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B-Spline Modeling of Inertial Measurements for
Evaluating Stroke Rehabilitation Effectiveness
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Abstract— Patients who experience upper-limb paralysis
after stroke require continual rehabilitation. Rehabilitation
must be evaluated for appropriate treatment adjust-
ment; such evaluation can be performed using inertial
measurement units (IMUs) instead of standard scales
or subjective evaluations. However, IMUs produce large
quantities of discretized data, and using these data directly
is challenging. In this study, B-splines were used to
estimate IMU trajectory data for objective evaluations of
hand function and stability by using machine learning
classifiers and mathematical indices. IMU trajectory data
from a 2018 study on upper-limb rehabilitation were used
to validate the proposed method. Features extracted from
B-spline trajectories could be used to classify individuals
in the 2018 study with high accuracy, and the proposed
indices revealed differences between these groups. Com-
pared with conventional rehabilitation evaluation methods,
the proposed method is more objective and effective.

Index Terms— B-spline, linear mixed model, inertial
measurement unit (IMU), rehabilitation, virtual reality (VR).

I. INTRODUCTION

STROKE can occur when a blood vessel in the brain
clogs or ruptures and can cause cerebral ischemia, cerebral

infarction, and even death. In 2020, one in six deaths attributed
to cardiovascular disease was associated with stroke [1].
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Stroke is also a leading cause of long-term disability; more
than half of stroke survivors aged 65 years or older have
reduced mobility [2]. Only two-thirds of individuals who have
experienced stroke can walk independently, and less than
half of those who lose basic upper-limb function regain it
after 12 months [3], [4]. Such patients require upper-limb
rehabilitation to restore their ability to complete daily tasks,
such as showering, eating, and dressing, without assistance.
In rehabilitation, a therapist selects individualized treatments
and tasks, such as brick stacking, card flipping, and biking,
in accordance with the needs of the patient [6]. Patients must
perform these tasks repeatedly to regain the motor function
of an impaired body part. However, patients might develop
negative attitudes toward this repetitive treatment, limiting
the effectiveness of rehabilitation [5]. To enhance patient
enthusiasm for rehabilitation, [7], [8] have proposed computer-
based systems for poststroke rehabilitation at home. Moreover,
numerous virtual reality (VR)-based upper-limb systems have
been designed to increase patient motivation for rehabilitation
[9], [10], [11], [12], [13], [14]. Comprehensive reviews of
these systems are provided in [15] and [16].

Therapists evaluate the effectiveness of rehabilitation by
using scale-based tests, such as the Fugl–Meyer test, Action
Research Arm Test, Box and Block Test, Jebsen–Taylor hand
function test, and Brunnstrom stage test [17]. In computer- or
VR-based rehabilitation systems, range of motion, movement
speed and duration, hit rate, and subjective scale parameters
may be used to assess improvement [9], [10], [11], [12],
[13], [14]. The limitation of such indices is that they can
only be used to perform subjective evaluations with a final
outcome; individualized treatment plans cannot be designed if
no detailed movement information is provided [18].

In rehabilitation-oriented games, digital systems with
sensors are often used to record patient movements. In [19],
a wearable system with several embedded inertial measure-
ment units (IMUs) was designed to detect complex trunk
and shoulder movements and to visualize these movements
on a smart device. In [13], a system with a motion tracking
device (MTD) was designed to track movement trajectories
and used by patients playing a VR game. In [20], a full-
body sensor system with 14 IMUs was used to capture
position and orientation data for the body segments of four
patients with stroke; these data were used to derive joint
angles, which were in turn used to evaluate rehabilitation
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progress. Descriptive statistics were used to summarize
the data collected using the aforementioned sensor system.
In [14], two Nintendo Wiimotes (wireless movement sensors)
were used to track the movements of patients with stroke
who were undergoing rehabilitation; these movements were
mapped onto a three-dimensional body model that could be
viewed on a computer screen. A modified wearable inertial
sensing system that comprised eight IMUs with triaxial
accelerometers and gyroscopes was developed to compute
spatiotemporal kinematic metrics for assessing patients’ upper-
limb movements after stroke [21]. In [22], the associations
between kinematic variables obtained from four sensors and
clinical assessments were investigated. In [23], a seven-camera
Vicon system was used to capture position data for body
segments at a sampling rate of 120 Hz; these data were then
used to calculate upper-body angles. The participants in [23]
were asked to repeat a tasks multiple times, and the trial-to-
trial variability of each kinematic parameter was computed.
The performance of the the system used was evaluated using
only subjective scale tests, such as the Fugl–Meyer test. The
data collected by the IMUs were used only for visualization
or computing the maximum patient movement angles during
the evaluation process.

The trajectories of accelerometer and gyroscope signals
obtained by IMUs during tasks provide crucial information
regarding the movement ability of patients. When a simple
task, such as forward movement, is executed, the IMU
trajectory should be smooth. The smoothness of a trajectory
is a potential stability index for assessing rehabilitation
effectiveness. However, accelerometer and gyroscope data are
obtained from signals transmitted by multiple devices. When
a server cannot receive and process data instantly, the data
spikes, packet loss, and data gaps may occur [24]. In [25],
a functional data technique was used to remove noise, and
IMU trajectory coefficients determined using this technique
were useful for characterizing the motor impairment levels of
patients with stroke. In the present study, a functional data
technique was used to fit IMU data and obtain movement
trajectories. Evaluation indices for movement stability were
developed on the basis of these trajectories for objectively
assessing the improvement in the motor abilities of patients
with stroke after rehabilitation. The data collected in [13]
were used to demonstrate the feasibility of these indices.
The proposed indices are simple and can be calculated from
IMU data. Assessing the improvement in motor ability after
rehabilitation is crucial, and such assessment is currently
performed using only subjective scale-based instruments.
Future systems can use the indices proposed in this paper
for objective and improved evaluations of the effectiveness
of rehabilitation.

II. METHODS

A. Modeling IMU Trajectories
A wearable inertial sensing system often contains an

accelerometer, a gyroscope, or a magnetometer. During a task,
signals from the accelerometer, gyroscope, or magnetometer
are collected by a microprocessor. Under normal conditions,

these signals have a smooth trajectory over time, and their
rate of change is small. Thus, the rate of change of an IMU
signal over the entire time interval for a task is a potential
index for assessing the functional ability of a patient. Because
wearable inertial measurement systems provides only discrete
data, extreme raw data values can strongly affect the obtained
rate of change of a signal. A functional model can be used to
fit the raw signal and determine its rate of change.

Observed signals are a function of time, and the number
of signals for a task depends on the sampling rate. A linear
model for determining a parametric function for IMU signals is
described in the following text. Let yi , i = 1, . . . , N , denote a
sample trajectory collected from an IMU; let ti , i = 1, . . . , N ,
denote the corresponding recording time; and let N denote
the number of recorded observations. A functional model for
fitting the signal trajectory for a variable can be expressed as
follows:

yi = f (ti ) + ϵi , i = 1, · · · , N , (1)

where f (·) is a prespecified smoothing function and ϵi denotes
independent random variables with a mean of 0. Given a
class of basis functions {φ j (·), j = 1, · · · , K }, the smoothing
function can be expressed as follows:

f (t) =

K+d+1∑
j=1

φ j (t)c j , (2)

where K is a prespecified number of bases and d represents
the degree of the polynomial function. To improve fit, the
time interval can be divided into K + 1 disjoint intervals
of τk , with k = 1, . . . , K , where a < τ1 < τ2 < · · · <

τK < b. The terms a and b are the lower and upper time
bounds, respectively; these parameters are known as inner
knots. Moreover, boundary knots can be selected such that
f (t) is differentiable near the boundary. Let the knots be
expressed as follows:

ξ1 ≤ ξ2 . . . ≤ ξd ≤ ξd+1 < ξd+2 ≤ · · · < ξd+K+1

< ξd+K+2 ≤ ξd+K+3 ≤ · · · ≤ ξ2d+K+2, (3)

where ξd+2 = τ1, · · · , ξd+K+1 ≡ τK , ξd+1 = a,
and ξd+K+2 = b. The other knots (ξ1, . . . , ξd and
ξd+K+3, . . . , ξ2d+K+2) are selected arbitrarily but are often
assumed to be equal to the boundary knots. A B-spline basis
function was selected in this study. For d > 0, a B-spline
basis function can be defined recursively as follows:

Bd
k (x) =

x − ξk

ξk+d − ξk
Bd−1

k (x) −
ξk+d+1 − x

ξk+d+1 − ξk+1
Bd−1

k+1 (x),

(4)

where k = 1, . . . , K + d + 1,

B0
k (x) =

{
1, ξk ≤ x < ξk+1

0, else
(5)

and B0
k (x) ≡ 0 if ξk = ξk+1. The spline fits are robust

with respect to d. Cubic polynomials (d = 3) are the
common standard because the resulting curve appears perfectly
smooth [26].
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Fig. 1. Screenshot of VR rehabilitation game. The red numbers indicate
the 1) patient score, 2) round timer, 3) current objective, 4) game timer,
5) theta–beta ratio (TBR) threshold for the patient, 6) and real-time TBR
for the patient.

According to (2), the rate of change of a signal over time
is d f (t)/dt . Thus, we propose two metrics based on the rate
of signal change over (a, b) for evaluating the stability of the
trajectory; these metrics are expressed as

S I
T =

∫ b

a
|
d f (s)

ds
|ds (6)

and

S I I
T =

∫ b

a

(
d f (s)

ds

)2

ds. (7)

B. Example of a VR Upper-Limb Rehabilitation System
Data regarding a VR rehabilitation game from the study

of Lin et al. [13] were used to test whether the proposed
method for IMU trajectory modeling could be used to evaluate
rehabilitation. An experiment was conducted at Chang Gung
Memorial Hospital in Taoyuan, Taiwan. Eighteen patients with
stroke were enrolled in the study. Prior to the start of the
experiment, written consent was obtained in accordance with
the Declaration of Helsinki. The Institutional Review Board
of Chang Gung Medical Foundation approved the experiment
(IRB No. 102-3680B).

The considered system comprised an MTD, an electroen-
cephalography (EEG) device, and a VR game that was
designed by psychiatrists and therapists to increase patient
interest and improve patient motion. A screenshot during
gameplay is presented in Fig. 1.

The MTD required approximately 1 min for calibration, and
each patient was asked to hold the MTD still during this time
until the calibration process is complete. They then had 5 s to
perform their best pronation and supination movements with
the affected forearm, enabling the VR game to place game
elements in accordance with the patients’ maximum movement
range. In each game, the patient first had 25 s to move the
MTD backward and forward to load a shell into a cannon; the
game proceeded to aiming when the cannon had been loaded.
After loading, the cannon would fire automatically 10 s later.
During this time, the patient must rotate the MTD to aim the
cannon at a ship and maintain this position until the cannon
fired. Finally, the patient was given 5 s to rest before the next

round. If a patient’s mean hit rate exceeded 80%, the difficulty
of the game is automatically increased; that is, the angle at
which the ship might appear and thus the maximum range of
motion required for aiming increased. The difficulty would not
decrease, regardless of patient accuracy. EEG data were used
to enhance the patient’s attention; if the patient’s concentration
waned, the system displayed a stimulus to increase patient
focus. Additional details regarding the system are presented
in [13].

The experiment comprised three equally sized groups:
a control group (A) that participated in conventional
rehabilitation, a group (B) that played the VR game, and
a group (C) that played the VR game and used the EEG
device. The EEG data were used only for monitoring and
ensuring patient attention. Besides conventional rehabilitation,
every week for 4 weeks, the patients in groups B and C
performed three game-based rehabilitation experiments that
lasted 35 min; each experiment comprised two 15-min play
sessions that interrupted by a 5-min rest period. The patients
participated in a total of 24 rehabilitation sessions, each of
which comprised up to 22 games lasting a maximum of 40 s.
The total score, hit rate, number of games, and maximum
wrist turning angle were recorded for each patient during
each session. The MTD could track forearm pronation and
supination trajectories and angles on the basis of acceleration,
angular velocity, and magnetic field strength measurements
collected by embedded triaxial accelerometers, gyroscopes,
and magnetometers, respectively. Data were recorded every
1/20 s in the x-direction, y-direction, and z-direction. Nine
trajectories were obtained for each game. In this paper,
ACX, ACY, and ACZ denote the accelerometer measurements;
GRX, GRY, and GRZ denote the gyroscope measurements;
and MAGX, MAGY, and MAGZ denote the magnetic
field measurements. A sample acceleration trajectory in the
z-direction for a patient playing the game is displayed in
Fig. 2. Because the objective of the present study was to
identify new metrics for IMU trajectory data, the patients in
group A were not included in the current analysis.

C. Statistical Analysis
The duration for each game was not fixed; thus, the time

interval of each game was standardized to [0, 1] as follow.
A new time variable was defined as follows:

t∗i =
ti − min(ti )

max(ti ) − min(ti )
, i = 1, 2, . . . , N . (8)

To combine the data for each session, the MTD measurements
were normalized as follows: Let yi , i = 1, . . . , N , denote the
set of measurements for one game. The normalization equation
is given in (9):

y∗

i =
yi − ȳ

sy
, i = 1, 2, . . . , N , (9)

where ȳ is the mean and sy is the standard deviation of the set.
Fig. 2 displays the normalized ACZ trajectory for one game;
in this figure, “◦” denotes a raw data data point.

The functional model defined in (1) was used to fit the
normalized trajectory (t∗i , y∗

i ), i = 1, 2, . . . , N . The B-spline
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Fig. 2. Acceleration trajectory in the z-direction for a game, where “◦”
denotes the raw trajectory and the solid line denotes the fitted trajectory.

basis function was selected in this study under the assumption
that d = 3 if only three inner knots existed (τ1 = 0.25,
τ2 = 0.50, and τ3 = 0.75; that is, K = 3). When d = 3,
the resulting fitting curve had seven estimated coefficients: ĉ j ,
j = 1, 2, . . . , 7.

Patients undergoing rehabilitation typically perform the
same motion numerous times during each session and
attend multiple rehabilitation sessions. Thus, the number of
rehabilitation sessions was set to R, and the number of
patients was set to n. Nir denoted the number of games
for the r th session and i th patient, where r = 1, 2, . . . , R,

and i = 1, 2, . . . , n. Because (4) is a recursive formula, the
estimated curve had no closed form. To combine data for each
subround, the time intervals (a, b) were partitioned into m
equal subintervals of h = (b − a)/m, which were denoted
as s0 = a, s1 = a + h, . . ., sm = b. Here, f̂irk(st ) denotes
the fitted curve for the kth game in the r th session for the
i th patient, where t = 0, 1, 2, . . . , m, k = 1, 2, . . . , Nir ,
r = 1, 2, . . . , R, and i = 1, 2, . . . , n. This curve was derived
through replacement of Bd

j (x), j = 1, 2, · · · , K + d + 1, and
the estimated coefficients in (2). Because the number of games
varied between sessions and patients, the fitted value for the
r th rehabilitation session was defined as the average of all
repeated motions during the session as follows:

ˆ̄fir (st ) =
1

Nir

Nir∑
k=1

f̂irk(st ), (10)

where t = 0, 1, 2, . . . , m, r = 1, 2, . . . R, and i = 1, 2, . . . , n.
In this study, we assumed that m = 100. The numbers of

rehabilitation sessions and patients were R = 24 and n =

12, respectively. A fitted curve for the normalized z-direction
acceleration trajectory for a game is displayed in Fig. 2 (solid
line); the fitted z-direction acceleration for the games in a
session is red, and the corresponding average curve for the
session is black. Although the curves vary between games,
the average fitted curve is smooth and follows the line y = 0.
Fig. 4 presents the average fitted curves for all 24 sessions for

Fig. 3. Trajectories for the z-direction acceleration for a session. Fitted
curves for the games are in red, and the average session trajectory is in
black.

groups B and C. The curves for group C have less variation
than do those for group B.

The integrals of (6) and (7) were estimated by replacing
f (s) by ˆ̄fir (st ) as follows:

S I
ir =

100∑
t=1

|
ˆ̄fir (st ) −

ˆ̄fir (st−1)|

st − st−1
× (st − st−1) (11)

and

S I I
ir =

100∑
t=1

(
ˆ̄fir (st ) −

ˆ̄fir (st−1)

st − st−1

)2

× (st − st−1), (12)

where r = 1, 2, . . . , 24 and i = 1, 2, . . . , 12.
The fitted curve in Fig. 2 trends toward 1; to avoid an

excessively strong boundary effect, alternative estimates of
the rates of signal change in (6) and (7) were determined as
follows:

S I I I
ir =

90∑
t=1

|
ˆ̄fir (st ) −

ˆ̄fir (st−1)|

st − st−1
× (st − st−1) (13)

and

S I V
ir =

90∑
t=1

(
ˆ̄fir (st ) −

ˆ̄fir (st−1)

st − st−1

)2

× (st − st−1), (14)

where r = 1, 2, . . . , 24 and i = 1, 2, . . . , 12. For simplicity,
the four indices expressed in (11) – (14) are denoted as I,
II, III, and IV, respectively. Nine variables were recorded,
resulting in 36 stability indices.

D. Evaluation
Three aspects of the feasibility of the aforementioned

indices for rehabilitation evaluation were considered.
First, we evaluated whether the fitted curves of groups B

and C differed by inputting the average of the estimated seven
coefficients for each session into classification algorithms,
which were used to classify the patients into groups B and
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Fig. 4. Average z-direction acceleration trajectories for 24 sessions for
(a) group B and (b) group C.

C. For a given motion replication k in session r for the i th
patient, the vector of estimated coefficients was denoted as
ĉikr . The vector of the average of the estimated coefficients
for all motions in a session was expressed as follows:

ˆ̄cir =
1

Nir

Nir∑
k=1

ĉikr , r = 1, 2, . . . , 24, i = 1, . . . , 12. (15)

Each session was associated with nine variables and thus
63 features. Moreover, each of the 12 patients participated
in 24 sessions, which resulted in 288 observations. Five
classifiers were used, namely, the k-nearest neighbor (KNN),
support vector machine (SVM), decision tree (DT), random
forest (RF), and naive Bayes (NB) classifiers. Regression
splines were applied using the spline package in R with
the default hyperparameters. The Caret package was also
used, and this package includes various classification methods
and training functions. A five-fold cross-validation scheme
was used for training. For the KNN classifier, the tuneGrid

function in the Caret package was selected for automatically
determining the key parameters for k values of 1–30. For the
SVM classifier, a radial basis function kernel was used, and
the total number of unique combinations was set to ten for the
grid search [27]. For the DT classifier, the cp value in tuneGrid
was determined by searching from 0 to 0.05 in steps of 0.005.
For the NB classifier, the default turning parameters for rf,
usekernel, and adjust were used. Classification performance
was assessed in terms of accuracy, specificity, and sensitivity.
In this paper, sensitivity indicates the proportion of patients
in group C that were correctly classified as being in group C,
and specificity refers to the proportion of patients in group B
that were correctly classified as being in group B. The final
performance in terms of the aforementioned indices was the
average value over 30 repetitions.

Second, the overall stability for 24 sessions was evaluated
as follows:

S̄G
i =

1
24

24∑
r=1

SG
ir , i = 1, 2, . . . , 12; G = I, I I, I I I, I V .

(16)

The stability of groups B and C was compared, and the
Wilcoxon test was used to determine whether the overall
stability of the two groups was significantly different.

Third, the progress of the rehabilitation (long-term effective-
ness) was examined. Trajectories were expected to stabilize as
the number of sessions increased. A linear mixed model was
used to examine whether the stability declined as the number
of sessions increased. This model included fixed effects and
random effects. The fixed effects were those of group (GP),
session (SR), and group–session (GP * SR) interactions, and
the two random effects were the intercept and slope of the
trajectories. The Wald test was performed to evaluate the
significance of the effects. When group–session interactions
were significant, the rate of change in signal trajectory stability
over sessions was significantly different between groups B and
C. If the corresponding estimated coefficient was negative, the
stability for group C declined faster than that for group B. The
four proposed indices and original variables, including the total
score, hit rate, number of games, and maximum wrist angle,
were subsequently used to assess long-term rehabilitation
effectiveness.

III. RESULTS

A. Classification
A spline function comprises coefficients and a basis.

The estimated coefficients provide information regarding
trajectory characteristics. To demonstrate the effectiveness
of the proposed stability indices, we examined whether the
trajectory characteristics differed between groups B and C.
Features were defined as the average of estimates of the
coefficients over the Nir games in a session. The results
of a two-independent-samples T -test (Table I) revealed the
variables that differed significantly between groups B and C.
Among the nine variables, ACZ and MAGZ had the highest
significance, whereas ACY, GRY, and MAGX had the lowest
significance.
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TABLE I
SIGNIFICANT DIFFERENCES BETWEEN GROUPS B AND C (IDENTIFIED

ON THE BASIS OF A TWO-INDEPENDENT-SAMPLES T -TEST)

TABLE II
CLASSIFICATION PERFORMANCE

TABLE III
COMPARISON OF RESULTS BETWEEN GROUPS B AND C

Table II presents the classification results based on the
average coefficients. The accuracy, specificity, and sensitivity
of SVM and RF were higher than 90%; specifically, the
sensitivity of SVM was 98%, and the specificity of the RF
method was 93%. The KNN method had marginally lower
accuracy than did the aforementioned two methods, and the
DT and NB methods exhibited low performance. The accurate
classification results obtained using the SVM and RF methods
indicated that the characteristics of the fitted curves of groups
B and C differed.

B. Overall Evaluations
The Wilcoxon test was used to compute whether the average

values of the total score, hit rate, number of games, and
maximum wrist angle over the 24 sessions for each patient
differed between the groups (Table III). The number of games
for group B was slightly higher than that for group C; this
effect was marginally significant. However, although the total
score and hit rate were slightly higher in group C, these effects
were nonsignificant.

The p values obtained in the Wilcoxon text are displayed
in a heat map in Fig. (5); the rows in this figure represent
variables, the columns represent the four stability indices,

Fig. 5. Heat map for the p values of the differences in the proposed
indices between groups B and C in the Wilcoxon test.

TABLE IV
STATISTICS OF THE FOUR INDICES FOR ACZ AND GRX

and the colors indicate the significance level (p < 0.05 was
considered significant). ACZ had the most significant indices,
followed by AC and GRX. In particular, all four indices
derived from ACZ were significant. Moreover, all indices
except for index II for AC and GRX were significant at the
0.05 level. Finally, the differences between groups B and C
in the indices derived from ACX, GRZ, and MAGY were
nonsignificant at p = 0.30.

Table IV provides the statistics of the four indices for ACZ,
AC, and GRX. The median, mean, and standard deviation of
these indices were significantly higher for the group B patients
than for the group C patients. Moreover, the median, mean,
and standard deviation of indices I and II were greater than
those of indices III and IV. Although the median and mean
of index II for group B were twice those for group C, the
variability in index II due to GRX was larger; thus, this result
was nonsignificant.

C. Progressive Evaluation
The total score over the 24 sessions for the patients in

groups B and C are displayed in Fig. 6, in which the
x-axis indicates the number of sessions. The scores increased
as the number of sessions increased; however, the difference
between groups B and C was small.

The total score estimates according to the linear mixed
model are presented in Table V. In this table, GP is a binary
variable for which 1 indicates group C and 0 indicates group
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Fig. 6. Scores over 24 sessions for group B (red) and group C (blue).

TABLE V
ESTIMATES OF TOTAL SCORE FROM LINEAR MIXED MODEL

B, and SR denotes the number of sessions. The interaction
between SR and GP (SR * GP) was not significant, which
indicated that the total score over time was not significantly
different between groups B and C. However, higher SR was
significantly associated with higher scores. Similar results
were observed for the hit rate and maximum wrist turning
angle. The difference in the number of games for SR, GP, and
SR * GP was not significant.

A heat map of the p values obtained for SR, GP, and SR
* GP from the linear mixed model is displayed in Fig. (7);
the rows in this figure represent variables, and the columns
represent estimates. The labels I_SR, I_GP, and I_SR * GP
indicate the estimates derived from S̄ I

i ; other elements are
defined similarly. The colors indicate the significance level
(p < 0.05 was considered significant). The most significant
estimates were observed for ACZ, followed by ACY and
MAGZ. A significant SR * GP value indicated that the stability
was affected by the group and the number of sessions. The
obtained S̄ I V

i values indicated that SR * GP was significant
for ACY, ACZ, and MAGZ. SR * GP was significant for
ACZ, as indicated by the S̄ I I I

i values. Moreover, SR * GP was
significant for MAGZ, as indicated by the S̄ I

i and S̄ I I
i values.

SR was significant for all four stability indices for ACY and
ACZ. After the first session, stability was not significantly
different between the groups.

The most significant stability indices were derived from
ACZ, and many indices derived from MAGZ were significant
for SR * GP. Thus, detailed estimates for ACZ are provided in
this paper. Table VI presents the model estimates for indices
I and II. The average stability of index II for ACZ was
not significantly different between the groups during the first
session. SR * GP was significant, which indicated that the
rate of change differed between groups B and C. The rate of

Fig. 7. Heat map of p values for indices obtained using a linear mixed
model.

TABLE VI
ESTIMATES OBTAINED FOR ACZ FROM

INDICES I AND II AND THE LINEAR MIXED MODEL

TABLE VII
LINEAR MIXED MODEL ESTIMATES FOR

ACZ BASED ON INDICES III AND IV

change for group B was 0.106, whereas that for group C was
approximately 0.001; these values were derived by combining
the effects of SR and SR * GP. However, for index I, the rate
of change in the average stability for group B significantly
increased by 2.3%, and the difference in the rate of change
between groups B and C was weakly significant (p = 0.053).
After the effects of SR and SR * GP were combined, the rate
of change in the average stability derived from index I for
group C was approximately -0.002; that is, the average stability
remained constant as the number of sessions increased.

Table VII presents the model estimates for indices III and
IV. For index IV, the rate of change in SR * GP differed
significantly between groups B and C. The rate of change for
group B was 0.071. After the effects of SR and SR * GP were
combined, the rate of change for group C was approximately
-0.004, which indicated that index IV was constant over the
time interval. The average stability of index III for ACZ did
not differ significantly during the first session. However, the
rate of change in the average stability for group B increased
significantly by 1.9%; the difference in the rate of change
between groups B and C was nonsignificant.
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TABLE VIII
LINEAR MIXED MODEL ESTIMATES FOR

MAGZ BASED ON INDICES I AND II

TABLE IX
LINEAR MIXED MODEL ESTIMATES FOR

MAGZ BASED ON INDICES III AND IV

SR * GP was significantly associated with MAGZ for
indices I, III, and IV (Tables VIII and IX). The rate of change
for group B with SR was not significantly different from 0; that
is, the variability remained constant as SR increased. However,
the significance of SR * GP indicated that the rate of change
with SR for group C was different from 0; that is, as SR
increased, the stability index and variability decreased. Finally,
SR * GP was not significant for index II because of a large
standard error.

IV. DISCUSSION

In this study, functional analysis was performed for
effectively using sensor data to evaluate a stroke rehabilitation
program. Groups in a stroke rehabilitation program were
differentiated according to coefficients estimated using a fitted
B-spline function. Four indices based on the variation of the
B-spline function were adopted to evaluate the rehabilitation
program.

Recruiting sufficient suitable participants is a major
challenge in clinical research. Factors such as game score,
number of games, hit rate, and maximum wrist turning angle in
rehabilitation games can be easily measured but do not provide
information on intermediate motions. Thus, these factors might
be insufficient for evaluating the overall difference between
experimental groups from a small sample, as in the study of
Lin et al. [13]. However, the indices proposed in this paper,
which are based on intermediate data, reveal that, in the study
by Lin et al., the patients in group C outperformed those in
group B in terms of overall rehabilitation and progress during
their rehabilitation program.

Rehabilitation programs include static actions, microactions,
and intense actions. The accelerometer data collected by an
IMU are most accurate for static actions. By contrast, the
gyroscope data collected by an IMU enable the derivation
of more accurate measures when microactions and intense
actions are executed than when a static action is executed.
Thus, filtering procedures are required for generating the IMU

trajectory [21], [28], [29]. The proposed spline smoothing
techniques do not require data preprocessing to remove noise.
The estimated spline function coefficients were found to
be effective features for machine learning. In contrast to
statistical parameters such as mean and standard deviation,
the coefficients in functional data analysis are derived from
a basis function that is fitted to the data, and these
coefficients are less influenced by outliers than are such typical
statistical parameters. A similar finding was reported by [25],
who demonstrated that the coefficients derived from spline
functions are excellent features for classifying patients with
stroke by their level of motor impairment. Nevertheless, the
maximum duration of each game in the study by Lin et al.
was 10 s, and only three inner knots (K ) were selected in the
present study to avoid data overfitting. When IMU trajectory
tracking is longer, a higher value of K can be selected to
increase modeling accuracy.

The trajectories derived from the acceleration and magnetic
field strength in the z-direction were key features. The
tilt angle of the MTD was equal to tan−1 ( ACY

AC Z

)
. A

higher ACZ value resulted in a higher tilt angle, which
indicated greater shaking of the MTD and inferior hand
function. Similarly, a lower ACZ value indicated better hand
function.

The trajectory displayed in Fig. 3 can be attributed
to the data collection method. At the beginning of each
game, the patient was focused and static; however, motor and
concentration impairment might have resulted in the patient
being unable to stop immediately when required. Therefore,
indices III and IV proved slightly more effective for evaluating
the performance of groups B and C than did indices I and II.
Furthermore, because the rate of change can be negative, the
absolute norm and squared norm were used to compute the
indices. Among the four considered indices, index IV was
the most effective at detecting differences between groups B
and C; this index is commonly used because it has excellent
mathematical properties.

Except for [13], most relevant studies have collected data
using a cross-sectional method [21], [22], [23]. In particular,
in [23], four repetitions were performed, and standard
deviation was used to examine trial-to-trail variability.
Although follow-up research was conducted in [20], only
descriptive statistics such as the average and standard deviation
of joint range of motion were determined. The data used in
the present study were collected using a sophisticated design;
that is, patients were asked to play games in 24 sessions with
similar conditions. The trajectories were expected to be similar
after a patient became familiar with the game and achieved
improved functioning. The aim of the present study was to
devise a stability index for assessing improvement in motor
ability during a rehabilitation program. Thus, the trajectories
for each session were averaged to simplify the construction
of the indices. In a future study, the difference between a
trajectory and the averaged trajectory for all games in each
session can be computed, and an instability index can be
defined as the average of this difference. However, when the
rehabilitation task is performed only once, such an instability
index cannot be computed.



4016 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

V. CONCLUSION

Continual rehabilitation is required for the recovery of
patients with upper-limb paralysis after stroke. An objective
evaluation of rehabilitation progress must be performed to
enable therapists to modify the program appropriately. Data
collected by IMUs can indicate hand function but are
discretized. Therefore, this paper proposes the use of B-splines
for extracting the features of IMU trajectories to construct
objective indices for evaluating rehabilitation effectiveness.

In the present study, the IMU trajectory data collected
by Lin et al. using a VR upper-limb rehabilitation system
were used with the proposed method to obtain not only
feature information for classifiers but also stability indices
for assessing the effectiveness of sensor-based rehabilitation
systems. The best stability indices (indices III and IV) can
be produced if the trajectory movement is only recorded for
the target action. Compared with game-based or therapist-
evaluated scores, the proposed method is more objective and
effective for evaluating rehabilitation progress.
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