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TDLNet: Transfer Data Learning Network for
Cross-Subject Classification Based on
Multiclass Upper Limb Motor Imagery EEG

Jingfeng Bi

Abstract—The limited number of brain-computer inter-
face based on motor imagery (MI-BCI) instruction sets
for different movements of single limbs makes it diffi-
cult to meet practical application requirements. Therefore,
designing a single-limb, multi-category motor imagery (MI)
paradigm and effectively decoding it is one of the important
research directions in the future development of MI-BCI.
Furthermore, one of the major challenges in MI-BCl is the
difficulty of classifying brain activity across different indi-
viduals. In this article, the transfer data learning network
(TDLNet) is proposed to achieve the cross-subject inten-
tion recognition for multiclass upper limb motor imagery.
In TDLNet, the Transfer Data Module (TDM) is used to pro-
cess cross-subject electroencephalogram (EEG) signals
in groups and then fuse cross-subject channel features
through two one-dimensional convolutions. The Residual
Attention Mechanism Module (RAMM) assigns weights to
each EEG signal channel and dynamically focuses on the
EEG signal channels most relevant to a specific task.
Additionally, a feature visualization algorithm based on
occlusion signal frequency is proposed to qualitatively
analyze the proposed TDLNet. The experimental results
show that TDLNet achieves the best classification results
on two datasets compared to CNN-based reference meth-
ods and transfer learning method. In the 6-class scenario,
TDLNet obtained an accuracy of 65%+0.05 on the UML6
dataset and 63%+0.06 on the GRAZ dataset. The visual-
ization results demonstrate that the proposed framework
can produce distinct classifier patterns for multiple cat-
egories of upper limb motor imagery through signals of
different frequencies. The ULM6 dataset is available at
https://dx.doi.org/10.21227/8qw6-f578.

Index Terms— Brain-computer interface, deep learning,
electroencephalogram, motor imagery.

. INTRODUCTION
RAIN-COMPUTER interface (BCI) is an emerging dis-
cipline field produced at the intersection of brain science
and information science, which studies how to establish direct
communication and control channels between the brain and
external devices to realize the information exchange between
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the brain and the device [1], [2]. According to the different
signal acquisition methods, BCI can be divided into two
categories: invasive and non-invasive. Invasive BCI is the
surgical implantation of electrode arrays into the skull to
directly record or stimulate brain neurons to achieve communi-
cation with the outside world, because invasive BCI requires
surgery, so it is currently only used in animal experiments
or severely paralyzed patients. Compared with invasive BCI,
non-invasive BCI is more widely used, but the signal-to-
noise of the signal recorded by the non-intrusive acquisition
device is relatively low, and researchers continue to study
the coding experimental paradigm and decoding methods to
improve the application ability of BCI [3]. There have been
many algorithms developed for electroencephalogram (EEG)
pattern classification in various BCI applications [4], [5], [6],
[7]. In non-invasive BCI, researchers have extensively and
deeply explored brain signal encoding and decoding methods
for application scenarios in different fields, forming active,
reactive and passive BCI interaction modes. Active BCI refers
to the output of control signals that reflect brain activity,
independent of external events, and are typically represented
by motor imagery (MI) [8], [9], [10], [11], [12]. Reactive BCI
refers to brain activity triggered by external stimuli, and the
system then produces output according to the brain’s response,
which mainly includes steady-state visual evoked potential
(SSVEP) BCI [13], [14], [15] and event-related potential
(ERP) BCI [16], [17], [18]. Passive BCI does not aim at
control, providing the computer with the hidden state of the
brain in the process of human-computer interaction, so as to
facilitate the computer to make timely adjustments and real-
ize humanized interaction, which mainly includes emotional
BCI [19], [20], [21], mental workload BCI [22], [23], [24].
Among these BCI interaction modes, MI used in BCI systems
has received increasing attention because it allows users to
produce control signals without external stimuli.

In current research on brain-computer interface based on
motor imagery (MI-BCI), a novel algorithm, namely tempo-
rally constrained sparse group spatial pattern (TSGSP) was
proposed in [25] for the simultaneous optimization of filter
bands and time window within CSP to further boost clas-
sification accuracy of MI-EEG. An experimental study was
implemented on three publicly EEG datasets (BCI competition
IIT dataset Illa, BCI competition IV datasets Ila, and BCI
competition IV dataset IIb) to validate the effectiveness of
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TSGSP. Sakhavi et al. [26] proposed a classification frame-
work for MI data by introducing a new temporal representation
of the data and also utilizing a convolutional neural network
(CNN) architecture for classification. The new representation
is generated from modifying the filter-bank common spatial
patterns method, and the CNN is designed and optimized
accordingly for the representation. Tabar and Halici [27]
investigated convolutional neural networks (CNN) and stacked
autoencoders (SAE) for classifying EEG motor imagery sig-
nals. They proposed a new deep network that combines CNN
and SAE. In [28], a subject-independent framework based on
deep convolutional neural networks (CNNs) was proposed.
This framework formulates the discriminative feature represen-
tation by combining the spectral-spatial input, embedding the
diversity of EEG signals, and a feature representation learned
from the CNN through a fusion technique that integrates
various discriminative brain signal patterns. While most pre-
vious MI-BCI research has produced excellent results, current
BCI systems based on MI are typically effective only in
distinguishing left and right motor execution/imagery.

The limited number of MI-BCI instruction sets based on
different movements of single limbs makes it difficult to
meet practical application requirements. In addition, control-
ling peripherals by imagining the movements of different
limbs often leads to inconsistencies between motor intentions
and actual peripheral execution instructions, called cogni-
tive disconnection [29], which increases the cognitive load
of patients and seriously affects the use of the BCI sys-
tem. Therefore, designing a single limb multi-category MI
paradigm and effectively decoding it is one of the important
research directions in the future development of MI-BCI.
In recent years, researchers have begun to explore the fine
MI paradigm of multiple movements in a single joint and
multiple joints in a single limb. A multi-directional convo-
lution neural network-bidirectional long short-term memory
network (MDCBN)-based deep learning framework was pro-
posed in [30], for the classification of six directions of arm
extension, that achieves a total average correlation coefficient
classification effect of 0.45 in motor imagery sessions. A time-
distributed attention network (TD-Atten) was proposed in [31]
to adaptively assign different weights to different classes and
frequency bands of the input multiband Common Spatial Pat-
tern (CSP) features, and obtained the accuracies of 46.8% in
the 5-class scenario and 53.4% in the 4-class scenario. A novel
fMRI-weighted Convolutional Neural Network (CNN) was
designed in [32] to reassign each channel’s weight based on
brain activation areas to improve classification accuracy, and
the average classification accuracy of fMRI-weighted CNN
is 47.0%. In the multi-class scenario, the current study has
achieved good results in the MI-BCI. However, classifying the
brain activity across different individuals remains a challenge
for MI-BCI.

Transfer learning (TL) has been proven to be one of
the most significant techniques for cross-subject classifica-
tion in electroencephalogram-based brain-computer interfaces
(BCI). Hence, it is widely used to address the challenges of
cross-session and cross-subject variability with more accurate
intention prediction [33]. Wu et al. [34] proposed a parallel

multiscale filter bank convolutional neural network (MSF-
BCNN) for motor imagery (MI) classification, which is a
layered end-to-end network structure. To enhance the trans-
fer learning ability, a network initialization and fine-tuning
strategy were proposed to train an individual model for
inter-subject classification on small datasets. The transfer
learning experiments indicate that the network can build an
individual model and obtain acceptable results in inter-subject
classification. In [35], a new deep learning (DL) architec-
ture for motor imagery (MI) based brain-computer interfaces
(BCIs) called EEGSym was presented, which aims to improve
previous state-of-the-art performances on MI classification
by overcoming inter-subject variability and reducing BCI
inefficiency. Hu et al. [36] proposed a multi-scale adaptive
transformer network (MSATNet) for motor imagery classi-
fication. Therein, a multi-scale feature extraction (MSFE)
module to extract multi-band highly-discriminative features
was designed. Through the adaptive temporal transformer
(ATT) module, the temporal decoder and multi-head attention
unit were used to adaptively extract temporal dependen-
cies. Efficient transfer learning was achieved by fine-tuning
target subject data through the subject adapter (SA) mod-
ule. Zhao et al. [37] proposed a convolutional neural network
(CNN) with an end-to-end serial-parallel (SP) structure fol-
lowed by transfer learning. The serial module was used to
extract the rough features in time-frequency-space domain,
and the parallel module was used for fine feature learning at
different scales. Meanwhile, a freeze-and-retrain fine-tuning
transfer learning strategy was proposed to improve the cross-
subject accuracy.

In this article, the Transfer Data Learning network (TDL-
Net) is proposed to achieve cross-subject intention recognition
for multiclass upper limb motor imagery (elbow flexion,
elbow extension, forearm supination, forearm pronation, hand
open, and hand close). TDLNet is mainly composed of
three key components: the Transfer Data Module (TDM),
Inception Module, and Residual Attention Mechanism Mod-
ule (RAMM). The TDM performs migration and expansion
processing on the data of the two subjects and concatenates
the data in the depth direction according to categories. The
Inception Module captures multiscale time information from
input feature maps by applying multiple parallel branches. The
RAMM allocates attention weights to different EEG signal
channels for different motor imagery tasks, focusing on the
most relevant brain signals to improve the accuracy of BCI
decoding. In addition, a feature visualization algorithm based
on occlusion signal frequency is proposed to qualitatively
analyze TDLNet. In summary, the main contributions of our
work are listed as follows.

1) The Transfer Data Learning Network (TDLNet) is pro-
posed to achieve the cross-subject intention recognition
for multiclass upper limb motor imagery.

2) In TDLNet, the RAMM is proposed for assigning
weights to different EEG signal channels for different
motor imagery tasks.

3) A feature visualization algorithm based on occlusion
signal frequency is proposed to qualitatively analyze the
MI-BCI framework.
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Fig. 1. Architecture of TDLNet, which mainly consists of three components: (1) TDM, (2) Inception Module, and (3) RAMM.

The remainder of this article is organized as follows.
In Section II, we provide the architecture of the TDLNet
model in detail and describe the proposed feature visualization
algorithm based on occlusion signal frequency. In Section III,
we show the datasets and implementation details, as well
as the ablation studies. TDLNet is experimentally compared
to CNN-based methods (DeepConvNet, ShallowConvNet [38]
and EEGNet-4,2, EEGNet-8,2 [39]) and transfer learning
methods (MSFBCNN [34], EEGSym [35], MSATNet [36]).
Three visualization experiments are conducted. In Section IV,
we discuss the experimental results and qualitatively analyze
the proposed TDLNet using the feature visualization algorithm
to demonstrate its effectiveness in cross-subject classification.
Finally, Section V concludes this article.

[I. METHODOLOGY

In this section, Transfer Data Learning Network (TDLNet)
based on transfer data and residual attention mechanism is
proposed. The key components, Transfer Data Module (TDM),
Inception Module, and Residual Attention Mechanism Module
(RAMM) are then described in detail. Following this, the
feature visualization algorithm based on occluded input signal
frequency is proposed for qualitative analysis of TDLNet.

A. Transfer Data Learning Network

The proposed Transfer Data Learning Network (TDLNet)
is mainly composed of the Transfer Data Module (TDM),
Inception Module, and Residual Attention Mechanism Module
(RAMM), as shown in Fig. 1. Concretely, the input of TDM
is obtained by splicing the EEG signals of two subjects in
the depth direction according to the category. Two layers of
grouped convolution are used for feature extraction in the time
dimension separately. Then, two layers of one-dimensional
convolution fuse the EEG features of the two subjects in the
direction of deep channels. The feature map obtained by this
process is used as input to the Inception Module. The Incep-
tion Module captures multi-scale time information from the
input feature maps through multiple parallel branches. Each

branch uses convolution kernels of different sizes to extract
time features of different scales. Then, multiple branches of
different scale features are connected in the depth direction
to form the output of the Inception Module. The Residual
Attention Mechanism Module assigns weights to each EEG
signal channel, indicating its importance to the current task.
These weights are learned by the network and used for
calculations, effectively highlighting the most relevant parts
and suppressing the less important parts. Finally, the output
of RAMM is pooled through the global average pooling layer
(GAP) and connected to the fully connected connection layer
and the softmax layer.

In the training process of TDLNet, the input is denoted
as D = {(X',yh,...., (XN, yN)}, where N represents
the total number of trials, X/ € RX represents the EEG
signal matrix of the jth trial. The corresponding class
label of trial j is denoted by y/. It takes values from a
set of K class labels L that correspond to the imagined
movements performed in each trial, for example, Vyj S
L = {l} = “elbow flexion”,l, = “elbow extension”,[3 =
“forearm supination”,ly =  “forearm pronation”,l5 =
“hand open”,ls = “hand close”}. Classifier f(X/, w) is
trained on these existing trials such that it is able to assign
the correct label to new unseen trials. Concretely, we aim to
train the classifier to assign the label y/ to X/ using the output
of a parametric classifier f(X/, w) : RX — L with parameters
w. The standard machine learning classification method is
different from TDLNet in the framework of classification.
The standard machine learning classification method includes
independent feature extraction and feature classification while
TDLNet learn both stages jointly. To better introduce TDLNet,
we assume that the classifier f(X/, w) is represented by a
standard machine learning pipeline decomposed into two parts:
the first part is feature extractor ¢(X/, wg) with parameters
wg which is learned from the data, and the second part is a
classifier ¢ with parameters w, which is trained using these
features, that is

F(X), w) = g@ (X!, wp), wg) (0, wg) € (1)
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TABLE |
TDM ARCHITECTURE

Layer Filters  Sizes  stride Output

Input (C,T,2)

Grouped Convl 2«4 (1,3) (1,2) (C,T/2,8)
Batch Normalization (C,T/2,8)
Relu (C,T/2,8)
Grouped Conv2 2x8 (1,3) (1,2) (C,T/4,16)
Batch Normalization (C,T/4,16)
Relu (C,T/4,16)
Conv3 16 (1,1) (1,1) (C,T/4,16)
Batch Normalization (C,T/4,16)
Conv4 32 (1,1) (L,2) (C,T/8,32)
Batch Normalization (C,T/8,32)
Relu (C,T/8,32)

In the process of TDLNet training, by iteratively assigning
the value of parameter w, high probability is assigned to the
correct label to minimize the sum of loss functions

N
w = arg min ZIoss(yj, P X7)) )
j=1

where p(lx|X 7 represents the conditional probability distri-
bution. The loss function is
K
loss(y/, pU1X7)) = >~ —log(pI X)) - p() =) (3)
k=1

where p(y/ = I;) represents the probability that the y/ is Iy.

1) Transfer Data Module: The structure of Transfer Data
Module (TDM) is shown in TABLE I, where C is the number
of channels, T is the number of time points. The input of TDM
is obtained by splicing the EEG signals of two subjects in the
depth direction according to the category, which is expressed
as

X/ = [x]; xJ] )

where X7, X3 are EEG signals of the first and second subjects
in trial j. Two grouped convolutions are used to perform
feature extraction on the input data in the time dimension,
which is represented as

[211]26 groupedConvyy (W11, X{) + by )
Z groupedConvia(Wia, X3) + bin

Z5 Y groupedConvy (Way, Z11) + by ©)
Zy groupedConvy(Woy, Z12) + by

where (Z11,Z12) and (Z,;,Zy;) are the features of the
two subjects after the Grouped Convl and Grouped Conv2,
respectively. o denotes the ReLu. groupedConvi; and
groupedConviy are two sets of convolution of Grouped
Convl. (W11,W12) and (b11,b12) are the weights and bias
of Grouped Convl, respectively. Two grouped convolutions
increase the level of receptive field of the model. While
not greatly increasing the network parameters, the optimal
weight solution of convolution is increased, which increases
the possibility of finding the optimal solution and improves
the convergence speed of the network. Then, two layers of
one-dimensional convolution fuse the EEG features of the two

Input feature

[16,188,32]
Conv n =64 Conv n =64 Conv n =64
k=1x3,5=1[1,2] k=1x5s=[1,2] k=1x7:s=[1,2] Mazpooling

BN BN BN k=1x3,5=11,2]
‘ Relu ‘ ‘ Relu ‘ ‘ Relu ‘
- C J

Conv n =128 Conv n =128 Conv n =128
k=1x3,s=[1,2]] k=1x5,s=[1,2] k=1x7s5=][1,2]

Mazpooling

BN BN BN k=1x3,5=11,2]
‘ Relu ‘ ‘ Relu ‘ ‘ Relu ‘ J
- C J
Conv n = 512

k=1x1s=[1,2]
BN
Relu
Dropout p = 0.5

Output feature
[16,24,512]

Fig. 2. Structure of TDM.

subjects in the direction of deep channels, which is represented
as

Z3 = Conv3(W3, [Z21; Z2]) + b3 @)
Z4 = Convga(Wy, Z3) + by (3

The convolution kernel size in this process is 1 x 1 . Conv3
focuses on fusing the features of two subjects. Conv4 extracts
deeper temporal features and reduces the size of feature map
while further fusing features. Finally, the output 7 DM oy is
obtained after activating feature Zj.

2) Inception Module: The structure of the Inception Module
is shown in Fig. 2. Multiple parallel convolution branches
with kernel size of 1 x 3,1 x 5,1 x 7 and Maxpooling is
used to extract multi-scale time information from the input
feature maps. Different scale features are connected in the
depth direction.

ZI1X3 o (Conv(W"3, TDMyy))
lexs | a(Conv(WPS, TDM o)) 9)
Z}X7 T | o (Conv(W'™7, TDMyy))
Z{‘/fax Maxpooling (T DM o)
7y = I:ZIIXE'); ZIIXS; Z11X7; Z{t/lax] (10)

where Zj is the feature extracted from inception block, which
is composed of features Z}X3 VAR Z1X7 and Z}% of mul-
tiple scales. W1*3, W1x3, W]X‘} are convolutlon weights of
different scales of inception block. The pointwise convolution
with kernel size of 1 x 1 is used to fuse the features
extracted through two inception blocks. The output features F
of Inception Module is obtained after passing through Dropout
layer with probability of 0.5.

3) Residual Attention Mechanism Module: The structure of
Residual Attention Mechanism Module (RAMM) is shown in
Fig. 3. In RAMM, each channel data of input F is processed
separately, and f; represents the signals of the ith EEG
channel. First, the input F is pooled by Maxpooling and
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Fig. 3. Structure of RAMM.

Averagepooling, which is expressed as

S max = MaxPooling(F)
S avg = AvgPooling(F)

(1)
12)

where f ., is Maxpooling features, f ,, is Averagepooling
features. The feature maps obtained by the convolution f ;.
and f,,, are multiplied to get attention weight matrix M,
which is expressed as

QMax = Conv(Wy, fMax) (13)
O pvg = Conv(Wo, fa,0) (14)
M = QMaxT X QAvg 15)

where @/, and Q,,, are the maximum and average deep
features. W, and W, are weights obtained through learning.
After that, f; is convoluted to obtain the features Q,(f;) of
EEG channel, which is expressed as

Q,(fi) =Conv(Wy, f;)

The M after softmax operation is multiplied by Q,(f;) to get
the EEG channel attention factor y;, which is expressed as

(16)

eM/C(M) = softmax (M)
yi=0Q,(f) xeM

where C (M) is the normalization coefficient. Finally, the EEG
channel attention factor y; is introduced into the input F
through the residual connection to obtain the output feature
F’ with reassigned channel weights

a7)
(18)

F =F+yF (19)

Through the above operations, the RAMM assigns weights to
each EEG signal channel. The weights W, and W, of each
F are fixed, while the weights W, varies with the channels.

B. Feature Visualization Algorithm

In order to qualitatively analyze TDLNet, a feature visu-
alization algorithm based on occlusion signal frequency is
proposed, as shown in Algorithm 1. The test datasets is
denoted as T = {X!,..., X™}. Real label of test datasets
is denoted as Y = {yl, ...yM }, where M represents the
total number of test trials. f(X, w) is a well-trained TDLNet
classifier, where w is parameters of classifier. First, the test

vi = Q4(f:) x eM]

—»eM/C(M) = softmaz(M)|

Algorithm 1 Feature Visualization Algorithm Based on Occlu-
sion Signal Frequency

Input: Test datasets T = {X Lo, xM }, real label of test
datasets Y = {yl, ...yM }, well-trained TDLNet classifier
f(X,w) with parameters w, feature extraction function
(X7, wg) with parameters wg.

Output: Scalp topographic maps for different categories and
different frequencies.

Step 1: Use the well-trained TDLNet classifier f (X, w)
with parameters w to predict the label Y, for the test datasets
T.

Yy, = f(T, w)

Step 2: Compare the predicted label Y, with the real
label Y to get the correctly recognized test datasets 7.

Step 3: Filter the correctly recognized test datasets 7
using the filters with frequency ranges (6 : 0.5 ~ 3HZ, 6 :
3~7HZ,x :7 ~ 13HZ,  : 13 ~ 200HZ) to obtain the
filtered datasets 7%, 7%, T%, and T# using (21).

Step 4: Extract the activated features for each filtered
datasets T8, 79, T%, and T8 using the feature extraction
function ¢ (X7, w,) with parameters wy to obtain the feature
maps Fé F? F* and FP using (22).

Step 5: Average the feature maps F°, F?, F® and FP
according to different categories.

Step 6: Draw scalp topographic maps for different cate-
gories and different frequencies using the averaged feature
maps from Step 5.

datasets T is input into the classifier to get the prediction
label Y.

Y, = f(T, w)

Compare the prediction label Y, with the real label Y to get
the correctly recognized test datasets 7,.. Then the T is filtered
by filters with frequency ranges of (§ : 0.5 ~ 3HZ,0 : 3 ~
THZ,o : 7~ 13HZ, B : 13 ~ 200HZ), which is expressed as

T% = filter(T¢, §)
7% = filter(Tc,0)
T = filter(T¢, )
TP = filter(Tc, B)

(20)

21

where T8, T?, T% TP are the correctly recognized test
datasets in different frequency ranges. The test datasets in
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different frequency ranges are input into the feature extraction TABLE Il
function ¢ (X/, wy) of TDLNet to get the activate features of ADAM OPTIMIZER PARAMETERS
different frequency ranges, which is expressed as Parameters Value Parameters Value
F s T 5 Initial learn rate 0.001 Learn rate drop factor 0.1
=¢(T", wd’) Gradient threshold 1 Learn rate drop period 200
F? = ¢(T9, wg) ” Max epochs 500  Squared gradient decay factor  0.999
o _ o (22) Mini batch size 64 Gradient Decay Factor 0.9
F* = ¢(T%, wyp)

FP = ¢(T*, wy)

The activate features of different frequency ranges are
averaged according to different categories. Finally, all scalp
topographic maps are drawn by different categories and
different frequencies.

[1l. EXPERIMENTS AND RESULTS

In this section, first, the datasets used in this study and
experimental implementation are introduced. After that, abla-
tion studies were performed to verify the effectiveness of each
part of TDLNet. Then, the TDLNet is compared with the
CNN-based reference methods (DeepConvNet, ShallowCon-
vNet [38] and EEGNet-4,2, EEGNet-8,2 [39]) and transfer
learning methods (MSFBCNN [34], EEGSym [35], MSAT-
Net [36]) on two datasets. Finally, TDM is transplanted to the
CNN-based reference methods to demonstrate its effective-
ness. In addition, experiments related to feature visualization
are carried out.

A. Datasets

1) ULM6 Dataset: The ULM6 dataset is collected through
our experiments. Ten healthy participants, aged between
24 and 38 years, with an average age of 30 years (standard
deviation of 5 years), were recruited for our experiment.
Five participants were male, and all the participants were
right-handers. The study was conducted in accordance with
the Declaration of Helsinki, and subjects provided informed
consent. Subjects had normal or corrected-to-normal vision
and no history of neurological or psychiatric disorders.
The subjects performed six categories of motor imagery
upper limb movements, including elbow flexion, elbow exten-
sion, forearm supination, forearm pronation, hand open, and
hand close. EEG signals were recorded using 16 active
Ag/AgCl electrodes with a 16-channel amplifier (OpenBCI
CytonDaisy 16-channel Biosensing Board). The sampling fre-
quency was 500 HZ, with the reference electrode on the
left earlobe and the ground on the right earlobe. The EEG
electrodes were placed according to the international standard
10-20 electrode system. The ULM®6 dataset contains 18000 tri-
als (300 trials x 6 categories x 10 subjects). The ULM6
dataset has been uploaded to IEEE DataPort, and is available
at “https://dx.doi.org/10.21227/8qw6-£578”.

2) GRAZ Dataset: The GRAZ dataset is provided by Ofner
et al. [40], which is available from the BNCI Horizon
2020 database at “http://bnci-horizon-2020.eu/database/data-
sets”. The GRAZ dataset consists of electroencephalography
(EEG) data from 15 healthy subjects aged between 22 to
40 years, with a mean age of 27 years (standard deviation
5 years). EEG were measured from 61 channels covering
frontal, central, parietal and temporal areas using active

TABLE IlI
CLASSIFICATION ACCURACY (%) OF CROSS-SUBJECT ABLATION
EXPERIMENTS

Methods Datasets

ULM6 GRAZ
TDLNet-w/o-TDM 18%+0.21 17%40.27
TDLNet-w/o-Inception 25%=0.19 28%=0.19
TDLNet-w/o-RAMM 23%=+0.21 24%=+0.16
TDLNet 65%+0.05 63%+0.06

electrodes and four 16-channel amplifiers (g.tec medical engi-
neering GmbH, Austria). A total of 5400 trials (60 trials x
6 categories x 15 subjects) of six categories were selected
from the GRAZ dataset for this study.

B. Implementation Details

During the cross-subject training of TDLNet, the training
data for each experiment consist of 70% of the data from two
subjects, and the remaining 30% used as the test datasets.
both the ULM6 dataset and the GRAZ dataset consist of
10 and 15 subjects, respectively. Therefore, the number of
classification experiments on the two datasets are C120 and C%s,
and the experimental results are averaged. The ADAM [41]
optimizer was used to train the model, and optimizer param-
eters are shown in TABLE II. TDLNet was developed using
MATLAB R2020b (The MathWorks, Inc., Natick, MA, USA)
and was trained on high performance GPU (GeForce RTX
5000) installed on an Intel (R) Core (TM) i7-7000K CPU
processor with 64 GB RAM.

In the comparisons with CNN-based reference meth-
ods (DeepConvNet, ShallowConvNet [38] and EEGNet-4,2,
EEGNet-8,2 [39]) and transfer learning methods (MSF-
BCNN [34], EEGSym [35], MSATNet [36]), these models
were implemented in Tensorflow and Keras following the
descriptions found in the corresponding paper. Since their
architectures were originally designed for 128 HZ and 250 HZ
EEG signals, the EEG signals of ULM6 and GRAZ were
down-sampled to the corresponding frequency to suit their
structure. These models were trained in the same way as the
TDLNet model.

C. Ablation Studies

To evaluate the contribution of each component in TDL-
Net to the accuracy of cross-subject classification, ablation
experiments are conducted. First, the TDM is removed from
TDLNet and denoted as TDLNet-w/o-TDM. In the training
and classification of TDLNet-w/o-TDM, the EEG data of
the two subjects are treated independently. Similarly, the
Inception and RAMM components are removed from TDLNet,
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TABLE IV
COMPARISONS OF CROSS-SUBJECT CLASSIFICATION ACCURACY (%)
WITH CNN-BASED AND TRANSFER LEARNING METHODS

Methods Datasets
ULM6 GRAZ

DeepConvNet [38] 40%+0.17 41%=+0.15
ShallowConvNet [38] 35%4-0.22 37%40.16
EEGNet-4,2 [39] 45%+0.17 41%=+0.18
EEGNet-8,2 [39] 48%=+0.16 50%40.18
MSFBCNN [34] 45%+0.17 41%-=+0.19
EEGSym [35] 51%=+0.08 50%=+0.09
MSATNEet [36] 46%=+0.14 44%=+0.13
TDLNet 65% +0.05 63% +0.06

resulting in models denoted as TDLNet-w/o-Inception and
TDLNet-w/0-RAMM, respectively. The classification accuracy
of ablation experiments on ULM6 and GRAZ is shown
in TABLE III. The TABLE III shows that, compared with
TDLNet, the cross-subject classification accuracy of TDLNet-
w/o-TDM is significantly reduced by 47% on ULM6 and
46% on GRAZ. Similarly, compared with TDLNet, the
cross-subject classification accuracy of TDLNet-w/o-Inception
and TDLNet-w/0o-RAMM is also significantly reduced, espe-
cially in the case of TDLNet-w/o-RAMM, which exhibits a
decrease of 42% (65% vs. 23%) on ULM6 and 39% (63% vs.
24%) on GRAZ. The results of ablation experiments indicate
that all three components of TDLNet contribute significantly
to the cross-subject classification accuracy.

D. Comparisons With CNN-Based Reference and
Transfer Learning Methods

The cross-subject performance of TDLNet is compared
with the CNN-based reference methods (DeepConvNet, Shal-
lowConvNet [38] and EEGNet-4,2, EEGNet-8,2 [39]) and
transfer learning methods (MSFBCNN [34], EEGSym [35],
MSATNet [36]) on both the ULM6 and GRAZ datasets.
The results of the cross-subject classification experiments
are presented in TABLE IV, and ROC curves are depicted
in Fig. 4 for comparing TDLNet’s performance with other
CNN-based reference methods. Compared to ShallowCon-
vNet, the accuracy of TDLNet is improved by 30% on
ULM6 and 26% on GRAZ. The cross-subject classification
accuracy of TDLNet for six categories achieved 65%=0.05 on
ULM6 and 63%=+0.06 on GRAZ. Furthermore, the transfer
learning method EEGSym attains a classification accuracy of
51%=0.08 on ULM6 and 50%=+0.09 on GRAZ, surpassing
all CNN-based reference methods discussed in this article.
It can be seen from TABLE IV and Fig. 4 that TDLNet
outperforms not only other CNN-based reference methods but
also transfer learning methods in cross-subject classification
on both datasets. These results highlight TDLNet’s excellent
performance in classifying six categories of upper limb motor
imagery across different subjects.

E. TDM Combined With CNN-Based Methods

To assess the effectiveness of the proposed TDM in
enhancing other CNN-based methods, we integrated TDM

TABLE V
ACCURACY (%) OF CROSS-SUBJECT CLASSIFICATION FOR TDM
CoOMBINED WITH CNN-BASED METHODS

Methods Datasets

ULM6 GRAZ
DeepConvNet-TDM 45%=+0.15 44%=0.11
ShallowConvNet-TDM 34%+0.16 37%+0.09
EEGNet-4,2-TDM 49%+0.11 46%+0.16
EEGNet-8,2-TDM 53%+0.12 54%+0.11

into DeepConvNet, ShallowConvNet [38], and EEGNet-4,2,
EEGNet-8,2 [39]. The cross-subject classification accuracies
are presented in TABLE V. Comparing the results from
TABLE IV and TABLE V, it is evident that, with the excep-
tion of ShallowConvNet-TDM, which experienced a slight
decrease in performance on ULMO, the classification accuracy
of the other CNN-based methods improved to varying degrees
when TDM was integrated. This observation underscores the
enhanced effect of TDM on cross-subject motor imagery
classification tasks in various CNN-based methods.

F. Visualization Experiments

1) Visualization of EEG Source Estimation: The TDLNet
proposed in this article is a brain-computer interface (BCI)
model based on motor imagery (MI). The principle behind the
MI-BCI system is that when a person imagines a movement,
specific regions of their brain become activated, leading to
changes in their EEG signals. LORETA [42] is used to visual-
ize the source estimation of EEG data for the two datasets used
in this article. This source estimation reflects the contributions
of multiple sources to scalp EEG signals in a single cortical
map. The Fig. 5 shows the EEG signal source estimation
for the same action in both datasets, with a time interval of
250 milliseconds between —0.5s and 1s. Fig. 5(a) corresponds
to ULM6, while Fig. 5(b) corresponds to GRAZ. This visu-
alization is independent of TDLNet. The routines from the
toolbox [43] were employed to calculate the inverse solutions
in this visualization. The toolbox is open-source and available
for free download at “https://github.com/aojeda/headModel”.
As demonstrated in Fig. 5, specific areas of the cerebral
cortex become activated during motor imagination, resulting
in corresponding changes in EEG signals.

2) Feature Visualization Based on Occlusion Signal Fre-
quency: To investigate how TDLNet can successfully decode
information from EEG signals, Algorithm 1 is used to visual-
ize the features extracted from the TDLNet, and the results are
presented in Fig. 6. The red circles in the figure indicates dis-
tinct classifier patterns that can be utilized for differentiation.
It can be seen from Fig. 6 that the movements hand open and
hand close exhibit distinct classifier patterns in the frequency
ranges & : 0.5 ~3HZ and 6 : 3 ~ 7THZ. Similarly, the move-
ments elbow flexion and elbow extension display distinctive
patterns at 6 : 3 ~ 7THZ and 8 : 13 ~ 200HZ, while the
movements forearm supination and forearm pronation feature
unique classifier patterns at « : 7 ~ 13 HZ. These visualization
results demonstrate that the proposed framework is capable of
generating distinct classifier patterns for various upper limb
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Fig. 6. Feature visualization based on occlusion signal frequency.

motor imagery categories across different frequency bands in
EEG signals.

3) Visualization of Feature Before and After RAMM: To illus-
trate the impact of RAMM in TDLNet, we present Fig. 7,
which depicts feature visualization before and after RAMM.
Noticeable changes in scalp topographic maps at different
EEG channel locations are evident before and after RAMM
incorporation. These visualization results highlight that the

proposed RAMM can adaptively focus on the most relevant
EEG signal channels for a specific task and assign appropriate
weights to these channels. This observation aligns with the
analysis of brain activation patterns.

IV. DISCUSSION

Unlike traditional non-cross-subject EEG signal classifi-
cation, which creates personalized models for each user,
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Fig. 7. Visualization of feature before and after RAMM.

cross-subject EEG signal classification promotes the classifi-
cation of EEG signals among different individuals. The main
challenge of cross-subject brain-computer interface research
is the differences in brain activity patterns, neural representa-
tions, and spatial organization between different individuals,
making it difficult to develop universal brain-computer inter-
face algorithms that can be applied to different users. In this
study, a novel CNN architecture called TDLNet was proposed
to achieve cross-subject classification of six types of motor
imagery EEG signals. It mainly consists of three parts. The
first part is the TDM module, which is used to process
cross-subject electroencephalogram (EEG) signals in groups
and then fuse cross-subject channel features through two one-
dimensional convolutions, aiming to improve its performance
in motor imagery classification by overcoming differences
between subjects. The second part is the Inception Module,
which uses multiple parallel convolutional branches with dif-
ferent kernel sizes to extract multi-scale temporal information
from the input feature map, and the different scales features
are connected in the depth direction. The third part is the
Residual Attention Mechanism Module, which assigns weights
to each EEG signal channel and dynamically focus on the EEG
signal channels most relevant to a specific task. Compared
with other CNN-based methods (DeepConvNet, ShallowCon-
vNet [38] and EEGNet-4,2, EEGNet-8,2 [39]) and transfer
learning methods (MSFBCNN [34], EEGSym [35], MSAT-
Net [36]), TDLNet achieved the best classification results in
six categories of upper limb motor imagery EEG signal classi-
fication, as shown in TABLE IV and Fig. 4. From TABLE V,
it can be observed that, except for ShallowConvNet, other
CNN methods combined with TDM achieved accuracy close
to that of the transfer learning method, indicating that the
TDM module can overcome the differences between subjects
by fusing cross-subject subject channel characteristics. The
Feature Visualization Algorithm was proposed to qualitatively
analyze TDLNet. It can be seen from Fig. 6 that the TDLNet
can generate different classifier patterns through signals of
different frequencies. The results shown in Fig. 7 can also
indicate that RAMM can adaptively pay attention to the EEG
signal channels most relevant to a specific task and assigns
weights to associated EEG signal channels, resulting in more
pronounced classifier patterns on the scale topographical maps.

V. CONCLUSION

In this article, the Transfer Data Learning Network (TDL-
Net) is proposed to achieve the cross-subject intention

Hand
open

Hand
close

Forearm
pronation
m Max

& Min
m Max

& Min

recognition for multiclass upper limb motor imagery. TDLNet
is consists of three key components: Transfer Data Module
(TDM), Inception Module, and Residual Attention Mechanism
Module (RAMM). The TDM processes cross-subject EEG sig-
nals in groups and fuses cross-subject channel features using
two one-dimensional convolutions. The Inception Module cap-
tures multi-scale temporal information from the input feature
graph through multiple parallel branches. The RAMM assigns
weight to each EEG signal channel, while dynamically focus-
ing on the EEG signal channels most relevant to a specific task.
Subsequently, we introduce a feature visualization algorithm
based on occlusion signal frequency to qualitatively analyze
TDLNet. Ablation studies are conducted to demonstrate the
necessity of each module in TDLNet. Comparing TDLNet
with CNN-based reference methods (DeepConvNet, Shallow-
ConvNet and EEGNet-4,2, EEGNet-8,2) and transfer learning
methods (MSFBCNN [34], EEGSym [35], MSATNet [36]) on
the ULM6 and the GRAZ dataset, TDLNet achieves the best
classification results. Experimental results confirm that TDL-
Net successfully achieves cross-subject intention recognition
for multiple categories of upper limb motor imagery.
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