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Influence of Input Features and EMG Type on
Ankle Joint Torque Prediction With Support

Vector Regression
Asta Kizyte , Yuchen Lei , and Ruoli Wang

Abstract— Reliable and accurate EMG-driven prediction
of joint torques are instrumental in the control of wearable
robotic systems. This study investigates how different EMG
input features affect the machine learning algorithm-based
prediction of ankle joint torque in isometric and dynamic
conditions. High-density electromyography (HD-EMG) of
five lower leg muscles were recorded during isometric
contractions and dynamic tasks. Four datasets (HD-EMG,
HD-EMG with reduced dimensionality, features extracted
from HD-EMG with Convolutional Neural Network, and bipo-
lar EMG) were created and used alone or in combination
with joint kinematic information for the prediction of ankle
joint torque using Support Vector Regression. The per-
formance was evaluated under intra-session, inter-subject,
and inter-session cases. All HD-EMG-derived datasets led
to significantly more accurate isometric ankle torque pre-
diction than the bipolar EMG datasets. The highest torque
prediction accuracy for the dynamic tasks was achieved
using bipolar EMG or HD-EMG with reduced dimensionality
in combination with kinematic features. The findings of this
study contribute to the knowledge allowing an informed
selection of appropriate features for EMG-driven torque
prediction.

Index Terms— Dynamic contraction, electromyography,
joint torque, machine learning, support vector regression.

I. INTRODUCTION

WEARABLE robotic systems that assist movements by
applying supplemental torque at the joint level, such

as exoskeletons and other human-in-the-loop robotic devices,
have grown in popularity in recent years. These devices
have promising applications in rehabilitation, however accu-
rate and robust torque prediction is essential for ensuring
smooth control.EMG-informed torque estimation is one of the
approaches commonly applied in a human-in-the-loop control
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scheme. It allows detecting the movement before the onset [1]
thus improving the device acceptance by the users [2], [3].
Moreover, this approach allows incorporating the active effort
of the user [4], [5] even in cases when the movement is altered
due to musculoskeletal impairment [6]. Accurately mapping
the EMG signals of the muscles surrounding the joint to the
joint torque is not trivial due to the non-linear relationship
between these variables. Neuromusculoskeletal models have
been used extensively to address this problem [7], [8], [9].
However, these models can be cumbersome to work with as
it requires choosing or optimizing numerous physiological
parameters, which both requires domain knowledge and is
often time consuming. In recent years, machine learning (ML)
has been proposed as an alternative stand-alone method or in
combination with neuromusculoskeletal models. Comparable
results between both approaches have been shown for ankle
torque estimation during the isokinetic movement and gait [10]
and knee joint torque estimation during non-weight bearing
activities over seven days [11]. In particular, recurrent and
convolutional neural networks (CNN) were found to perform
well in EMG-informed estimation of biceps brachii muscle
force in isometric contraction [12] and elbow joint torque
during isotonic, isokinetic and dynamic task [13]. To achieve
good results for increasingly more complex movements, such
as dynamic tasks, artificial neural networks (ANN) require
increasingly large training datasets, often resulting in a drop
in estimation accuracy. However, acquiring bio-signals such
as EMG is time-consuming, and the available data is often
limited.

Several other ML solutions that are deterministic and do not
require searching a large hyperparameter space or rely on large
amounts of data have been proposed for EMG-informed joint
torque estimation. Ziai et al. compared the performance of the
musculoskeletal model, simple ANN, and several supervised
ML algorithms for EMG-informed wrist torque estimation and
found that all algorithms performed similarly, except locally
weighted projection regression, which resulted in higher esti-
mation error [14]. Yang et al. found that support vector
regression (SVR) outperformed ANN and locally weighted
projection regression in grasping force estimation [15]. SVR is
a robust ML algorithm suitable for non-linear regression, given
a small sample size. Nevertheless, even with ML algorithms
suitable for small datasets, smaller sample size often leads
to worse precision and generalizability of the model if the
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data used for model training are noisy or unrepresentative of
the larger population. These factors make data input into ML
models critical.

The conventional surface EMG measurement method uses
a pair of EMG electrodes placed on the skin over the muscle
belly, resulting in a single channel differential EMG signal.
This method allows measuring the sum electrical activity of
the muscle within an area under the electrodes over time.
However, the electrical activity of the muscle is not uniform
over the muscle, and the placement of the electrodes can
affect the observed signal [16], [17]. High-density EMG (HD-
EMG), in contrast to bipolar EMG, uses not just two electrodes
but a grid of multiple densely spaced electrodes, creating a
three-dimensional map of electrical muscle activity. Compared
to bipolar EMG, HD-EMG has been shown to improve muscle
force estimation [16] and task and effort level identification
[18] during isometric contractions. Due to a high number
of channels that measure a similar signal, the HD-EMG is
highly redundant and comes with the curse of dimensionality.
To address this issue, studies have used linear and non-linear
dimensionality reduction techniques to reduce the feature
space to latent features. Principal Component Analysis (PCA)
applied on HD-EMG was shown to reduce the root mean
square difference of the isometric muscle force up to 40%
compared to bipolar EMG [16], and in a later study, inde-
pendent component analysis was shown to further reduce the
root mean square difference by another 13% [19]. Hajian et al.
[20] used linear (PCA) and non-linear (t-distributed stochastic
neighbor embedding) dimensionality reduction methods and
found that isometric muscle force estimation was improved
by the t-distributed stochastic neighbor embedding but not by
the PCA. In addition, feature extraction with CNN has been
proposed as a non-linear alternative for latent feature extrac-
tion and showed promising results for EMG-driven gesture
recognition [21], [22] and isometric muscle force estimation
[12]. Compared to non-linear methods, PCA is fast, but it
assumes that the mixture of variables is linear, which may
not be true for all dynamic tasks. The non-linear methods are
often slow, and CNN, in particular, requires careful selection
of the hyperparameters to achieve optimal performance and
avoid overfitting to small datasets.

Most HD-EMG studies for muscle force and joint torque
estimation focus on isometric contractions. There is a lack of
knowledge on the efficacy of the HD-EMG with or without
dimensionality reduction on joint torque prediction in dynamic
tasks of varying complexity. Therefore, this study aims to
explore how different EMG-derived inputs affect the ankle
joint torque prediction (sagittal plane) during isometric and
dynamic task using ML (SVR) in intra-session, inter-subject,
and inter-session cases. We analyzed four different EMG input
modes: bipolar EMG, HD-EMG, HD-EMG reduced with PCA,
and HD-EMG features extracted with CNN.

II. METHODS

A. Data Collection
All experimental sessions were carried out at the KTH

MoveAbility Lab. The study was approved by the Swedish
Ethical Review Authority (2020-02311). Twelve non-disabled

participants with no known neurological disorders or recent
lower limb injuries were recruited. Informed written consent
was obtained before data collection.

During data collection,the HD-EMG signal was recorded
by placing 32-channel electrode grids (GR10MM0804,
OT Bioelettronica) above gastrocnemius lateralis and
peroneus longus muscles and 64-channel electrode grids
(GR08MM1305 and GR10MM0808, OT Bioelettronica) above
tibialis anterior, soleus, and gastrocnemius medialis muscles
of a randomly selected leg. The grids were attached with
an adhesive foam grid filled with conductive and adhesive
paste. All grids were placed such that the location of the
electrode grid center follows the SENIAM recommendations
for EMG electrode placement [23]. The skin was shaved and
cleaned with an alcohol wipe before placing the electrode
grids. The HD-EMG was recorded at a sampling frequency
of 2048 Hz and amplified with a multi-channel bioelectrical
signal amplifier (Quattrocento, OT Bioelettronica). The data
were collected under two different protocols: one for HD-EMG
recording during isometric contraction of ankle plantar- and
dorsiflexors and another during dynamic task.

1) Isometric Contraction Protocol: HD-EMG and ankle
torque were collected from five participants (three males, two
females, age 28.6 ± 5.4 years, height 169.0 ± 8.9 cm, weight
64.6 ± 16.1 kg). The participants were seated comfortably
on the chair, with the back up straight, their hip and knee
fixed at 90◦ flexion and the lower leg strapped tightly into
an isometric ankle dynamometer (OT Bioelettronica, sampling
frequency 100 Hz). The subjects were asked to perform
sub-maximal isometric dorsiflexion and plantarflexion follow-
ing visual feedback of a trapezoid torque profile (5 s on-ramp,
4 s plateau, 5 s off-ramp, and 10 s break) with a plateau at
30%, 50%, or 70% of their maximum voluntary contraction
(MVC). The MVC was determined beforehand at every ankle
position. This involved recording the maximum torque of three
five second-long repetitions of maximal plantar flexion or
dorsiflexion performed with verbal encouragement. Each trial
constituted five repetitions of the trapezoidal profile and was
repeated for every level of the MVC plateau for both plantar-
and dorsiflexion. Moreover, this procedure was repeated at four
ankle angles - 15◦ and 7.5◦ plantarflexion, neutral (0◦) angle
and 10◦ dorsiflexion. This resulted in 24 trials per person.
The torque was measured with the S-beam bidirectional load
cell attached to the isometric dynamometer and then ampli-
fied with a single channel general purpose amplifier (Forza,
OT Bioelettronica).

2) Dynamic Task Protocol: Seven participants (four males,
three females, age 31.6 ± 7.1 years, height 168.0 ± 7.8 cm,
67.6 ± 12.5 kg) were included in the dynamic task proto-
col. HD-EMG data, marker trajectories, and ground reaction
forces were recorded simultaneously with a 10-camera motion
capture system (Vicon, sampling frequency at 100 Hz) and
one force plate (AMTI, sampling frequency of 100 Hz).
Marker placement was according to the 2.3 version of the
Conventional Gait Model [24], [25]. Each trial consisted of
15 repetitions of one of the following movements (Fig. 1):
i) heel rises with legs hip-width apart and two feet in parallel
pointing forward; ii) heel rises in a wide stance with two feet
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Fig. 1. Illustrations of six movements performed by participants during
the dynamic task protocol. The blue color marks the starting position,
the orange color marks the final position of the movement, and the
arrows show the direction of the movement. All movements, except
the stance phase of gait, are performed in a circular manner, i.e., from
starting position transitioning to the final position, and transitioning back
to starting position, as indicated by double arrows. The stance phase
of gait is performed in only one direction, from the starting to the final
position.

pointing outward; iii) stance phase of a gait cycle; iv) stepping
up and down an 18-cm high platform (facing the platform);
v) stepping down and up an 18-cm high platform (facing
away from the platform); vi) one leg reaching and lightly
touching the floor as far as possible in front and behind the
participant. One of the participants did not perform the stance
trial. Movements were performed in a randomized order at a
self-selected pace.

B. Data Processing
1) Ankle Angle, Angular Velocity and Torque: Ankle torque

was processed in different pipelines for isometric and dynamic
protocols (Fig. 2B):

• Isometric contraction protocol: The dynamometer out-
put data were normalized to the dynamometer data
acquired during the MVC and smoothed by the moving
average with an experimentally chosen window size of
500 ms (supplementary material Fig. A.1 (a)) and step
size of 250 ms.

• Dynamic task protocol: The ankle angle and torque
(sagittal plane) were computed using inverse kinematics
and inverse dynamics in Nexus (Plug-in Gait model,
Vicon). Angular velocity was calculated as the first
derivative with respect to time. Then, the torque was
normalized to the maximum torque of all trials of the
same subject. Ankle angle, angular velocity, and normal-
ized torque were smoothed using the moving average
with an experimentally chosen window size of 125 ms
(supplementary material Fig. A.1 (b)) and step size of
62.5 ms.

2) EMG Data Processing: The recorded HD-EMG data were
processed following the pipeline (Fig. 2A). The data were
first filtered with a band-pass filter with 20 Hz and 500 Hz
cut-off frequencies [26], [27]. Noisy channels were linearly
interpolated from the 8 nearest neighboring channels after
visual inspection. The data were then split into test (20% of
data samples) and training (80% of data samples) sets and
four datasets (HD-EMG, bipolar EMG, HD-EMG principal
components (PCs), and HD-EMG CNN) were formed and
further processed in the following manner:

• HD-EMG: The pre-processed HD-EMG data were rec-
tified and smoothed with the moving average filter.

• Bipolar EMG: Two electrodes at a 20 mm inter-electrode
distance [23] were selected from the center of each
HD-EMG electrode grid to represent the bipolar EMG.
The pre-processed HD-EMG data from these two elec-
trodes was subtracted to form a single-differential EMG
signal, rectified and smoothed with the moving average
filter.

• HD-EMG PCs: PCA was applied separately on training
and test datasets of pre-processed HD-EMG to reduce
the dimensionality. Three PCs with the highest explained
variance were chosen from each grid, which was found
to be the best configuration (supplementary material B).

• HD-EMG CNN: The training data of the HD-EMG
dataset was used to train the CNN (details in II-C.2). The
trained CNN model was then used to extract the features
from the HD-EMG test dataset.

In the dynamic task protocol, each dataset was concatenated
with the ankle angle or ankle angle and angular velocity data
before applying the moving average filter. The parameters of
the moving average filter followed those used for ankle torque
and angle processing.

C. Machine Learning Algorithms
This study used two ML algorithms: CNN was used for

feature extraction from HD-EMG data, and SVR was used for
torque prediction from the four EMG datasets (described in
section II-B.2). Both algorithms were implemented in Python
3.7, using Keras [28] and scikit-learn [29] libraries.

1) Support Vector Regression: The ϵ-SVR algorithm (mar-
gin of tolerance ϵ = 0.01) with radial basis function kernel
was chosen for the 100 ms look-ahead ankle torque predic-
tion. For the supervised learning in the isometric contraction
protocol, the SVR takes EMG datasets (defined in 3.2.2) as
input features and torque as the ground truth. The dynamic
task protocol included kinematic features such as ankle joint
sagittal plane angle and angular velocity supplementary to the
EMG.

2) Feature Extraction With CNN: The CNN architecture
consisted of one convolutional block followed by two fully
connected layers and one regression layer. A convolutional
block consists of convolutional, batch normalization, and
activation layers, followed by max pooling and dropout.
A convolutional block was applied separately on each HD-
EMG image, the layers were flattened and concatenated before
inputting them into the fully connected layer. At the input
layer, the network was fed n frames of images of HD-
EMG data, where n equals the number of time samples after
the moving average calculation. At each frame, there were
five image channels representing five electrode grids, where
each channel had the dimensions corresponding to the spatial
distribution of the grid’s electrodes. The best hyperparameters
for each trained model were found using the grid search
approach. The search space was {8, 32, 64, 128, 256} number
of nodes in the convolutional layer, {0.001, 0.0001} learning
rate, and {0, 0.2, 0.4} dropout rate. After training, to extract
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Fig. 2. Data processing flow. Frame A shows the flowchart of EMG processing, while B shows the flow of ankle joint torque and kinematic feature
calculation. The torque is calculated and handled differently in dynamic and isometric protocols, and only one is used as a reference at a time. The
ankle joint angle is concatenated with EMG data only in the dynamic protocol.

the CNN features, the last fully connected layer was removed
from the model before prediction on the test data. The number
of training epochs was limited to 500, and the training was
stopped if the loss did not improve for the last 20 epochs.

D. Performance Evaluation
The agreement of measured and predicted ankle torque with

different input modes was evaluated with normalized mean
squared error (NRMSE) Enrms , normalized to the difference
between the maximum ymax and minimum ymin values of the
test torque:

Enrms =

√
1
N

∑N
n=1(ŷn − yn)2

ymax − ymin
(1)

where ŷ is the predicted torque, y is the measured torque, and
N is the number of samples.

To investigate the robustness of the prediction under differ-
ent circumstances, three cases were defined:

• Intra-session case. The test and training data were from
the same trial of the same subject. For each trial, five-fold
cross-validation was used, and the mean NRMSE of the
five folds was computed.

• Inter-subject case. The test data were one trial of one
subject. Trials performed under the same test conditions
by all the other subjects were used for training. This
creates an n-fold cross-validation scenario where n is the
number of subjects.

• Inter-session case. The test data were one trial of one
subject. For the isometric contraction protocol, the train-
ing data were all the other trials of the same person that
were not used for testing. This creates a k-fold cross-
validation scenario where k is the number of trials per
person. For dynamic task protocol, the training data were
from the same person performing a similar movement,
i.e., if the test set was wide heel rises, narrow heel rises
were used for the training and vice versa; if the test set

was stepping up and down the platform, stepping down
and up the platform was used for training and vice versa.
This creates a two-fold cross-validation scenario.

In addition to evaluating the prediction accuracy, we evalu-
ated the SVR prediction latency, i.e. the time it takes for the
SVR prediction to be executed. This parameter is important
to account for when considering an online implementation of
human-in-the-loop control strategy. The prediction latency was
evaluated for each dataset in the intra-session case using only
EMG features as input. The analysis was run on a PC with an
Intel Core i7-9750H CPU and 32 GB of RAM.

E. Statistical Analysis
Wilcoxon signed-rank test was used to determine signif-

icance of the difference between different EMG datasets’
results in isometric exercise protocol. Bonferroni correction
was applied (α = 0.008) to minimize the risk of type I error.
The statistics were not calculated on the dynamic task protocol
data due to the small sample size (n = 6 for stance and
n = 7 for all other movements).

III. RESULTS

A. Isometric Contraction Protocol
All input datasets showed good agreement between the

predicted and measured isometric ankle joint torque (Fig. 3),
with the highest NRMSE under 0.15 in all cases when using
HD-EMG derived datasets (HD-EMG, HD-EMG PCs, and
HD-EMG CNN) and NRMSE under 0.26 for all cases when
using the bipolar EMG dataset (Fig. 4). The datasets derived
from HD-EMG in all cases resulted in significantly more
accurate (p ≤ 0.01) and less variable prediction. The best
prediction accuracy was achieved in the intra-session case
(mean NRMSE ± standard deviation: 0.04 ± 0.01 HD-EMG,
0.05 ± 0.02 HD-EMG CNN and HD-EMG PCs, 0.06 ±

0.02 bipolar EMG), and the worst — in the inter-subject
case (0.07 ± 0.03 for datasets derived from HD-EMG, 0.10 ±

0.05 for bipolar EMG).
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Fig. 3. Measured and predicted intra-session case ankle joint torque, shown as mean of all subjects and repetitions ± one standard deviation
of the measured torque. The input features used for dynamic task prediction were EMG and kinematic data. The positive values indicate plantar
flexion torques.

Fig. 4. SVR ankle torque prediction results during the isometric contraction are shown for intra-session, inter-subject, and inter-session cases.
Each violin plot at 30%, 50%, and 70% MVC shows the NRMSE results for one of the datasets and levels of MVC (n = 40) and each violin in
“all” column - for one of the datasets at all recorded levels of MVC (n = 120). The statistical significance between pairs of datasets is shown with
brackets, the star above them marks the p-values ≤ 0.01.

B. Dynamic Task Protocol
The prediction accuracy for the dynamic task was lower

than the isometric contraction under all cases using either
dataset. The highest prediction accuracy (0.11 ± 0.01 HD-
EMG, 0.14±0.02 HD-EMG CNN, 0.11±0.01 HD-EMG PCs,
0.12 ± 0.01 bipolar EMG) was achieved for the wide stance
heel rise movements given any configuration of inputs. Using

only EMG datasets as input, HD-EMG CNN, with few excep-
tions (i.e. the stepping on and off the platform movements in
the intra-session case as well as all movements in inter-session
case), resulted in the highest prediction error (supplementary
material C, tables C.1 - C.3) in most movements and cases
(Fig. 5), while the other three datasets all showed similar
results. The torque prediction error was especially high for
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Fig. 5. Mean NRMSE of torque prediction during dynamic tasks in intra-session, inter-subject, and inter-session cases, using only EMG datasets
or EMG datasets combined with ankle joint angle and velocity as input features.

the stance phase of gait when using only EMG inputs in both
intra-session (0.24 ± 0.06 HD-EMG, 0.35 ± 0.10 HD-EMG
CNN, 0.24 ± 0.07 HD-EMG PCs, 0.26 ± 0.07 bipolar EMG)
and inter-subject (0.34±0.43 HD-EMG, 0.33±0.02 HD-EMG
CNN, 0.32 ± 0.04 HD-EMG PCs, 0.30 ± 0.03 bipolar EMG)
cases. The prediction accuracy was lower in the inter-subject
and inter-session cases compared to the intra-session case for
all movements and all datasets, except for the HD-EMG CNN,
which resulted in similar accuracy in most cases.

Adding ankle angle and angular velocity features to
complement the EMG input features resulted in improved
performance in most movements. The biggest improvement
after adding the kinematic features was observed for the
gait stance phase torque prediction (61% decrease in mean
NRMSE). The prediction accuracy was also improved in
all other cases, but on a smaller scale, with the smallest
improvement observed for the heel rise movements (18.5%
decrease in mean NRMSE for hip-width heel rises and 27.2%
for wide heel rises) that also resulted in the best prediction
results in all cases. These movements also showed lower
variation between subjects and repetitions than other dynamic
tasks (Fig. 3). The highest variation was observed in reach
and touch. Using EMG datasets with additional kinematic
features, the HD-EMG PCs and bipolar EMG datasets resulted
in the best performance for all movements in all cases,
except stepping up and down the platform in the inter-session
case (0.22 ± 0.07 HD-EMG, 0.24 ± 0.01 HD-EMG CNN,
0.21±0.06 HD-EMG PCs, 0.22±0.06 bipolar EMG; Fig. 6).
Both of these datasets performed similarly — mean NRMSE
and standard deviation for both datasets when considering
all movements was 0.13 ± 0.03 in the intra-session case,
0.14 ± 0.03 in the inter-subject case, 0.15 ± 0.4 in the inter-
session case. In many cases, the HD-EMG dataset did not
benefit from additional features as much as the other datasets.

C. Prediction Latency
The mean and standard deviation of the prediction latency

in the isometric contraction protocol was 10.8 ± 2.0 ms with
HD-EMG, 1.0±0.1 ms with HD-EMG CNN, 1.1±0.3 ms with
HD-EMG PCs, and 0.7 ± 0.3 ms with bipolar EMG dataset.
In the dynamic case protocol, the latency was 21.0 ± 19.2 ms
with HD-EMG, 8.3 ± 8.3 ms with HD-EMG CNN, 2.5 ±

2.4 ms with HD-EMG PCs, and 1.4 ± 1.3 ms with bipolar
EMG dataset.

IV. DISCUSSION

This study investigated how different input features affect
the ML model prediction of ankle joint torque. We applied
four EMG processing pipelines to create four distinct EMG
datasets — three datasets derived from HD-EMG and one
bipolar EMG dataset — and compared the performance of
isometric and dynamic ankle torque prediction using these
datasets as SVR input features. We found that prediction
accuracy was improved using HD-EMG-derived datasets in
an isometric contraction, especially in inter-session and inter-
subject cases, but not in the dynamic task cases. The prediction
error for the dynamic task was higher than the isometric
contraction protocol for all movements and with either input
dataset. For all dynamic tasks, except heel rises, additional
kinematic features were needed to achieve good prediction
performance. To the best of our knowledge, this is the first
study comparing the performance of HD-EMG and bipolar
EMG-driven torque prediction in isometric and dynamic tasks
under different training and test conditions (intra-session, inter-
subject and inter-session cases). The findings of this study
could provide guidance when choosing the most appropriate
EMG type and processing pipeline for an application.

In this study, HD-EMG improved the accuracy and robust-
ness of the ankle joint torque prediction in highly controlled
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Fig. 6. SVR prediction results of dynamic ankle torque shown for intra-session, inter-subject, and inter-session cases. The input to SVR were EMG
datasets and kinematic features (ankle angle and angular velocity).

movements, i.e., isometric contractions. The datasets derived
from HD-EMG outperformed the bipolar EMG dataset in
all isometric contraction cases. These findings agree with
results of the study by Staudenmann et al. [16], [19] that
reported improved intra-session elbow torque estimation using
HD-EMG of the triceps brachii muscle, especially after
applying dimensionality reduction to the HD-EMG signals.
However, unlike previous studies, we observed no significant
difference in the ankle joint estimation among the three HD-
EMG-derived datasets. This may be due to several differences
between the studies, including the number and anatomical
structure of the observed muscles. The studies by Stauden-
mann et al. focused on the biceps brachii muscle. This
parallel-fusiform muscle was shown to have a heterogeneous
EMG activation in the medio-lateral direction [30]. In con-
trast, this study focused on several muscles with bipenate
(tibialis anterior and gastrocnemius medialis) or multipenate
(soleus) structures. Moreover, the orientation of the fascicles
with respect to the skin surface and, thus, the electrodes
is different for each muscle, which affects how the EMG
signal propagates through the muscle and may, in turn, affect
the redundancy of the signals. The prediction accuracy was
good with all datasets, including bipolar EMG, in the intra-
session case but worsened in more challenging conditions
when using bipolar EMG. The performance of HD-EMG-
derived datasets, on the contrary, remained similar in all cases.
This also led to a larger performance discrepancy between the
bipolar EMG and HD-EMG-derived datasets in inter-session
and inter-subject cases, indicating greater robustness in torque
prediction using HD-EMG-derived input. Considering that
the prediction accuracy improved with all HD-EMG derived
datasets, despite the used processing pipeline, it is likely
that the latent spatial information of the HD-EMG con-
tributes to the improvement of the isometric ankle joint torque
prediction.

Compared to the isometric contraction cases, the prediction
accuracy was lower for all dynamic tasks and cases, and no
consistent differences could be observed between the HD-
EMG-derived and bipolar EMG datasets. Lower prediction
accuracy is expected in this case, as a consequence of the
increased complexity of the movements. The results show that
the EMG signals alone, regardless of the modality (bipolar
or HD-EMG), are not sufficient to effectively capture the
increased complexity and accurately predict torques during
dynamic tasks. In contrast to isometric contractions, where
the assumption of stationary source signals in space holds
true, the muscle in dynamic tasks undergo much larger spatial
transformations and therefore the sources in dynamic tasks
cannot be assumed stationary. Consequently, the contribution
of latent spatial information in predicting dynamic task torque
diminishes compared to isometric contractions. As a result,
the contribution of spatial information in torque prediction
diminishes. Therefore, inclusion of spatial information alone
(i.e., using HD-EMG) is not enough to overcome the increased
complexity. To sum up, the study shows that predicting torques
during dynamic tasks requires more than just EMG signals and
that spatial information alone is insufficient in addressing the
challenges posed by these tasks.

Considering only EMG input, all datasets performed simi-
larly, except for the HD-EMG CNN dataset, which sometimes
resulted in much higher mean error than other datasets. For
instance, compared to other datasets, the HD-EMG CNN
dataset resulted in notably higher prediction errors during
heel-rise and stance movements in the intra-session case,
Fig. 5. However, these differences were diminished in the
inter-subject and inter-session cases. This might be due to low
sample size available for training, suggesting that the network
is likely under-trained and lacks the specificity needed to
perform well on specific tasks. In this study, only 12 repetitions
of each movement were used for training in the intra-session
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case, while other studies using CNN for torque prediction
reported using 16 or more repetitions for training. For instance,
George et al. [5] reported that at least 20 gait cycles were
needed for the CNN prediction (intra-session) of hip sagittal
plane joint torque to start improving, and the results only
became reliable at around 35 gait cycles. Schulte et al. [11]
achieved good CNN prediction of the knee non-weight bearing
torque over several days using the trial of 20 repetitions with
a 80% training and 20% validation split. Although the studies
have several differences, similar requirements can likely be
expected. In the inter-subject case and inter-session cases of
this study, 90 (15 repetitions from each of the six subjects) and
15 repetitions, respectively, were used for training. However,
due to large variability between the subjects (inter-subject
case) and movements (inter-session case), an even larger
sample size might be required to ensure good prediction
accuracy. It is worth pointing out that the need for many
samples might be restricting the application of CNN feature
extraction in populations of people who cannot perform many
repetitions of the same movement due to muscle weakness
or other pathological conditions. A possible solution may be
using of EMG data augmentation (creating artificial training
samples) using additive noise or simulating the electrode shift.
Several approaches for EMG data augmentation have been
proposed and shown to improve the classification accuracy
for hand gesture recognition [31] and wrist movement regres-
sion accuracy and robustness [32], although the augmentation
via oversampling showed varied results for the ankle torque
estimation [33].

Additional kinematic features were necessary to achieve
the best torque prediction performance for dynamic tasks.
We found that the prediction accuracy improved with addi-
tional kinematic features for all movements, except heel rises
in the intra-session case, where good prediction accuracy could
already be achieved based solely on EMG features. The largest
improvement after introducing kinematic features was seen in
the stance phase of gait (Fig. 5). These findings are in line with
a previous study by Hajian et al. [13] that reported increased
elbow torque prediction accuracy for isokinetic and dynamic
tasks when using joint position and velocity in combination
with EMG data. The need for diverse features in torque
prediction of more complex movements might imply that
the activation of surrounding muscles does not always fully
determine joint torque. In some rather controlled movements,
such as heel rises, motion is restricted in all joints proximal
to the ankle, and the muscles work mostly against gravity.
Thus, EMG data alone is sufficient to accurately predict ankle
torque. However, for more complex movements, such as the
stance phase of gait, the torques and movement at other joints
can also affect the torque at the ankle. In fact, knee and
ankle joint positions influence the plantarflexion torque of the
bi-articular gastrocnemius muscle [34]. It is known that muscle
force production is velocity- and length-dependent. Therefore
the joint torque generated by the muscles also depends on the
joint angle and angular velocity. It is a reasonable inference
that the lack of knowledge of joint kinematics may hinder
accurately predicting the joint torque. In addition, we observed
that in heel rise, the torque prediction not only had the lowest

error in all cases but also had the lowest variability between
repetitions and subjects (Fig. 3). These observations further
support that as an only input, EMG data were best suitable
for simple, highly repetitive movements.

The mean SVR prediction latency was small enough to be
considered feasible [35] for online prediction with all datasets.
For the reference, the the longest was needed for the dataset
with the most features (HD-EMG dataset) in both isometric
contraction and dynamic task protocols. The other datasets
containing less features performed similarly, except for the
HD-EMG CNN dataset in dynamic protocol, which required
a considerably longer time than the HD-EMG PCs and bipolar
EMG datasets. The trend seems to correlate with the number of
features in the dataset. The higher number of features will also
reflect on other important parameters such as memory usage,
data storage and communication overhead, thus increasing
overall computational complexity. All these parameters need
to be taken into consideration when deciding which dataset is
suitable for a particular application.

A major limitation of this study is its small and rather
homogeneous cohort of subjects (n = 5 in the isometric
protocol and n = 7 in the dynamic protocol), which limits the
generalizability of our findings. However, the high accuracy
and low variability of torque prediction in the isometric
contractions (Fig. 4) and some dynamic tasks (Fig. 6) in
inter-subject and inter-session cases are promising. Notably,
the isometric contraction protocol limited the ankle range of
motion to the middle range of the total range of motion. This
restriction might have an impact on the torque prediction at the
extremes of the range of motion. In the current study, we were
particularly interested in the influence of input features on
the torque prediction performance rather than achieving the
absolute best performance. Therefore, we chose a deterministic
ML algorithm that can work well with little data. Moreover,
as discussed previously, the low number of samples may have
hindered the performance of the CNN. It is important to note
that more data could potentially improve the performance of
both CNN and SVR and enable using more complex ML
algorithms, such as deep neural networks, that might result in
better prediction accuracy. Finally, HD-EMG data were only
acquired on five muscles around the ankle joint. The prediction
performance could potentially be further improved and more
robust if EMG data of other lower limb muscles and joint
angles of the knee and hip joints were available.

V. CONCLUSION

In this study, we investigated how four different
EMG-derived feature inputs (HD-EMG, HD-EMG PCs, HD-
EMG CNN, and bipolar EMG) affect the SVR prediction of
ankle sagittal plane joint torque in the intra-session, inter-
subject, and inter-session cases. We additionally considered
kinematic features — ankle joint angle and angular velocity
— for the dynamic task prediction. We found that all the
HD-EMG-derived datasets resulted in better isometric torque
prediction than bipolar EMG. HD-EMG PCs and bipolar EMG
datasets resulted in the best torque prediction in dynamic
tasks. However, the greatest improvements in the dynamic task
torque prediction were achieved by considering the kinematic
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features rather than selecting the most optimal EMG datasets.
Therefore, we conclude that in this study the choice of
EMG modality (bipolar or HD-EMG) was important for the
prediction of isometric contraction torques, but for dynamic
tasks, the inclusion of kinematic features is more important
rather than the choice of particular EMG modality. This study
demonstrates the importance of suitable feature selection for
an accurate and robust prediction of ankle torque using ML.
The findings could inform the decision-making of the suitable
EMG method choice for applications in wearable robotics. The
applications where the isometric torque or simple movements
are sufficient, e.g. single joint two degree-of-freedom strength
training for rehabilitation, one might consider using HD-EMG.
However, to incorporate more complex movements, including
kinematic features is necessary.
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