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Simultaneous and Proportional Control of
Wrist and Hand Movements Based on a
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Abstract— Human-machine interfaces (HMIs) based on
electromyography (EMG) signals have been developed for
simultaneous and proportional control (SPC) of multiple
degrees of freedom (DoFs). The EMG-driven musculoskele-
tal model (MM) has been used in HMIs to predict human
movements in prosthetic and robotic control. However, the
neural information extracted from surface EMG signals may
be distorted due to their limitations. With the develop-
ment of high density (HD) EMG decomposition, accurate
neural drive signals can be extracted from surface EMG
signals. In this study, a neural-driven MM was proposed to
predict metacarpophalangeal (MCP) joint flexion/extension
and wrist joint flexion/extension. Ten non-disabled sub-
jects (male) were recruited and tested. Four 64-channel
electrode grids were attached to four forearm muscles of
each subject to record the HD EMG signals. The joint
angles were recorded synchronously. The acquired HD
EMG signals were decomposed to extract the motor unit
(MU) discharge for estimating the neural drive, which was
then used as the input to the MM to calculate the muscle
activation and predict the joint movements. The Pearson’s
correlation coefficient (r) and the normalized root mean
square error (NRMSE) between the predicted joint angles
and the measured joint angles were calculated to quantify
the estimation performance. Compared to the EMG-driven
MM, the neural-driven MM attained higher r values and
lower NRMSE values. Although the results were limited to
an offline application and to a limited number of DoFs,
they indicated that the neural-driven MM outperforms the
EMG-driven MM in prediction accuracy and robustness.
The proposed neural-driven MM for HMI can obtain more
accurate neural commands and may have great potential
for medical rehabilitation and robot control.

Index Terms— Electromyography, neural drive, human–
machine interface, musculoskeletal model, motor unit.
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I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) signals contain rich
physiological information and have been widely used

as inputs of human-machine interfaces (HMIs) to decode
movement intentions, mainly involving prosthesis control [1],
medical rehabilitation equipment control [2], and remote robot
control [3]. In order to achieve the control of multiple joints,
the HMIs based on EMG signals are developing towards
simultaneous and proportional control (SPC) of multiple
degrees of freedom (DoFs). Model-free data-driven approaches
have been developed to map EMG signals to joint kinematics,
such as non-negative matrix factorization (NMF) [4], linear
regression (LR) [5], support vector regression (SVR) [6],
artificial neural network (ANN) [7], and deep learning (DL)
approaches [8], [9], [10], [11], [12], [13], [14], [15]. Ma et
al. used a bi-directional long short-term memory (Bi-LSTM)
network to simultaneously and proportionally estimate the
movements of the non-dominant arm based on the sEMG sig-
nals of the muscles on the corresponding dominant arm [13].
Liu et al. proposed a NeuroPose system that combines recur-
rent neural network (RNN), encoder-decoder network, and
machine learning on ResNets to extract 3D finger movements
from the EMG data [14]. Lin et al. proposed a method
based on the transformer bidirectional encoder representation
(BERT) structure, using surface EMG signals to predict hand
movements [15]. Although data-driven approaches have good
performance for movement prediction, they lack the ability
for learning transfer and require more time to calibrate the
controllers [16], [17]. To achieve more intuitive and natural
myoelectric control, it is necessary to take into account the
physiological mechanisms of the human body and the com-
plicated conversion process from the neural commands to the
joint movements [18], [19].

The approaches based on the musculoskeletal model (MM)
do consider the above issues. The MM is modeled through
muscle activation, contraction dynamics, kinematics, and joint
mechanics, which can convert neural commands into mechan-
ical outputs [20], [21]. The HMIs based on EMG-driven
MM have been developed to predict joint torques and
joint angles during dynamic joint movements [16], [17],
[20], [22], [23], [24]. Crouch et al. proposed a two-DoF
lumped-parameter MM by combining four forearm mus-
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cles into two pairs of antagonistic muscles to predict wrist
joint flexion/extension and metacarpophalangeal (MCP) joint
flexion/extension [22]. Pan et al. compared the performance
of MM-based approach with that of LR and ANN algorithms
in predicting joint angles from surface EMG signals [16].
The results demonstrated that the MM-based approach out-
performed the LR and ANN algorithms, and the predicted
joint angles by the former were closer to the measured
joint angles. Model-based approaches have greater physical
significance than data-driven approaches because they consider
the physiological mechanisms of the human body.

In the EMG-driven MM, muscle activation is estimated
from the magnitude of the EMG signals (the envelope of
EMG). Therefore, the quality of surface EMG signals affected
the estimated muscle activation level, and then affected the
reliability of prediction for force and joint movements. If the
activation of the target muscle acquired by the EMG elec-
trode was affected by the activation of adjacent muscles,
the muscle activation level and joint angles would be incor-
rectly estimated. As demonstrated in the previous studies, the
prediction accuracy of MCP joint angles was lower during
multi-joint movements than during single-joint movements,
which may be attributed to the crosstalk of EMG signals
during MCP movement when the wrist moved simultane-
ously [22]. Inspired by muscle synergy, Zhao et al. proposed a
new muscle activation extraction method and a synergy-based
MM for simultaneous estimation of hand and wrist move-
ments [17]. The results demonstrated that the performance
of the synergy-based MM was better than that of the EMG-
driven MM, and the synergy-based MM can also extract
more accurate muscle activation despite crosstalk between the
wrist and MCP joints during simultaneous movements. The
synergy-based MM provided a perspective for combining
the MM to predict continuous movements.

Surface EMG signals are a series of transitions of neural
commands from the brain or spinal cord to muscles, which are
acquired from the skin surface above the muscles. In fact, the
EMG signals are the superposition of the motor unit action
potential (MUAP) trains of the recruited MUs in space and
time. The phase and amplitude cancellation between MUAPs
during superposition can affect the EMG amplitude [25].
The volume conduction from muscle to skin surface affects
the amplitude or shape of the MUAPs. These may lead to the
distortion of neural information in the acquired EMG signals.
The development of high density (HD) EMG decomposition
allows the extraction of accurate neural commands from
surface EMG signals. The discharge of MUs is obtained by
decomposing the acquired HD EMG signals. The discharge
of recruited MUs is represented as the binary motor unit
spike trains (MUSTs), and can overcome the influence of
MUAP change during signal acquisition [26]. The number of
discharges by the motor neurons in the muscle reflects the
neural drive from the brain or spinal cord to the muscle [27].
The neural drive signal is calculated from the normalized
frequency of the composite discharge of the motor unit pool
obtained by the decomposition [28]. The neural drive signals
can directly reflect the neural commands from the brain
to the muscle and can be used to estimate the level of

muscle activation. The HD EMG decomposition technology
helps to better understand the neural regulation mechanism of
movement and has been widely used in the field of HMIs
[26], [29], [30]. The robustness of HD EMG decomposition
in dynamic movement has been demonstrated [29], [30].
Previous studies have demonstrated that it is more accurate to
predict force or joint movement with neural drive signals was
more accurate than with EMG signals [28], [31]. However,
it requires further study to check whether the neural drive
signals can improve the performance of MM in predicting joint
movements.

In this study, a neural-driven MM was proposed to estimate
the continuous movements of the wrist and MCP joint. The
purpose of this study was to develop an HMI that conformed to
human physiology at the neural level to achieve more intuitive
and natural myoelectric control. Neural drive signals were
decomposed from HD EMG signals to replace the envelopes
of EMG to estimate muscle activation levels. Ten non-disabled
subjects were recruited and tested. The HD EMG signals and
joint angles of each subject were recorded simultaneously.
The performance of the neural-driven MM in predicting wrist
and MCP joint movements was evaluated by calculating
the Pearson’s correlation coefficient (r) and the normalized
root mean square error (NRMSE) between the measured and
estimated joint angles. The performance of the neural-driven
MM was compared with that of the EMG-driven MM. A pre-
liminary study involving one subject has been reported in a
conference [32].

II. METHODS

A. Subjects
Ten non-disabled subjects (males, aged 22-26 years, all right

hand dominant) participated in the study. All subjects had no
neuromuscular or joint diseases. Before the experiment, sub-
jects were informed about the procedure and signed informed
consent forms. The experimental protocol followed the Decla-
ration of Helsinki and was approved by the Ethics Committee
of Tianjin University (Approval #: TJUE-2021-114).

B. Experiment Protocol
The subjects sat naturally on the straight back chair and

put their forearms on the armrest in a neutral position (see
Fig. 1). The MCP joints of the four fingers were completely
relaxed and naturally bent to the palm (see Fig. 2). During
the experiment, the subjects performed the following five
tasks: (1) wrist flexion/extension only, rhythm; (2) wrist flex-
ion/extension only, random; (3) MCP flexion/extension only,
rhythm; (4) MCP flexion/extension only, random; (5) wrist and
MCP flexion/extension simultaneously, random.

During the rhythm trials, the subjects performed cyclical
movements at a fixed frequency (1/4 Hz), from the initial
position to the maximum angle in either direction of each
DoF. During the random trials, the subjects performed random
movements with variable speeds and joint angles.

During the experiment, the subjects performed 10 trials
for each task. Each trial lasted for 30 seconds. In order to
avoid muscle fatigue, the subjects rested for 1 minute between
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Fig. 1. Experiment setup and the initial neutral posture.

two consecutive trials. Each subject performed a total of
50 trials (5 tasks × 10 trials).

C. Data Acquisition
The surface EMG signals of forearm muscles were acquired

with the HD electrode grids (GR10MM0808, OT Bioelettron-
ica, Italy). Before the electrode grids were placed, the gel
was applied to each electrode to increase conductivity, and
the corresponding skin was cleaned with an alcohol pad to
reduce the impedance between the skin and the electrodes.
The subjects were required to flex or extend the wrist or
MCP joint, and the bellies of muscles were determined by
palpating the corresponding muscles, over which the electrode
grids were placed. Four 8 × 8 flexible HD electrode grids
(with 10 mm distance between adjacent electrodes in both
directions) were placed on the following four muscles of the
forearm: (1) extensor digitorum; (2) extensor carpi radialis;
(3) flexor digitorum; (4) flexor carpi radialis (see Fig. 2). The
electrode grids were fixed with elastic bandages to prevent
electrode shift during the experiment. The ground strap was
placed on the wrist while the reference strap was placed on
the elbow. The QUATTROCENTO (OT Bioelettronica, Italy)
acquisition system amplified and filtered the monopolar EMG
signals (with a fixed gain of 150 V/V, a band-pass filter of
10-500 Hz, and a sampling rate of 5120 Hz).

The angles of the wrist and MCP joint were acquired
simultaneously using the inertial measurement unit (IMU,
Dongguan Wheeltec Technology Co., China). In this study,
three IMUs were placed over the forearm, the back of the
palm, and the back of the fingers near the MCP joint (see
Fig. 1). The IMUs were all fixed with elastic bandages to
prevent shift or falling during the experiment. The joint angles
of these two DoFs were recorded at a sampling rate of 200 Hz.

D. Data Analysis
All the acquired EMG signals were preprocessed with a

4-order Butterworth band-pass filter (10-500 Hz) and a notch

Fig. 2. (a) The placement of four 8 × 8 high-density electrode grids.
(b) The neutral position of the wrist and MCP joint, and the maximum
joint angle of MCP and wrist extension/flexion.

filter (50 Hz and its multiples). The 256-channel EMG signals
acquired from each trial were checked by calculating the root
mean square (RMS) and visual inspection. The abnormal data
channels that contain excessive noise caused by poor contact
or electromagnetic interference were removed, as well as the
channels with extremely low RMS values at the edge of the
electrode grid. For each electrode grid, less than 5 channels
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Fig. 3. Block diagram of the data analysis.

were removed. The EMG recordings of the remaining channels
were used for analysis. The block diagram of the data analysis
procedure was illustrated in Fig. 3.

The EMG signals were the convolution of MUSTs and
their respective MUAPs. EMG signal decomposition could
be regarded as a classic blind source separation problem,
which could be achieved by independent component analysis
(ICA) [33]. The fast ICA (FastICA) algorithm has been
demonstrated to be feasible in decomposing the HD EMG
signals acquired during dynamic contraction [30].

The following steps briefly describe the process of extract-
ing MU from 64-channel EMG signals [34], [35], [36].
(1) The EMG signals were extended and whitened. Altogether
200 sources were assumed to provide the algorithm more
opportunities to converge to the activated MUs. The EMG sig-
nals were extended by adding the delayed replicas (extension
factor R = 4) to ensure that there were more channels than the
unknown sources [36], [37]. Then the extended EMG signals
were whitened by eigenvalue decomposition. (2) The source
signals and separation matrix were obtained with FastICA
algorithm to decompose the extended and whitened EMG
signals. (3) The K-means clustering algorithm [38] (cluster
number = 2) was used to extract the MUSTs, so as to
distinguish the MU discharge of the source signals and the
baseline noise. (4) The MUSTs with silhouette measure (SIL)
less than 0.8 were removed (SIL is an effective clustering
index to evaluate the quality of clustering [30], [39]). Because
the delayed replicas were added during extension of the EMG
signals, the source signals obtained by convergence may be
the same MU or its delayed replicas. If the synchronization of
two MUSTs was larger than 50% in the ±1 ms window, the
two MUs were considered to be the same.

For any two repeated MUs, only the MUST with a higher
SIL value was retained. The MUs were estimated as:

Ŝ j (t) = W j
T X̂ (t) (1)

where X̂ represents the extended and whitened EMG signals,
t represents the time of sampling points, Ŝ j represents the j th
source signal, and W j represents the separation vector and
provides the source signal Ŝ j corresponding to information of
the j th MU.

The EMG signals of the first rhythm trial of the wrist and
MCP joint were used for MU decomposition. The separation
matrices of the four muscles were retained. The EMG signals
from other trials were extended and whitened, which were then
multiplied with the retained separation matrices to directly
estimate the source signals [40], [41].

The retained MU spike trains were pooled into composite
spike trains, whose normalized discharge frequency was cal-
culated to estimate the neural drive of each muscle. A sliding
window of 200 ms window length and 50 ms step length was
applied to calculate the average discharge frequency of the
composite spike trains [26].

To predict the joint movements, a neural-driven MM
was developed based on a previous lumped-parameter
EMG-driven MM [22]. The MM included two DoFs, wrist
flexion/extension and MCP flexion/extension, which allowed
wrist and MCP joint to move independently in both directions.
To simplify the modeling, only two pairs of antagonistic
muscles were included in the MM. The extensor digitorum and
flexor digitorum cross the wrist and MCP joints. The extensor
carpi radialis and flexor carpi radialis only passed through
the wrist joint, with no moment arm at the MCP joint. The
following six parameters of each muscle were optimized with
the optimization function GlobalSearch in MATLAB: optimal
muscle length, maximum isometric force, moment arm of the
wrist joint, moment arm of the MCP joint, muscle length
at the neutral position, and parallel elastic element stiffness.
In the optimization process, all parameters were limited to the
approximate range of physiological values to minimize the
root mean square error between the predicted and measured
joint angles.

Since the electrode grids were placed over the bellies of
muscles, the amplitude of the EMG signals acquired by the
channels located at the edge of the electrode grids or the
edge of the muscles was low. Moreover, since there were still
crosstalks in the EMG signals acquired by HD electrode grids,
directly averaging 64-channel EMG signals could not represent
muscle activation well. The channel selection method was used
to find the best activation area of the muscle, which helped to
avoid the influence of low amplitude channels and determine
the optimal muscle activation area to reduce signal crosstalk
during simultaneous movements of two DoFs. The RMS value
of 64-channel signals was calculated and normalized.

The 2 × 2 channels were selected as the optimal acti-
vation area of each muscle (see Fig. 4). The EMG signals
of these channels were averaged and then full-wave recti-
fied. The rectified signals were low-pass filtered by a 5-Hz
4-order Butterworth filter and then filtered by a moving root
mean square filter (window length: 1024 sampling points,
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Fig. 4. Two-dimensional heat map (the normalized RMS value) of the
flexor digitorum during MCP joint movement. The black box shows the
optimal activation position for the muscle. The four directions of proximal,
distal, lateral and medial are indicated respectively.

step length: 256 sampling points) to obtain the EMG envelope.
Finally, the EMG envelope was normalized by the maximum
EMG acquired during maximum voluntary contraction.

E. Evaluation Metrics
The performance of the neural-driven MM in predicting

wrist and MCP joint angles was evaluated and compared with
that of the EMG-driven MM. The r and the NRMSE between
the predicted joint angles and the measured joint angles were
calculated as the evaluation metrics of the model.

r =

∑n
i=1 (xi − x̄) · (yi − ȳ)√∑n
i=1 (xi − x̄)2

· (yi − ȳ)2
(2)

N RM SE =

√
1
n

∑n
i=1 (xi − yi )

2

xmax − xmin
(3)

where xi is the i th measured joint angle, x̄ is the mean value of
the measured joint angles, yi is the i th predicted joint angle, ȳ
is the mean value of the predicted joint angles, n is the length
of the data sampling point, xmax is the maximum value of the
measured joint angles, and xmin is the minimum value of the
measured joint angles.

F. Statistical Analysis
A three-way repeated measures analysis of variance

(ANOVA) was performed on r values and NRMSE values. The
three independent variables were algorithm (neural-driven MM
and EMG-driven MM), DoF (wrist extension/flexion, MCP
extension/flexion), and movement type (single-DoF move-
ment, simultaneous movement). Johnson transformation was
performed on data that did not conform to the normal distribu-
tion to ensure that all data conform to the normal distribution
before variance analysis. A statistical model was established
to study whether there was a significant interaction between
the three independent variables. If a significant interaction
between variables was found, a simple impact analysis of

Fig. 5. The motor units of extensor and flexor digitorum retained
during a random trial of MCP flexion/extension only. Each bar represents
a discharge. The MCP joint angle of this random trial was recorded
synchronously, represented by a black trace.

the level of interaction factors was required. If no interaction
was found, a reduced ANOVA without interaction effect was
performed on r values and NRMSE values by taking algorithm,
DoF, and movement type as the independent variable respec-
tively. The significance level for all tests was set to p = 0.05.

III. RESULTS

Fig. 5 shows an example of a series of MU discharge
trains that were obtained by decomposing the representative
HD EMG with the FastICA algorithm, and the corresponding
joint angles were recorded synchronously. It can be intuitively
observed that the size of the joint angle affects the continuous
discharge of MUs.

Fig. 6(a) and Fig. 6(b) show the r values of the
neural-driven MM and EMG-driven MM during single-DoF
movements and simultaneous movements of all subjects,
respectively. For the neural-driven MM, the mean r values
of wrist and MCP joints during single-DOF movements were
0.93 and 0.91, respectively. The mean r values of wrist and
MCP joints during simultaneous movements were 0.91 and
0.86, respectively. For the EMG-driven MM, the mean r values
of the wrist and MCP joints during single-DOF movements
were 0.90 and 0.87, respectively. During the simultaneous
movements of two DoFs, the mean r values of wrist and MCP
joints were 0.88 and 0.76, respectively. The three-way ANOVA
showed no significant three-way or two-way interaction among
the variables of algorithm, DoF, and movement type. Then the
reduced ANOVA showed that algorithm, DoF, and movement
type had a significant effect on r (DoF: 0.001<p ≤ 0.01,
movement type: 0.001<p ≤ 0.01). Fig. 6 shows the significant
difference of algorithm.

Fig. 7(a) and Fig. 7(b) show the NRMSE values of the
neural-driven MM and EMG-driven MM during single-DoF
movements and simultaneous movements of all subjects,
respectively. For the neural-driven MM, the mean NRMSE
values of wrist and MCP joints during single-DOF movements
were 0.12 and 0.14, respectively. The mean NRMSE values
of wrist and MCP joints during simultaneous movements
were 0.13 and 0.20, respectively. For the EMG-driven MM,
the mean NRMSE values of the wrist and MCP joints
during single-DOF movements were 0.16 and 0.22, respec-
tively. During the simultaneous movements of two DoFs,
the mean NRMSE values of wrist and MCP joints were
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Fig. 6. Pearson’s correlation coefficient (r) of neural-driven MM and
EMG-driven MM during different joint movements of all subjects. The
rightmost four bars are the mean values across all subjects, the error
bars represent standard deviations across all subjects. Symbols ∗, ∗∗,
and ∗ ∗ ∗ indicate significant differences with a level of (0.01<p<0.05),
(0.001<p ≤ 0.01), and (p ≤ 0.001), respectively.

0.18 and 0.24, respectively. The three-way ANOVA showed no
significant three-way or two-way interaction among the vari-
ables of algorithm, DoF, and movement type. Then the reduced
ANOVA showed that algorithm, DoF, and movement type
had a significant effect on NRMSE (DoF: 0.001<p ≤ 0.01,
movement type: 0.01<p<0.05). Fig. 7 shows the significant
difference of algorithm.

Fig. 8 shows the predicted and measured joint angles of the
wrist and MCP joint during the rhythm trial and the two-DoF
simultaneous trial. Fig. 8(a) shows the extension/flexion of the
wrist joint during the rhythm trial. For the neural-driven MM,
the r value of wrist joint was 0.940, and the NRMSE value
was 0.100. For the EMG-driven MM, the r value of wrist joint
was 0.889, and the NRMSE value was 0.155. Fig. 8(b) shows
the extension/flexion of the MCP joint during the rhythm
trial. For the neural-driven MM, the r value of the MCP joint
was 0.919, and the NRMSE value was 0.128. For the EMG-
driven MM, the r value of the MCP joint was 0.878, and
the NRMSE value was 0.183. Fig. 8(c) shows the predicted
angles of the two joints in the two-DoF simultaneous trial. For
the neural-driven MM, the r values of wrist and MCP joints
were 0.923 and 0.907, respectively, and the NRMSE values of
wrist and MCP joints were 0.108 and 0.140, respectively. For
the EMG-driven MM, the r values of wrist and MCP joints

Fig. 7. NRMSE of neural-driven MM and EMG-driven MM during
different joint movements of all subjects. The rightmost four bars are
the mean values across all subjects, the error bars represent standard
deviations across all subjects. Symbols ∗, ∗∗, and ∗ ∗ ∗ indicate signif-
icant differences with a level of (0.01<p<0.05), (0.001<p ≤ 0.01), and
(p ≤ 0.001), respectively.

were 0.892 and 0.723, respectively, and the NRMSE values
of wrist and MCP joints were 0.129 and 0.207, respectively.
Although both models can accurately predict joint angles, the
joint angles predicted by the neural-driven MM are closer to
measured values than those by the EMG-driven MM.

IV. DISCUSSION

In this study, a neural-driven MM was proposed to predict
MCP flexion/extension and wrist flexion/extension to improve
the estimation performance of model-based approaches.
HD EMG signals were acquired from four electrode grids.
The 64-channel EMG signals were decomposed into individ-
ual MUSTs, and the recruited MU discharge frequency was
used to calculate the neural drive signal and estimate joint
kinematics. The proposed neural-driven MM used the FastICA
algorithm to decompose the surface EMG signals for obtaining
accurate neural drive signals and then took these signals as
the input to predict joint movements. The separation parame-
ters obtained by MU decomposition were used for random
dynamic contraction and two-DoF movements. The perfor-
mance of neural-driven MM for joint movements estimation
was compared with that of the traditional EMG-driven MM.
The r values and NRMSE values between the predicted joint
angles and the measured joint angles were calculated to quan-
tify the estimation performance of two models. The results
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Fig. 8. Predicted and measured joint angles during (a) wrist flexion/
extension only, rhythm; (b) MCP flexion/extension only, rhythm; (c) wrist
and MCP flexion/extension simultaneously.

indicated that the prediction accuracy of the neural-driven MM
outperforms that of the EMG-driven MM in offline analysis.

As indicated in Fig. 6 and Fig. 7, the neural-driven MM
achieved higher r values and lower NRMSE values than
those of the EMG-driven MM. It was demonstrated that the
neural-driven MM had the superiority of joint movement
prediction accuracy in offline analysis. Statistical analysis
of r values and NRMSE values showed that there were
significant differences between the neural-driven MM and the
EMG-driven MM. The mean r values of the neural-driven
MM were higher than that of the EMG-driven MM in all
tasks. In particular, the predicted r value of the MCP joint
movements was 0.86 during the two-DoF simultaneous

movements, which was increased by 0.10. The r values
of the wrist and MCP joint movements predicted by the
neural-driven MM were all above 0.85, which indicated that
the proposed approach could attain high-level estimation
accuracy during both single-DoF movements and two-DoF
simultaneous movements. Although both neural-driven MM
and EMG-driven MM were modeled based on MM, the
neural-driven MM had better performance, indicating that
the proposed approach can extract more accurate neural
information. The estimation accuracy of the neural-driven
MM during two-DoF simultaneous movements was consistent
with that previously reported in a conference [32].

The five different tasks used in this experiment were
designed based on previous studies [16], [22], involving both
cyclical dynamic movements and random dynamic move-
ments. The performance of the proposed approach was
systematically tested with these tasks. The 1/4 Hz frequency
was selected in the rhythm trials because the movement of
MCP and wrist at this speed was considered to be more
representative of daily life [22]. As demonstrated in previous
studies, the FastICA algorithm can extract MU discharge in
dynamic movements. Dai et al. used the FastICA algorithm to
decompose the signals of extensor digitorum for predicting
the joint angle of the finger extension [30]. In this study,
the FastICA algorithm was used to decompose the EMG
signals acquired by each muscle in the first trial of single-DoF
rhythmic movements to obtain the separation matrix, which
was then applied to the decomposition of subsequent trials.
By doing so, the EMG decomposition is actualy divided into
two steps, which brings the following benefits. (1) Using
the online decomposition approach to do offline analysis can
facilitate the future study on online performance. (2) The
separation matrix obtained by single-joint movements can
be directly used for simultaneous movements of two joints
to demonstrate the robustness of the separation matrix. The
number of MUs decomposed in each trial was more than 10.
In random trials, the joint moved randomly between the initial
position and the maximum joint angle position. Some MUs did
not discharge in the movements during which the joint returned
to the initial position before reaching the maximum joint angle
position (see Fig. 5), probably because the activation threshold
of these MUs was higher. When the EMG signals of flexor
digitorum were decomposed, there will be some MUs that
only represent the finger extension. It can be explored in
future study whether the flexion/extension of MCP joint can
be predicted with flexor digitorum only.

The surface EMG signals were acquired from the elec-
trode grid covering the muscle. The electrode grid completely
covered the muscle. The EMG signal of the target muscle
acquired during the two-DoF simultaneous movements may
be affected by the activation of adjacent muscles. After all,
there were more than 40 muscles that may contribute to
wrist and hand movements. In previous studies, the bipolar
surface EMG electrodes were attached to the muscle for
acquiring EMG signals [22]. Even if the optimal muscle
position was found when the electrodes were attached and
the distance between EMG sensors was large, the effect of
adjacent muscles still existed. For example, it was observed
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that the activation of the wrist flexor affected the EMG signal
of the finger flexor [17]. This may be the reason why the
r value of EMG-driven MM for MCP joint was only about
0.75 during two-DoF simultaneous movements. There was
effect from adjacent muscles on the EMG signals with the
bipolar surface EMG electrodes, and it is even more difficult
for HD electrode grids to avoid such problems. The amplitude
of the EMG signals acquired by the channel at the edge of
the electrode grid was low and the effect of adjacent muscles
also existed in the HD electrode grids. Therefore, it is not
ideal to calculate the EMG envelope by directly averaging the
64 channels of the electrode grid. In this study, the optimal
activation area of the muscle was found on the 8 × 8 electrode
grid to simulate the bipolar EMG electrode acquisition and find
the best position of the muscle for placing the electrode. The
distance between the grid electrodes was close to that between
the bipolar electrodes, so the 2 × 2 channels were selected as
the optimal activation area. Channels in the optimal activation
area of the muscle were selected and averaged to calculate the
envelope. The estimation accuracy of the MM based on the
calculated EMG envelope was similar to that of the previously
reported EMG-driven MM [16], [22].

In recent years, a lot of machine learning methods have
been proposed for simultaneous and proportional control of
the hand and wrist. Nowak et al. proposed a three-DoF
simultaneous and proportional estimator of hand and wrist
movements based on ridge regression [42]. Sîmpetru et al.
developed a new deep learning model that can reliably extract
hand kinematics and dynamics from HD EMG data [43].
Sîmpetru et al. proposed the new deep learning model can
predict hand movement in real-time with a constant prediction
of 32 times per second [44]. These machine learning methods
show good performance in predicting the continuous move-
ments of the hand and wrist. Compared with machine learning
methods, the decomposition of HD EMG may provide a more
appropriate method from a physiological point of view, since
it simulates how the central nervous system encodes muscle
forces [45], [46]. In practice, there are many limitations in
real-time decoding a significant number of MUs during the
dynamic movement of the hand [47]. Real-time prediction
of continuous movements is very important for practical
applications. Therefore, the online decomposition method and
the neural-driven MM should be investigated for real-time
prediction of continuous movements in our future studies.

The proposed neural-driven MM provides accurate
estimation of joint movements, which may be useful for
medical rehabilitation and remote robot control. In addition,
the proposed neural-driven MM can extract accurate neural
information for the given task, even when HD EMG recordings
are influenced by adjacent muscles. Therefore, the proposed
neural-driven MM has the potential to extract accurate neural
commands and improve the performance of HMIs established
based on surface EMG signals. However, this study still has
several limitations that need to be improved in the future.
The proposed neural-driven MM was only validated on
non-disabled subjects. Therefore, amputated subjects will be
recruited to test the performance of the neural-driven MM
in clinical applications. The current study was still an offline

analysis, although online decomposition was employed.
In future work, the performance of the proposed approach to
predict continuous movements in real time and across days
will be explored. Moreover, the study focused on the discharge
of motor neurons at the population level, and did not refine the
role of individual motor neuron. The proposed neural-driven
MM cannot simulate the phenomenon that a motor neuron
may innervate multiple muscles. In addition, only four muscles
were included in the MM, and the simplification of the model
may lead to joint movement prediction errors. Therefore,
we will continue to improve our MM and prove the potential
of this technique for medical rehabilitation in the future.

V. CONCLUSION

This study proposed a neural-driven MM to predict move-
ments of the wrist and MCP joint. We used the FastICA
algorithm to decompose the HD EMG signals, so as to obtain
the MUs discharge and estimate the neural drive from the brain
to the muscle. The neural drive was used as the input of MM
to estimate the muscle activation. Ten non-disabled subjects
(male) were recruited and tested. It was demonstrated that the
proposed neural-driven MM can overcome several limitations
of surface EMG signals and extract more accurate neural com-
mands. The study quantitatively compared the performance
of the neural-driven MM and conventional EMG-driven MM.
The results indicated that the neural-driven MM outperforms
the EMG-driven MM in prediction accuracy and robustness.
The proposed neural-driven MM for HMI can identify neural
commands more accurately and has great potential for medical
rehabilitation and robot control.
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