f ||2) (16)

here, margin indicates the threshold with a default value of 1.
The detailed training steps of the proposed BSFL are described
in Algorithm 1 for reference.

IV. EXPERIMENTS

A. Data Description and Preprocessing
In this experiment, there are four stages associated

with cognitive disease degeneration: normal control (NC),

Algorithm 1 The optimization procedure for the BSFL
Input: each mode’s features DT I and X f , empirical struc-

tural connectivity A, real unified brain network Ar ,
maximal iterative number max I ter , training step
parameter t , model parameters 2, hyper-parameters
λ1, λ2 (set both as 0.5), prior knowledge x, y, z, v.

Output: predictive unified brain network Ap, model parame-
ters 2;

1: initialization: 2, t , max I ter .
2: repeat
3: t ← t + 1
4: compute structural features based on the KAT module:

Xs = K AT (DT I, x, y, z, v);
5: compute the structural uniform and unique variables

based on the encoder Es :
(µs f , σs f )=Uni f orm(Es(Xs)),
(µsq , σsq )=Unique(Es(Xs));

6: compute the functional uniform and unique variables:
based on the encoder E f :
(µ f f , σ f f )=Uni f orm(E f (X f )),
(µ f q , σ f q )=Unique(E f (X f ));

7: compute the uniform and unique representations based
on the above variables and the random noise ε sampled
from a standard normal distribution N(0, 1):
Zs f = µs f + σs f ⊙ ε1, Zsq = µsq + σsq ⊙ ε2,
Z f f = µ f f + σ f f ⊙ ε3, Z f q = µ f q + σ f q ⊙ ε3;

8: compute the unified brain network Ap based on
the representation-fusing generator G:
Ap = G(Zs f , Zsq , Z f f , Z f q);

9: reconstruct the input features A′ and X
′

f with the
decoders Ds and D f :
A′e = Ds(Zs f , Zsq), X

′

f = D f (Z f f , Z f q);
10: Update the 2 in conventional discriminator Dc by

back propagating the gradient ∇2L t
D;

11: add the KL loss Eq. (10), the reconstruct loss Eq. (11),
the generator loss Eq. (13), the classification loss
Eq. (15) and the uniform-unique contrastive loss
Eq. (16) to the loss L t

merge;
12: calculate the gradient loss ∇2L t

merge;
13: replace Ap with At

p and update the 2 in encoders, de-
coders, generators and label-aware discriminator by
taking adaptive gradient steps.

14: until t > max I ter

significant memory concern (SMC), early mild cognitive
impairment (EMCI), and late mild cognitive impairment
(LMCI). Based on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (http://adni.loni.usc.edu/) dataset, we down-
loaded about 324 subjects by setting the following criteria:
(1) The subject should have all the fMRI, DTI, and T1-
weighted MRI; (2) the gradient directions of the DTI are set
from 6 to 126. (3) The acquisition type is 3D, and the field
strength is 3.0 Tesla. In the preprocessing procedures, either
DTI or fMRI are combined with T1-weighted MRI to register
in native space by PANDA [36] or GRETNA [37] software.
Because there are two subjects suffered from preprocessing
errors, we excluded these two subjects and obtained a total
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TABLE I
SUMMARY OF THE SUBJECT INFORMATION IN THE EXPERIMENT

of 322 subjects, as shown in Table I. Note that SMC is the
transitional stage from NC to EMCI. EMCI and LMCI are
subtypes of MCI.

The DTI gradient directions are in the range 6 ∼ 126.
The parameters TR (Time of Repetition) and TE (Time of
Echo) are in the range of 3.4s ∼ 17.5s and 56ms ∼ 105ms,
respectively. PANDA toolbox [36] is used to perform sample
preprocessing on DTI to get a fraction anisotropy (FA) image
and empirical structural connectivity (Ae). To normalize indi-
vidual FA images for downstream analysis, we non-linearly
registered individual FA images of native space to the FA
template in the MNI space by resampling into a customized
spatial resolution (2×2×2 mm3). The FA template in the MNI
space has the dimension size 91× 109× 91. As a result, the
final output FA image has a dimensional size of 91×109×91,
which is sent into the proposed model for structural feature
extraction.

The fMRI scanned by a 3T MRI equipment has different
slice thicknesses in the range of 2.5mm ∼ 3.4mm. The
image resolution ranges from 2.5mm to 3.75mm in both plane
dimensions. The TR value is between 0.607s to 3.0s, and the
TE value ranges from 30ms to 32ms. The duration of scanning
data is 10 minutes. In the preprocessing stage, the GRETNA
toolbox [37] is utilized to acquire functional time series based
on the Automated Anatomical Labelling (AAL) atlas [38]. The
preprocessing steps include correcting head-motion artifacts,
spatial normalization, smoothing, removing linearized drift,
and band-pass filtering. Finally, the 90 non-overlapping ROIs
time series are obtained by normalizing them into the same
TR value. The output of this procedure is the input feature X f
of the proposed model with the dimension size 90× 187.

B. Experimental Settings
In this experiment, six binary classification tasks are per-

formed: (1) SMC vs. NC, (2) EMCI vs. NC, (3) LMCI vs.
NC, (4) EMCI vs. SMC, (5) LMCI vs. SMC, and (6) LMCI
vs. EMCI. Besides, we combined the EMCI and LMCI to
evaluate the multi-label classification of NC vs. SMC vs. MCI.
The experiments are conducted using 10-fold cross-validation
to ensure the results are stable. Also, the proposed model
is compared with other related methods to demonstrate its
superiority. There are three methods in the comparison: (1) the
empirical method that derives the structural connectivity (SC)
and static functional connectivity (FC) from the commonly
used software toolboxes (i.e., PANDA and GRETNA) and
then averages them to obtain empirical brain networks; (2) the
GBDM method that deeply fuses the SC and functional time
series and then generates benchmark brain networks; (3) our
method that transforms the DTI and functional time series to
unified brain networks. The results of each method are sent to

Fig. 5. An example of the generated brain networks using three
methods: the empirical method (left), the GBDM method (middle), and
the proposed method (right).

the same classifier (i.e., SVM [39], DNN [40], and GCN [41])
to compare their prediction performance.

The model parameter settings in the experiments are:
N = 90, d = 187, q = 64, h = 32, n = 3. Tensor-
Flow11 is utilized to implement a convergent model on an
NVIDIA TITAN RTX2080 GPU device for 10 hours with
about 600 epochs. The initial learning rate of the transformer,
encoders, and decoders is 10−3 and will decrease to 10−4

after 200 epochs. The learning rates of the generator and
the conventional discriminator are set to 0.0001 and 0.0004,
respectively. For the label-aware discriminator, the learning
rate is set to 0.0001. The dropout ratio in both the gener-
ator and the dual discriminator is set at 0.5. The Adam is
adopted to optimize the training process with batch size 16.
The prediction performance is calculated by meaning the
values of accuracy (ACC), sensitivity (SEN), specificity (SPE),
F1-score, and the area under the receiver operating character-
istic curve (AUC). The AUC is used to evaluate the classifier’s
overall performance (0 ≤ AUC ≤ 1).

C. Unified Brain Network Analysis
The proposed model aims to generate unified brain networks

for disease analysis. This section analyzes the generated brain
networks in terms of prediction tasks. To compare the perfor-
mance of our method with other related methods, six binary
and one multi-label prediction task are conducted to calculate
the mean values of evaluation indicators (i.e., ACC, SEN, SPE,
and AUC) using a cross-validation strategy. Three different
classifiers are adopted to evaluate the prediction performance
of the generated brain networks. Fig. 5 shows a qualitative
example of three brain networks using different methods. The
quantitative prediction results are displayed in Table II and
Table III. In Table IV, the four metrics (ACC, SEN, SPE, and
AUC) of NC vs. SMC vs. MCI are computed by the macro-
averaging method. Specifically, macro averaging is to calculate
the results of each category independently and averages the
results of each category, which is suitable for situations where
the performance of each category is equally important to the
overall performance. The best performance is marked in bold
black. The results show that our method achieves the best
prediction performance among the three methods in terms of
different classifiers. It indicates that the proposed model can
make full use of the common and complementary information
from the structural-functional data and thus make the fusion
more effective.

1http://www.tensorflow.org/
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TABLE II
MEAN PREDICTION RESULTS OF THE GENERATED BRAIN NETWORKS BY DIFFERENT

CLASSIFIERS FOR SMC VS. NC, EMCI VS. NC, AND LMCI VS. NC.(%)

TABLE III
MEAN PREDICTION RESULTS OF THE GENERATED BRAIN NETWORKS BY DIFFERENT

CLASSIFIERS FOR EMCI VS. SMC, LMCI VS. SMC, AND LMCI VS. EMCI.(%)

TABLE IV
MEAN PREDICTION RESULTS OF THE GENERATED BRAIN NETWORKS

BY DIFFERENT CLASSIFIERS FOR A MULTI-LABEL

CLASSIFICATION TASK.(%)

To analyze the effect of different brain regions on the predic-
tion task, we first shield one brain region of the unified brain
network and compute the corresponding mean accuracy, and
then obtain this brain region’s importance score by subtracting
the computed accuracy from value 1. By repeating this proce-
dure for each ROI, we get the importance score for all 90 ROIs.
After sorting the importance scores in descending order, the
top 10 corresponding ROIs are the important brain regions
for the classification task. The top 10 disease-related ROIs
are displayed in Fig. 6. Specifically, the top 10 related ROIs
are PHG.L, CAL.R, DCG.L, PCUN.R, THA.L, ORBinf.R,
AMYG.L, OLF.R, SOG.R, and FFG.L in the SMC vs. NC pre-
diction task. For EMCI vs. NC, the ten important ROIs are in

the frontal lobe (SFGdor.L, ORBinf.R, OLF.L, SFGmed.R),
temporal lobe (AMYG.L, TPOsup.L), parietal lobe (SPG.L,
PCL.R), and subcortical area (PAL.R). The relevant brain ROIs
for LMCI vs. NC are in the frontal lobe (ORBsupmed.L,
SFGmed.R, ORBinf.R, OLF.R), parietal lobe (SPG.R, PCG.L),
temporal lobe (TPOmid.R, PHG.R, TPOsup.L), and subcorti-
cal area (PUT.R). From SMC to EMCI, the ten important ROIs
are PHG.R, ACG.R, PCG.R, PoCG.R, PreCG.R,ORBmid.L,
OLF.L, ORBinf.L, AMYG.L, and PoCG.L. For LMCI vs.
SMC, the SMA.L, PoCG.R, PUT.R, PreCG.L, ORBinf.R,
AMYG.L, HIP.L, PoCG.L, TPOsup.R, and ACG.R are the
important brain regions. From EMCI to LMCI, the top 10 ROIs
are CAL.R, DCG.R, ANG.R, ITG.R, ORBinf.L, SOG.R,
PHG.L, HIP.L, PHG.R, and SMA.L.

D. Prediction of Abnormal Brain Connections
In this section, predicting abnormal brain connections is

studied during the cognitive disease’s progression. After the
model has been trained to converge, it can output the unified
brain network (UBN) for each subject with bimodal images
(i.e., fMRI and DTI). Based on the standard two-sample
t-test method, we can evaluate the significant brain connections
between two groups (e.g., LMCI vs. NC) by setting the p-value
threshold. In Fig. 7, the first and second columns show three
examples of p-values on brain connections between patients
(i.e., LMCI, EMCI, and SMC) and NC groups by setting
the threshold lower than 0.05. For ease of visualization, the
significant brain connections are denoted by a blue color.
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Fig. 6. The spatial distribution of the top 10 related ROIs for (a) SMC vs. NC, (b) EMCI vs. NC, (c) LMCI vs. NC, (d) EMCI vs. SMC, (e) LMCI vs.
SMC, and (f) LMCI vs. EMCI.

Fig. 7. The altered brain connections for SMC vs. NC, EMCI vs. NC, and LMCI vs. NC, respectively. The first column shows the p-values of the
connections between all paired ROIs, the second column displays the significant connections with p-value < 0.05, the third and fourth columns
represent reduced and increased connections, the fifth and sixth columns are the spatial visualization of important connections.

The most densely connected ROIs are mostly overlapped
with the results of the above section. These significant brain
connections are defined as the altered connections or the
abnormal connections. To investigate the property of these
altered connections, we subtract the mean connection strength
of each patient group (SMC, EMCI, LMCI) from that of
the NC group. The positive values mean increased connec-
tions, and the negative values mean reduced connections.
The third and fourth columns display the circular graph of
altered connections at different disease stages. Compared with
the normal controls, the number of reduced connections is

154, 162, and 218, while the number of increased connec-
tions is 138, 192, and 233 for SMC, EMCI, and LMCI,
respectively.

To analyze the important abnormal connections, significant
connections with a p-value lower than 0.001 are selected.
The spatial location of the important abnormal connections
is shown in the fifth and sixth columns of Fig. 7 using the
BrainNet Viewer toolbox [43]. The red color means reduced
connections, and the green color indicates increased connec-
tions. The ROI size defined in the AAL template is the relative
volume.
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Fig. 8. Comparison of different loss functions on the prediction
performance of LMCI vs. NC.

E. Ablation Study
The decomposition-fusion framework in the proposed model

is essential for constructing unified brain networks. To inves-
tigate the effectiveness of the decomposed and fused modules,
the uniform-unique contrastive and adversarial losses are
explored in the prediction performance. Three prediction
experiments are conducted in this section: 1) remove the
uniform-unique contrastive loss LUC , which means the unique
and uniform representations are mixed; 2) remove the adver-
sarial loss LADV ; 3) remove both losses in the proposed
model. The effects of removing different loss functions on
prediction performance are shown in Fig. 8. The results
demonstrate that either uniform-unique contrastive loss or
adversarial loss can affect the prediction performance to some
extent. Both loss functions can effectively improve the pro-
posed model’s performance in terms of ACC, SEN, SPE, F1,
and AUC.

V. DISCUSSION

A. Effectiveness of the Generator and the Decoders
In this study, the representation-fusing generator is impor-

tant for unified brain network construction and analysis.
To evaluate if the predictive UBN obtained by the generator
is disease-related, the t-distributed stochastic neighbor embed-
ding (t-SNE) tool [44] is used to display how the learned
representations are arranged and if they are well separated.
Fig. 9 shows the two-dimensional projection of the learned
representations without and with the representation-fusing
generator for NC vs. LMCI. The representations obtained
by BSFL with the generator are well arranged by class
information, while the ones obtained by BSFL without the
generator are scattered and not badly separated. Thus, the
BSFL can extract MCI-related features and capture comple-
mentary information between modalities.

The structural and functional decoders are used to recon-
struct the empirical SC and functional time series from the
decomposed representations. And these representations are
fused to generate unified brain networks for disease analysis.

Fig. 9. The t-SNE visualization of the representations obtained by BSFL
(a) without and (b) with the representation-fusing generator.

Fig. 10. Visualization of the empirical SC, the reconstructed SC, and
the reconstructed error from two representative subjects.

Therefore, the reconstruction process greatly influences the
fusion effect and downstream tasks. To demonstrate the recon-
struction performance, two representative subjects are selected
from LMCI and NC, respectively, and the reconstructed SC is
visualized in Fig. 10. The structural decoder can well rebuild
the empirical SC. The mean absolute error (MAE) is used to
evaluate the reconstruction quality.

B. Comparison With Clinical Studies
Effective disease-related biomarkers are essential for clini-

cians to early diagnose neurodegenerative disease and develop
treatments to delay disease progression. The proposed model
can output important ROIs and potential biomarkers in MCI
analysis. In this section, comparing our results with clini-
cal studies will be investigated. Considering the prediction
tasks and the two-sample t-test, 10 top overlapping ROIs
(ORBinf.R, OLF.L, OLF.R, SFGmed.R, PHG.R, AMYG.L,
SOG.R, FFG.L, PCL.R, and PUT.R) can be obtained in the
identified brain regions in Table V. These ROIs are highly
correlated with MCI and can be found in previous studies [45],
[46]. For example, the olfactory cortex plays an important
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TABLE V
THE TOP TEN MCI-RELATED ROIS WERE

VERIFIED BY THE CLINICAL STUDIES

role in translating everyday experiences into lasting episodic
and working memory, which is preferentially attacked at the
early stage of Alzheimer’s disease. The parahippocampal gyrus
also contributes to memory storage, and its structural damage
can cause abnormal emotional and cognitive behavior. The
paracentral lobule can recognize spatial relationships, and
patients with MCI showed atrophy in the parietal lobe.

In the prediction of abnormal connections, the number of
reduced connections increases from SMC to LMCI when
compared with NC, while the number of increased connec-
tions also shows the same pattern. It indicates that these
disease stages behave as a compensatory mechanism [55]
to make sure the brain functions normally. Besides, the
important abnormal connections obtained partly agree with
clinical findings. For example, some increased brain con-
nections have been identified by clinical discoveries [56],
including HIP.L-ANG.L, HIP.L-ANG.R, PHG.R-TPOsup.R,
and PHG.R-TPOmid.R. And some reduced connections have
been verified between the left posterior cingulate gyrus and the
left hippocampus, and between the right hippocampus and the
left middle occipital gyrus. Furthermore, the changes in brain
connection strength increase or decrease dramatically as the
disease progresses. The increased connections likely appear
on the same brain hemisphere, while the reduced connections
are found across the brain hemispheres. It may be illustrated by
the previous work that the increased connections have shorter
distances compared with the reduced connections [57].

VI. CONCLUSION

In this paper, the proposed BSFL model is proposed
to predict brain network abnormalities during MCI pro-
gression by combining fMRI and DTI. With the guidance
of prior knowledge, the designed transformer can auto-
matically extract the local and global connectivity features
throughout the brain. The decomposed variational graph
autoencoders decompose the feature space into unique and
uniform spaces, and the uniform-unique contrastive loss is
utilized to further improve the decomposition’s effectiveness.
The representation-fusing generator is utilized to fuse the
decomposed representations to generate MCI-related con-
nectivity features. The extensive experiments on the ADNI
database demonstrate the proposed model’s effectiveness com-
pared with other competitive methods. Furthermore, some
MCI-related brain regions and abnormal connections identified

in our results also show the proposed model’s reliability.
Altogether, the proposed model is promising for reconstructing
unified brain networks for brain disease analysis and providing
potential connection-based biomarkers during the degenerative
process of MCI.
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