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A Multi-Domain Convolutional Neural Network
for EEG-Based Motor Imagery Decoding
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Abstract— Motor imagery (MI) decoding plays a crucial
role in the advancement of electroencephalography (EEG)-
based brain-computer interface (BCI) technology. Currently,
most researches focus on complex deep learning struc-
tures for MI decoding. The growing complexity of networks
may result in overfitting and lead to inaccurate decoding
outcomes due to the redundant information. To address
this limitation and make full use of the multi-domain EEG
features, a multi-domain temporal-spatial-frequency con-
volutional neural network (TSFCNet) is proposed for MI
decoding. The proposed network provides a novel mecha-
nism that utilize the spatial and temporal EEG features com-
bined with frequency and time-frequency characteristics.
This network enables powerful feature extraction without
complicated network structure. Specifically, the TSFCNet
first employs the MixConv-Residual block to extract multi-
scale temporal features from multi-band filtered EEG data.
Next, the temporal-spatial-frequency convolution block
implements three shallow, parallel and independent convo-
lutional operations in spatial, frequency and time-frequency
domain, and captures high discriminative representations
from these domains respectively. Finally, these features
are effectively aggregated by average pooling layers and
variance layers, and the network is trained with the joint
supervision of the cross-entropy and the center loss. Our
experimental results show that the TSFCNet outperforms
the state-of-the-art models with superior classification
accuracy and kappa values (82.72% and 0.7695 for dataset
BCI competition IV 2a, 86.39% and 0.7324 for dataset BCI
competition IV 2b). These competitive results demonstrate
that the proposed network is promising for enhancing the
decoding performance of MI BCIs.

Index Terms— Brain–computer interface (BCI), electroen-
cephalography (EEG), motor imagery (MI), convolutional
neural network (CNN), center loss.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI), an advanced exter-
nal information exchange and control technology, is able

to directly connect human brain and other electronic devices
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without the involvement of peripheral nerves and muscles [1].
This technology has broad applications in the field of rehabil-
itation medicine [2] [3]. Among BCI systems, motor imagery
(MI) is one of the most popular electroencephalography
(EEG)-based paradigms, which can trigger neuronal activities
in the sensorimotor network of specific brain areas similar to
the way as the real physical movement [4].

During the MI process, the rhythmic EEG activity is
suppressed or enhanced in the sensorimotor area of the
contralateral hemisphere and the ipsilateral hemisphere,
respectively. The former case is known as event-related
desynchronization (ERD), and the latter one is event-related
synchronization (ERS) [5]. By decoding the ERD/ERS in
the EEG correctly, the people with severe motor diseases
can control external devices via movement intents. Therefore,
the classification of EEG signals plays a crucial role in the
research of MI BCIs and requires advanced signal decoding
techniques.

EEG-based MI decoding for BCI classification encounters
several significant challenges, e.g., the low signal-to-noise
ratio, high intertrial variability and sensitivity to noise [6].
Previous studies on MI decoding can be broadly classified
into two categories: classical machine learning methods and
deep learning methods. Among the classical machine learn-
ing methods, Common Spatial Patterns (CSP) is one of the
most powerful methods constructing optimal spatial filters [7].
Consequently, a large number of extended CSP variants have
emerged such as the filter bank CSP (FBCSP) [8] and the
discriminative filter bank CSP (DFBCSP) [9]. For the feature
classification, many classical classifiers, such as support vector
machines (SVMs) and linear discriminant analysis (LDA) are
applied to classify the MI discriminative features.

These approaches rely heavily on handcrafted features
and therefore suffer from several drawbacks, including time-
consuming, subject-dependent and poor feature extraction
capabilities. Manually designed features may lead to poor
decoding performance of MI-EEG due to the limitations of
human knowledge and experience. Additionally, the ideas of
optimal frequency band and spatial filter selection fail to
address the issue of heterogeneity among subjects, thus lacking
diversity.

Recently, deep learning, as an extensively data-driven
method, has achieved state-of-the-art (SOTA) performance in
the EEG classification task and gained successes in addressing
the aforementioned challenges [10] [11]. The convolutional

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9601-7787
https://orcid.org/0000-0002-5502-8321
https://orcid.org/0000-0002-1805-5339
https://orcid.org/0000-0001-9365-2953
https://orcid.org/0000-0002-2984-8836


ZHI et al.: MULTI-DOMAIN CONVOLUTIONAL NEURAL NETWORK FOR EEG-BASED MOTOR IMAGERY DECODING 3989

neural network (CNN) based deep learning architectures
employ one or several customized kernel matrices to extract
hybrid features from the raw data. Schirrmeister et al. pro-
posed the deep ConvNet and showed the potential of CNN
architecture for EEG decoding [12]. EEGNet is another
widespread method proposed by Lawhern et al., which can
extract temporal and spatial features simultaneously [13].
In [14], Li et al. proposed a novel multi-layers 1D-CNN
neural network architecture called CP-MixedNet. To address
the issue that the convolutional kernel size is generally fixed,
the study in [15] proposed a CNN with hybrid convolution
scales. Similarly, the EEG-Inception proposed by Zhang et al.
uses several inceptions and residual modules as the backbone
with high potential for the subject-independent EEG-based
MI classification [16]. Furthermore, the multi-view methods
achieved promising results. For instance, FBCNet and FBM-
SNet both implement temporal-spatial convolution to filtered
EEG data [17] [18]. A recent benchmark network, namely
EEGNeX, is a pure convolution-based architecture derived
from analogy investigations between the EEG and neural
network architecture [19]. Besides, Altaheri et al. proposed
attention-based temporal convolutional network ATCNet and
D-ATCNet and validated them on BCI competition IV 2a
dataset [20] [21].

However, the growing complexity of CNNs may result in
overfitting and lead to inaccurate decoding outcomes due to
the marginal effect and the presence of redundant information.
Moreover, these methods obtain deep features only from
temporal and spatial domains. It limits their capabilities to
develop highly distinguishable feature representations. What
is more, recent works [22] [23] indicate that the conventional
cross-entropy (CE) loss is ineffective in reducing intraclass
variation, which may cause the poor performance on EEG
classification.

To tackle the issues stated above, in this study, a multi-
domain temporal-spatial-frequency convolutional neural net-
work (TSFCNet) is proposed for MI-EEG decoding. Specifi-
cally, the MixConv-Residual block is first employed to extract
multiscale temporal features from the multi-band filtered EEG
data, followed by residual connections. The temporal-spatial-
frequency convolution (TSF-Conv) block is then designed
to implement three parallel and independent convolutions in
spatial, frequency and time-frequency domains for captur-
ing highly discriminative multi-domain features respectively.
Moreover, inspired by [22], we apply the center loss as
auxiliary costs for the proposed framework to increase the
discrimination of different classes of samples in the feature
space. Meanwhile, the center loss can minimize the distances
between the learned representations and the centers of their
corresponding classes. Finally, with the joint supervision of
the CE loss and the center loss, these three feature repre-
sentations are effectively aggregated by average pooling layer
and variance layer, and a fully connected (FC) layer is used
for classification. The proposed TSFCNet is evaluated on
three public BCI datasets, and ablation experiments are also
conducted to demonstrate the effectiveness of each module
used in the proposed TSFCNet method.

The major contributions of this article are summarized as
follows.

1) A multi-domain framework named TSFCNet is proposed
for MI decoding, which is able to effectively capture
highly discriminative and robust features with three shal-
low, parallel and independent convolutions. It enables
powerful feature extraction without complicated network
structure.

2) The proposed TSFCNet with MixConv-Residual block
and TSF-Conv block provides a novel mechanism that
leverages spatial and temporal EEG features combined
with frequency and time-frequency characteristics to
improve the EEG decoding.

3) Numerical experiment results show that the TSFCNet
outperforms the SOTA methods. The extensive ablation
studies validate the effectiveness of each block in the
TSFCNet.

The rest of our paper is organized as follows. Section II
details the proposed TSFCNet method. Section III performs
numerical experiments and extensive ablation studies, and
presents the experimental results. Finally, Section IV and
section V present discussions and conclusions in this paper,
respectively.

II. METHODOLOGY

In this section, the preprocessing step is first described. Then
the basic blocks of the TSFCNet are introduced, including
the MixConv-Residual block, the TSF-Conv block and the
classifier. Finally, the loss functions of the TSFCNet are intro-
duced. The source code of the proposed method is available
at https://github.com/hongyizhi/TSFCNet.

A. Preprocessing

Consider a set of single-trial raw EEG data that are as
Xn = {xi }

n
i=1, xi ∈ RC×T with corresponding label set

Yn = {yi }
n
i=1, where n represents the number of EEG trials,

C represents the number of EEG channels and T represents
the time points.

The filtered EEG signals X F B ∈ RN f×C×T are generated
by Chebyshev Type II bandpass filters based on the predefined
frequency filter bands F = { fi }

N f
i=1, where N f is the number

of filter bands. Earlier work [24] has already shown that mu
(8-12 Hz), beta (12-32 Hz) and also theta (4-7 Hz) frequency
bands play crucial roles in MI tasks. Therefore, we construct
the specified filter F by using 9 nonoverlapping frequency
bands, each with a 4 Hz bandwidth. The frequency filter bands
F spanning from 4 to 40 Hz (i.e., 4-8, 8-12. . . , 36-40 Hz).
Following the given certain frequency filter banks F , the
filtered EEG signals X F B are deterministically obtained as
follows:

X F B = F ⊗ Xn (1)

where, ⊗ indicates bandpass filtering operation.
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Fig. 1. Architecture of the proposed TSFCNet. Nf, C and T represent the number of filter bands, the number of EEG channels and the number of
time points, respectively. m, K, Nc and λ donate the number of kernels, total number of nonoverlapping windows, the number of output classes and
the trade-off scalar, respectively.

B. Temporal-Spatial-Frequency Convolutional Neural
Network

In this section, we describe the proposed TSFCNet in detail.
The TSFCNet consists of the MixConv-Residual block, the
TSF-Conv block and the classifier. The overall structure of
the proposed TSFCNet is depicted in Fig. 1.

1) Design of the MixConv-Residual Block: The MixConv-
Residual block is designed based on two novel ideas that
take advantage of the temporal characteristics of the EEG.
The first idea is to implement mixed depthwise convolution
(MixConv) to extract multiscale temporal information from
the filtered EEG data [25]. The MixConv mixes up multiple
kernel sizes in a single convolution without changing the
macro-architecture of the neural networks which improves
the accuracy and efficiency of convolution network. Note
that a single convolution scale would lead to the limited
classification accuracy, since the optimal scale may be distinct
among different subjects, or at different times for the same
subject. Thus, the MixConv is a solution to achieve wider and
multiscale feature extraction with strong robustness to subject-
dependency.

He et al. [26] effectively solved the learning degradation
problem by applying the residual learning framework. The
second idea known as residual connections takes inspiration
from the ResNet. By simply driving the residual of the multiple
nonlinear layers toward zero, the residual connections guaran-
tee to approach the identity mappings. Meanwhile, shortcuts
are straightforward implementations of identity mappings.
It provides a path for the information to flow unmodified
through the whole architecture.

Specifically, in the MixConv layer, N f 1D convolutional
kernels with the sizes of (1, 15), (1, 31), (1, 63) and (1, 125)
are used to learn the temporal features. The number of kernels
is equal to that of filter banks so that we can easily implement
residual connections for the outputs of the MixConv layer.
The outputs of the MixConv-Residual block are defined as
X MixConv−residual ∈ RN f×C×T . It includes the filtered EEG
information and the temporal features extracted from the
MixConv-Residual Block. The outputs are then fed into the
TSF-Conv block for further feature extraction.

2) Design of the TSF-Conv block: The TSF-Conv block
is composed of three parallel and independent convolutional
operations. Each convolutional operation includes a convolu-
tional layer, a batch normalization (BN) layer, an activate layer
and a variance layer. These convolutional operations learn the
spatial, frequency and time-frequency features respectively.

The tensor flows involved in these three convolutional
operations are as follows. For the spatial convolutional layer,
m kernels of size (C , 1) are used to fuse the spatial information
from all input channels, where m is set to be 36 for 4 four-
classes dataset and 9 for two-classes dataset. This operation
fuses the spatial information to the features of a single channel.
For the frequency convolution layer, the shape of the input
tensor X MixConv−residual is first permutated from N f ×C×T
to C × N f × T by transformation operation. It is similar to
the spatial convolution layer, the frequency convolution layer
with m kernels of size (N f , 1) mixes the frequency feature
from all different filter banks. Also, the convolution kernel
is designed to span across all the frequency filter banks, and
reduce its frequency dimension to 1. In the time-frequency
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convolution layer, after following the same transformation
operation as described above, we apply m small 2D kernels
with the size of (2, 16) to obtain the frequency feature along
the time. The reason we choose a small kernel size is to reduce
the parameters. This layer implicitly transforms the tensor
into a combination of temporal and frequency representation
and enhances the feature extraction of EEG signals. Besides,
BN layer is adopted after each convolutional layer to alleviate
the overfitting problem and tune the optimal parameters of
the neural networks. The exponential linear unit (ELU) is
employed as the activation function to overcome the vanishing
gradient problem. As a result, TSF-Conv outputs three feature
maps xconv with shape of m × D × T̃ , where D denotes the
dimension of the output of the TSF-Conv, and T̃ is the time
dimension.

The output data of TSF-Conv still contain a large amount
of information along the time dimension. It requires further
processing. As in [17], instead of maximum pooling and
average pooling, we apply the variance operations to efficiently
extract the most relevant temporal features. Such kind of
variance layer considers the differences of various classes in
their spectral power (ERD/ERS). And the variance layer thus
becomes a more suitable option for EEG temporal character-
ization [17]. The variance layer is defined as:

xvar (m, d, k) =
K
T

(k+1)∗ω−1∑
t=k∗ω

(xconv(m, d, t)− µ(m, d, k))2

(2)

where xvar (m, d, k) and µ(m, d, k) are the variance layer
result and the temporal mean of xconv(m, d, t) within the kth

window, respectively. T is the total number of time-points, K
is the total number of nonoverlapping windows and ω = T/K
is the window length. Note that the variance layer works on
the outputs xconv of the three convolution layers in parallel.

It is obvious that a high degree of feature reduction is
achieved by reducing the number of features to m × D × K
through the variance layer. In this work, we set the value
of K to be 10 for the output xvar from previous two vari-
ance layers. Particularly, considering the shape of xvar from
time-frequency convolution followed by the variance layer
differs from previous two outputs, the value of K is thus set
to be 1. An average pooling layer with size of (D, 1) is then
applied to reduce its D dimension to 1, which is the same as
previous two outputs. Finally, all feature maps are flattened
and concatenated into 1D feature vector for the last classifier.

3) Classifier: The classifier includes one FC layer and one
softmax layer, which is designed to generate the final decoding
results. The 1D feature vector extracted by the TSF-Conv
block is fed to the FC layer for classification. The FC layer
weights are regularized by using a maximum norm constraint
of 0.5, i.e., ∥w∥2 < 0.5 (Weight-normalization).

C. Loss Function
The CE loss is adopted to minimize the classification error

between network predictions and the ground truth. Moreover,
the center loss is used to improve the discriminative power of

the deeply learned features. The objective functions of the CE
loss and center loss are formulated as:

LC E = −
1

Nb

Nb∑
i=1

yi log ŷi (3)

LCenter =
1
2

Nb∑
i=1

∥∥ fi − cyi

∥∥2
2 (4)

where yi is the ground-truth label of the i th training sample,
ŷi is the predicted label of the i th training sample and Nb is
the number of samples in a training batch. fi ∈ Rd denotes
the feature vector extracted from i th training sample by the
network and cyi ∈ Rd denotes the feature center of the class
that the sample i belongs to.

As introduced in [22], we update the feature centers c j in
each training iteration as:

c j ← c j − α ·1c j (5)

1c j =

∑Nb
i=1 δ(i, j) · (c j − fi )

1+
∑Nb

i=1 δ(i, j)
(6)

δ(i, j) =

{
0, yi ̸= j
1, yi = j

(7)

where 1c j is the average distance between the j th class
samples and the center vector of the j th class. α denotes
the learning rate for center loss, and the value of α is
restricted in [0, 1]. The joint supervision of the CE loss
and the center loss is advantageous in that minimizing the
intra-class variations while keeping the features of different
classes separable. Consequently, we obtain the following loss
L total to train the network for discriminative feature learning:

L total = LC E + λ LCenter (8)

where λ is the trade-off scalar to balance the two loss
functions.

In this study, the network supervised by the center loss is
optimized by standard SGD [27]. The value of α and λ are
set to 0.01 and 0.001, respectively. The influence of different
values of α and λ on the performance of model is discussed
in Section IV.

III. EXPERIMENTS AND RESULTS

A. Data Description

1) BCI Competition IV 2a Dataset (Dataset I): The data-
set [28] contains EEG data from 9 subjects performing four
different MI tasks including left hand, right hand, feet and
tongue. The signals were recorded from 22 Ag/AgCl elec-
trodes at a sample rate of 250 Hz. Each subject has two
sessions and each session has 288 trials, with an average of
72 trials for each class. In this paper, the first session is used
for training, and the second session is used for test. The time
segment of each trial is restricted between 2s and 6s, which
results in 1000 sample points for each trial.
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2) BCI Competition IV 2b Dataset (Dataset II): The data-
set [29] consists of EEG data from 9 subjects. A total number
of 2 MI classes are included: MI of the left hand, right
hand. The signals were recorded from 3 electrodes placed
at positions C3, Cz, and C4 with the sampling frequency
of 250 Hz. For each subject, there are 5 sessions. In this
paper, the first three sessions are used for training, and the
rest is used for test. There are about 400 trials and 320 trials
in the training and test sets respectively. The time segment of
each trial is restricted in [3s, 7s], which results in 1000 sample
points for each trial.

3) OpenBMI Dataset (Dataset III): The dataset [30] contains
EEG signals of 62 channels for 2-class MI tasks recorded from
54 healthy subjects. Following [17], 20 channels in the motor
region (FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6)
are selected in our experiments.

B. Methods Evaluated
An overview of the benchmark methods is described as

follows:
1) FBCSP: FBCSP [8] is a widely used baseline method

to decode oscillatory EEG data. This method is based on the
combination of bandpass filtering and the CSP algorithm. Note
that FBCSP was the best performing method for Dataset I and
also won BCI competition IV [28].

2) Deep ConvNet: Deep ConvNet [12] consists of four
convolutional layers, with a unique first convolutional layer
for spatio-temporal information, followed by three standard
convolution-max-pooling blocks and a dense softmax classifi-
cation layer.

3) EEGNet: EEGNet [13] is a compact CNN for EEG-
based extraction of spatial features, and it includes one
convolutional layer, one DepthwiseConv2D layer and one
SeparableConv2D layer.

4) FBCNet: FBCNet [17] adopts depth-wise convolution
to extract spectral-spatial features from a multi-view EEG rep-
resentation, followed by a variance layer for feature extraction.

5) FBMSNet: FBMSNet [18] is an efficient and lightweight
multiscale feature extraction CNN architecture, which extracts
multiscale temporal features and spatial features for MI
classification.

C. Experimental Setups
1) Experiment Protocols: According to the competition

guideline [29], we apply hold-out analysis to evaluate the
performance of the TSFCNet, which means that the model is
trained and tested completely in different sessions. The specific
division manner has been outlined in preceding chapter Data
Description. This analysis provides information about the
capability of the model in extracting highly generalizable
discriminative features and tackling the nonstationary phe-
nomenon between two sessions. For fairness, the hold-out
analysis is applied for all comparison methods.

2) Training Procedure: As proposed in [12], the training data
are further split into a training set and a validation set. During
the training process, only the training set is used for training
with the early stopping criteria whereby the first phase of the

training stops when the validation accuracy does not improve
for 200 consecutive epochs. In the second training phase, the
training continues on the complete training data, starting from
the network parameters that led to the best accuracies on the
validation set so far. The training ends when the validation loss
drops below the loss of the training set at the end of the first
training phase. In this work, the maximum number of training
epochs is limited to 1500 and 600 for the two-phase training
respectively.

The proposed TSFCNet is implemented with PyTorch
1.12.1 on the NVIDIA GeForce RTX 3090 platform. In addi-
tion, the Adam optimizer [31] is employed to optimize the
proposed network, and the optimizer parameters β 1 and β 2 are
set to 0.9 and 0.999, respectively. The batch size and learning
rate of the neural network are set to 32 and 0.001. The center
vectors of the center loss are initialized by random Gaussian
distribution with a mean of 0 and variance of 1. During the
training process, 10% of the training data is set aside as a
validation set, and the data in test set would not be used in
any of the training phases.

3) Performance Metrics: In the experiments, the classi-
fication accuracy (ACC) and the Cohen’s kappa coefficient
(Kappa) are used as two metrics for performance evaluation.
The mathematical formula of Cohen’s kappa coefficient is
defined as follows:

K =
ACC − Pe

1− Pe
(9)

Pe =

∑M
i=1 n:i ni :

N 2 (10)

where Pe denotes the hypothetical probability of chance
agreement. n:i and ni : are the sum of the i th column and
the i th row of the confusion matrix respectively. M is the
class number and N is the sum of all entries in the confusion
matrix. Wilcoxon signed-rank test is employed to analyze the
statistical significance.

D. Performance Comparison
Table I and Table II depict the complete decoding results

on both datasets by using the proposed TSFCNet and the
other baseline methods. As observed from Table I, the pro-
posed TSFCNet surpasses baseline methods in terms of the
average classification accuracy on Dataset I. In particular, the
proposed TSFCNet reaches an average accuracy of 82.72%,
displaying improvements of 14.97%, 10.04%, 9.26%, 6.56%,
and 3.48% over FBCSP (p < 0.01), Deep ConvNet (p < 0.01),
EEGNet (p < 0.01), FBCNet (p < 0.01) and FBMSNet
(p < 0.05), respectively. Furthermore, our method achieves
higher accuracy on most of subjects except A03, and yields
an average kappa value of 0.7695, which is the best among
all the methods.

Moreover, Table II illustrates that the proposed TSFCNet
outperforms all the SOTA methods in terms of average classi-
fication accuracy and kappa value on Dataset II, achieving an
accuracy of 86.39% and a kappa value of 0.7324. Additionally,
the TSFCNet also shows significant improvement (p < 0.05)
on the accuracy compared to most of the baseline models.
Furthermore, Table I and Table II illustrate that the proposed
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TABLE I
CLASSIFICATION PERFORMANCE (%), STD, KAPPA AND P-VALUE ON DATASET I USING OF THE TSFCNET AND THE COMPARED METHODS

TABLE II
CLASSIFICATION PERFORMANCE (%), STD, KAPPA AND P-VALUE ON DATASET II USING OF THE TSFCNET AND THE COMPARED METHODS

Fig. 2. Confusion matrices on two datasets, where each column
represents the actual values and each row depicts the predicted values
of the model. L, R, F, and T refer to MI of left hand, right hand, feet, and
tongue, respectively. (a) Dataset I. (b) Dataset II.

TSFCNet has the lowest standard deviation values, which
are 11.56 and 8.68, respectively. A graphical representation
of the confusion matrix based on Table I and Table II is
shown in Fig. 2. In addition to Dataset I and Dataset II,
Dataset III is also used for a fair comparison with FBCNet and
FBMSNet. Table III demonstrates that the TSFCNet maintains
a classification accuracy greater than the baselines and shows
significant improvement compared to most of them.

Particularly, we also conduct comparative experiments on
the classification accuracy, model complexity and computing
efficiency with most recent studies [17] [18] [19] [20] [32].
As Table IV shows, the TSFCNet achieves better classification
accuracy and relatively low standard. Notably, the TSFCNet

TABLE III
CLASSIFICATION PERFORMANCE (%), STD AND P-VALUE ON DATASET

III USING OF THE TSFCNET AND THE COMPARED METHODS

TABLE IV
CLASSIFICATION PERFORMANCE (%), STD, NUMBER OF PARAMETERS

AND COMPUTING TIME ON DATASET I USING OF THE TSFCNET AND

THE RECENT COMPARED METHODS

exhibits competitive computing efficiency, with an average
time of 0.43 seconds per epoch. Furthermore, the TSFCNet
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TABLE V
CLASSIFICATION PERFORMANCE (%), STD, KAPPA AND P-VALUE ON

DATASET I UNDER10-FOLD CROSS VALIDATION SCENARIO

Fig. 3. The classification accuracy comparison of the ablation study on
two Datasets. (a) the first ablation study. (b) the second ablation study.

strikes a balance between model complexity and performance.
This analysis demonstrates the efficacy of the TSFCNet,
as it achieves superior classification accuracy and efficiency
compared to the SOTA models.

Additionally, several recent studies [19] [33] [34] [35] have
presented outcomes for Dataset I through the utilization of
10-fold cross-validation on merged data (576 trials) for each
subject. Hence, to ensure the fair comparison with these deep
learning methods, Table V presents a comparative analysis
between the proposed TSFCNet and recent studies on Dataset
I by evaluating on merged data (576 trials) for each subject.
As shown in Table IV, in 10-fold cross-validation scenario,
the accuracy, standard deviation value and kappa value of the
proposed TSFCNet is 89.49%, 7.16 and 0.8609, respectively.
The results indicate that the performance of our method is
higher than that of the competing methods.

As a result, the experimental results on three classical
datasets demonstrate that the proposed TSFCNet achieves
impressive performance and promising robustness for MI-EEG
decoding.

E. Result of Ablation Experiments

To verify the effectiveness of integrating MixConv-Residual
block and center loss into the TSFCNet model, the first
ablation study is conducted on Dataset I and Dataset II,
as shown in Fig. 3(a). Three models, named Model1, Model2
and Model3 are utilized represent three scenarios as follows:

1) Model1: The model is implemented by removing the
MixConv-Residual block from the TSFCNet and trained with
CE loss.

2) Model2: The model is implemented by integrating Mix-
Conv layer into the Model1 for extracting multiscale temporal
information, and also trained with CE loss.

3) Model3: The complete TSFCNet model with
MixConv-Residual block is trained with CE loss.

Fig. 3(a) shows the classification accuracies and standard
deviation values obtained from the first ablation study. It can
be seen that the application of the MixConv layer leads to
a substantial 2.51% accuracy improvement for the Model2
on Dataset I, due to the extraction of multiscale temporal
information. Additionally, the employment of the residual
mechanism results in a 0.89% accuracy improvement for the
Model3 over the Model2. The similar result is also observed
to on Dataset II, where the use of the MixConv-Residual
block yields a more significant improvement of 3.74% in
accuracy. By adding the center loss as an auxiliary cost into
the Model3, the proposed TSFCNet is able to improve the
decoding accuracy in a step further on two datasets. Notably,
the proposed TSFCNet can reach 4.59% higher accuracy than
the model3 on Dataset I. Furthermore, a decreasing trend in the
standard deviation values indicates that the MixConv-Residual
block and the center loss strategy could not only improve the
performance on EEG classification but also the robustness of
the model.

Additionally, for further investigating the importance and
contributions of each convolutional operation in the TSF-Conv
block, we propose another three simplified models to conduct
the second ablation study, which are introduced as follows:

4) Model4: The model is implemented without the spatial
convolutional operation in the TSF-Conv block and trained
with the center loss.

5) Model5: The model is implemented without the fre-
quency convolutional operation in the TSF-Conv block and
trained with the center loss.

6) Model6: The model is implemented without the
time-frequency convolutional operation in the TSF-Conv block
and trained with the center loss.

Fig. 3(b) shows the classification accuracies and standard
deviation values obtained from the second ablation study.
In general, the proposed TSFCNet outperforms Model4,
Model5 and Model6 on two datasets, which demonstrates that
the absence of any convolutional operation in the TSFConv
block leads to a decline in classification performance. Particu-
larly, Model4 has the least effect on the classification accuracy,
while the performance still lags behind the proposed TSFCNet.
Removing the frequency convolutional operation from the
TSFConv block leads to a significant decrease of accuracy in
the Model5 result, with a reduction of 2.36% and 2.46% on
Dataset I and Dataset II, respectively. It indicates that the fre-
quency convolutional operation is crucial in capturing highly
discriminative representations. On the other hand, Model6 also
leads to a significant decrease of accuracy in the absence
of the time-frequency convolutional operation. Furthermore,
in the second ablation study, the proposed TSFCNet also
achieves the lowest standard deviation. These experimental
results highlight that the proposed TSFCNet with the complete
TSFConv block can effectively capture the essential spatial,
frequency and time-frequency feature representations.
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Fig. 4. The accuracy comparison of each subject in the first ablation
study on two datasets. (a) Dataset I. (b) Dataset II.

IV. DISCUSSIONS

A. Efficacy of MixConv-Residual Block and Center Loss

Figure 4 shows the classification accuracy of each subject
in the first ablation study, which has verified the effects of the
MixConv-Residual block and center loss on model accuracy.
The EEG data offers abundant temporal information due to
its high temporal resolution. However, as shown in Figure 4,
Model1 displays unsatisfactory classification performance due
to a lack of temporal feature extraction. To tackle this problem,
the MixConv layer for multiscale temporal feature extraction
is applied and has improved the classification accuracy of
Model2 significantly. Specifically, the proposed method has
achieved a notable increase in classification accuracy in sub-
jects A04, A05, A06, and A08 on Dataset I. At the same time,
most of subjects achieves an improvement except for B08 on
Dataset II. Note that since the EEG data on Dataset II has
fewer channels, the TSF-Conv block can only extract fewer
features. Therefore, the effect of multiscale temporal feature
extraction is more pronounced. Although the MixConv layer
may decrease the classification accuracy of a few subjects, the
influence is generally small. These analyses demonstrate the
importance and effectiveness of temporal feature extraction in
EEG data decoding.

Moreover, we incorporate the residual mechanism into the
MixConv layer to form the MixConv-Residual block. The
residual mechanism has limited effects on the overall clas-
sification performance, with significant improvements only
observed for subjects A02, A04 on Dataset I and subjects
B01, B02 and B05 on Dataset II. The MixConv-Residual block
can prevent learning degradation and reduce temporal feature
extraction redundancy, as seen in the improved classification
accuracy of subjects A03, A07 and B08.

Finally, the proposed TSFCNet outperforms the SOTA
classification performance by introducing the center loss as
an auxiliary loss function. On Dataset I, all subjects trained
with the center loss gain significant improvements in classi-
fication accuracy, particularly subjects A01, A02, and A06.
The average classification results on Dataset I are higher with
center loss training. Additionally, the classification accuracy
on Dataset II is also improved. It is notable that the effects
of the center loss in the four-class classification are superior
to those in the two-class classification. These experimental
results indicate that the center loss could make the sam-
ples that belong to the same class compact in the feature
space, which could significantly improve the MI decod-
ing. Therefore, by employing the novel MixConv-Residual
block and the center loss, the proposed TSFCNet is able
to obtain more discriminative temporal information at dif-
ferent scales which result in the increase of classification
accuracy.

B. Efficacy of TSF-Conv Block

The TSF-Conv block implements three parallel and inde-
pendent convolutional operations to extract multi-domain
high discriminative features in the spatial, frequency and
time-frequency domain. It is different from the deep and
complicated CNN architectures that generally focus on the
deep feature in limited domains (temporal and spatial, or both).
The TSF-Conv block is effective, intuitional and simple. Such
kind of architecture could avoid the marginal effect and
redundant or irrelative information, and hence improve the
quality and interpretability of the EEG decoding. As shown
in Fig. 3(b), although the spatial convolutional operation
contributes to providing spatial information for feature rep-
resentations, the second ablation study shows that its effect
is limited. Inspiringly, feature extraction of frequency domain
by convolutional operation directly could significantly improve
EEG decoding ability. Recent researches have shown that
spatial-temporal convolution on the spectrally filtered EEG
data only enhances spatial-temporal features on different
frequencies. Compared with FBCNet and FBMSNet, the
main improvements of the TSFCNet are introducing residual
mechanism and TSF-Conv block. The TSFCNet provides a
novel perspective that using frequency and time-frequency
features to improve the EEG decoding in new domains. The
shallow and effective nature of these three convolutional
operations in TSF-Conv block along with fewer parameters
reduces the training time, and this multi-domain frame-
work could guide the design of CNN structures for EEG
decoding.

Additionally, inspired by [17], the variance layer is used to
extract and compress the temporal features obtained from the
preceding TSF-Conv layers. Such kind of variance operation
along the time domain is suitable for temporal consolidation
since the variance of a filtered signal could be consider as
the spectral power in the time-series. Consequently, combin-
ing with the multiscale temporal features extracted from the
MixConv-Residual Block, the TSF-Conv block gains the final
SOTA classification performance.
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Fig. 5. Comparison of the features from subject A01 and A07 on Dataset I learned by different methods in the 2-D embedding space by t-SNE.
Red, green, blue and brown points represent the MI of left hand, right hand, foot and tongue, respectively.

Fig. 6. The distribution of deeply learned features under the supervision of different loss on two datasets. The points with different colors denote
features from different classes. (a) the supervision of CE loss on Dataset I. (b) the joint supervision of CE loss and center loss on Dataset I. (c) the
supervision of CE loss on Dataset II. (d) the joint supervision of CE loss and center loss on Dataset II.

C. Visualization
To make further discussion on the discriminatory capabil-

ities of the features derived from the proposed TSFCNet,
we use t-SNE [36] to produce a two-dimensional embedding
of the learned EEG features. The resultant visualization is
presented in Fig. 5.

As shown in Fig. 5, the visualizations of features extracted
from Deep ConvNet, EEGNet, and FBCNet exhibit a large
degree of overlap between different classes, resulting in ambi-
guity in their classification. In contrast, the proposed TSFCNet
demonstrates better performance in capturing distinct features
from MI-EEG and achieving minimal overlap. Specifically,
the proposed TSFCNet could generate a higher degree of
inter-class distance and a lower degree of intra-class distance
compared to FBMSNet. This is achieved by the incorporation
of multiscale temporal features and multi-domain TSF-Conv
features. It enables the efficient discrimination of various types
of MI-EEG signals. Consequently, our results demonstrate that
the TSFCNet is capable of extracting highly discriminative
EEG features, leading to improved decoding performance.

Additionally, the visualization method proposed in [22]
is employed to examine the distribution of deeply learned
features under the supervision of different losses on two
datasets. Specifically, the TSFCNet is modified by reducing

the output of the last hidden layer to a 1 × 2 vector, thereby
allowing for direct visualization of the features on a two-
dimensional surface.

As shown in Fig. 6(a)(c), we could observe that the
deeply learned features are separable under the supervi-
sion of the CE loss. However, the deep features are still
not sufficiently discriminative due to their significant intra-
class variances. Conversely, Fig. 6(b)(d) depicts that the
deeply learned features exhibit greater intra-class compact and
increases inter-class distance under the joint supervision of CE
loss and center loss. It indicates that the center loss method
can enhance the discriminative ability of feature vectors, which
also can be proved by the first ablation study results.

As shown in Fig. 7, the visualization of learned weights
on the EEG topography is achieved by employing Gradient-
weighted Class Activation Mapping (Grad-CAM) [37] in the
proposed model. The obtained Grad-CAM results demon-
strate that the presence of contralateral activation patterns in
accordance with the paradigm of motor imagery [38]. The
observed activation patterns (red color) in the motor-related
areas of the left and right hemispheres are consistent with
the imagined right-hand and left-hand movements. Our model
builds the explicit connection between these activated regions
and the decision-making process. The ability of aligning the
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Fig. 7. Gradient-weighted Class Activation Mapping (Grad-CAM) of the proposed TSFCNet on the head EEG topography. Contralateral activation
patterns can be clearly observed in the subject A01, A02 and A07. (L: left-hand MI, R: right-hand MI).

Fig. 8. The classification accuracy of TSFCNet across various settings
of α and λ on two datasets, where the green dashed line represents the
accuracy by TSFCNet with λ = 0. (a) Dataset I. (b) Dataset II.

feature distributions learned by the proposed TSFCNet with
different MI tasks across various frequency bands can reveal
potential associations between body movements and brain
activities, making it a valuable tool.

D. Influence of Values of α and λ

The TSFCNet utilizes the joint supervision of the CE loss
and the center loss through Eq. (8) for model training. The
effective implementation of the center loss requires careful
consideration of two key hyperparameters, namely the learning
rate of feature centers α and the trade-off value λ between the
CE and the center loss. In order to evaluate the influence of the
aforementioned hyperparameters, an empirical investigation is
conducted to compare the performance of the TSFCNet across
various settings of α and λ on both Dataset I and Dataset II.

As shown in Fig. 8(a), the classification accuracy exhibited
by the TSFCNet on Dataset I is observed to decrease with
the increase of the value of λ , except for the scenario when
α equals 0.01 and λ ∈ [0.0001, 0.001], where an increase in
decoding accuracy is noted. In Fig. 8(b), it is demonstrated
that the increase of the value of λ from 0 to 0.001 leads to an
improvement in the classification accuracy of the TSFCNet
on Dataset II. Notably, discriminative features are observed
for varies values of λ between 0.0001 and 0.001. However,
a further escalation in the λ value causes the decline of the

MI decoding performance of the TSFCNet. Moreover, the
trend of the accuracy curve across varying learning rate is
similar, which is in line with the result in [22]. Consequently,
in this work, we experimentally set the values of α and λ

to 0.01 and 0.001, respectively. Therefore, the satisfactory
decoding performances on both Dataset I and Dataset II are
obtained.

E. Limitation and Future Work
Despite the proposed TSFCNet achieves qualified and

robust decoding results, our present work still has some limita-
tions. First, the proposed TSFCNet employs three independent
single layers in multi-domain for feature extraction, which may
lead to the neglect of the deep information that could improve
the classification performance. Second, although the proposed
TSFCNet shows its effectiveness in decoding subject-specific
MI-EEG, the generalizability across different subjects requires
further investigation. Third, the proposed TSFCNet is an
offline neural network that is yet to be validated in online
BCI environments.

The deep neural networks have shown remarkable capability
in absorbing extensive datasets for generating better feature
representations. On the other hand, the effective utilization
of cross-subject tasks and data augmentation techniques can
provide more available training data for deep neural networks.
With the help of the deep neural networks and big data,
it is possible for conducting the online BCI experiments.
Therefore, in the future work, we will explore the potential
of the TSFCNet by developing deep architectures for cross-
subject tasks.

V. CONCLUSION

In this paper, a multi-domain temporal-spatial-frequency
convolutional neural network is proposed for MI-EEG decod-
ing. The proposed TSFCNet first extracts multiscale temporal
feature from filtered EEG signals via the MixConv-Residual
Block. Next, the TSF-Conv block learns discriminative
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multi-domain EEG presentations through three parallel and
independent convolutional operations. In addition, the pro-
posed TSFCNet provides a novel mechanism that leverages
spatial and temporal EEG features combined with frequency
and time-frequency characteristics to improve the EEG decod-
ing. It enables powerful feature extraction without complicated
network structure. Moreover, we combine the center loss with
the CE loss to enhance the discriminative abilities of feature
extraction. The results of our experiments, conducted on three
public BCI datasets, demonstrate that the performance of
the TSFCNet is better than that of the SOTA methods. The
code of the TSFCNet can be accessed freely. In conclusion,
the experimental results demonstrate the proposed method to
be efficient and robust in decoding MI-EEG signals and prove
it as a powerful tool for MI-EEG based BCIs.
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