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Enhancing Performance of Single-Channel
SSVEP-Based Visual Acuity Assessment

via Mode Decomposition
Xiaowei Zheng , Xun Zhang , Guanghua Xu , Member, IEEE, and Rui Zhang

Abstract— This study aimed to improve the performance
of single-channel steady-state visual evoked potential
(SSVEP)-based visual acuity assessment by mode decom-
position methods. Using the SSVEP dataset induced by the
vertical sinusoidal gratings at six spatial frequency steps
from 11 subjects, 3-40-Hz band-pass filtering and other
four mode decomposition methods, i.e., empirical mode
decomposition (EMD), ensemble empirical mode decom-
position (EEMD), improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN),
and variational mode decomposition (VMD), were used
to preprocess the single-channel SSVEP signals from Oz
electrode. After comparing the SSVEP signal characteris-
tics corresponding to each mode decomposition method,
the visual acuity threshold estimation criterion was used
to obtain the final visual acuity results. The agreement
between subjective Freiburg Visual Acuity and Contrast
Test (FrACT) and SSVEP visual acuity for band-pass fil-
tering (−0.095 logMAR), EMD (−0.112 logMAR), EEMD
(−0.098 logMAR), ICEEMDAN (−0.093 logMAR), and VMD
(−0.090 logMAR) was all pretty good, with an accept-
able difference between FrACT and SSVEP acuity for
band-pass filtering (0.129 logMAR), EMD (0.083 logMAR),
EEMD (0.120 logMAR), ICEEMDAN (0.103 logMAR), and
VMD (0.108 logMAR), finding that the visual acuity obtained
by these four mode decompositions had a lower limit of
agreement and a lower or close difference compared to the
traditional band-pass filtering method. This study proved
that the mode decomposition methods can enhance the
performance of single-channel SSVEP-based visual acuity
assessment, and also recommended ICEEEMDAN as the
mode decomposition method for single-channel electroen-
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cephalography (EEG) signal denoising in the SSVEP visual
acuity assessment.

Index Terms— Visual acuity, steady-state visual evoked
potential, empirical mode decomposition, signal denoising.

I. INTRODUCTION

V ISUAL acuity, a measure of the spatial resolution of the
visual system, is one of the most important visual func-

tions. However, the traditional psychophysical testing methods,
e.g., Snellen letters and Landolt C charts [1], are not suitable
for preverbal children, the mentally disabled, and malingerers,
since they require the examinees to have sufficient intelligence
to abide by the test rules [2], [3].

Steady-state visual evoked potentials (SSVEPs) have been
used as an objective diagnostic method regarding visual func-
tion [4]. In the SSVEP visual acuity technique, the widely used
process of assessment contains several parts, i.e., visual stim-
uli, electroencephalography (EEG) acquisition, signal analysis,
and acuity threshold determination. First, SSVEPs are induced
by a series of visual stimuli with spatial frequency sweeping
over time. Next, EEG signals are recorded and then processed
by signal analysis algorithm, e.g., Fourier transform. Finally,
the threshold determination criterion is applied to define
the visual acuity threshold by establishing the relationship
between the spatial frequency of the visual stimulus and
SSVEP response [5]. As one of the most important parts of
SSVEP visual acuity assessment, the threshold determination
criterion is the visual acuity estimation method by SSVEP
response against spatial frequency. Among them, the most
widely used threshold determination criterion method is the
linear extrapolation technique extrapolating the highest SSVEP
response to 0 µV or noise level baseline between SSVEP
response amplitude and spatial frequency [6].

Previous studies have proposed and compared the classic
linear extrapolation methods and then improved these methods
from some different aspects [7], e.g., machine learning [8],
spatial filtering [9], and curvilinear form [10], [11]. Here,
most studies use EEG signals from only a single channel in
visual acuity assessment for its convenience, especially for
children and infants, and then apply the Fourier transform to
extract the frequency-domain amplitude feature [6]. However,
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single-channel signals are more easily affected by the external
environment and individual states, significantly affecting the
visual acuity results [6]. Hence, it may potentially contribute
to the performance of final SSVEP visual acuity results
by eliminating noise and artifacts from single-channel EEG
signals.

Empirical mode decomposition (EMD) is an adaptive signal
processing method and has been extensively used in the analy-
sis of non-stationary signals [12]. By using the EMD method,
signals can be adaptively decomposed into a set of compo-
nents, i.e., intrinsic mode functions (IMFs), which indicate the
oscillation modes and reflect the characteristics of the signal
itself. Recently, some improved methods of EMD have been
put forward to solve the problem of mode mixing, e.g., ensem-
ble empirical mode decomposition (EEMD) [13], complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) [14], improved CEEMDAN (ICEEMDAN) [15],
and variational mode decomposition (VMD) [16]. In previous
studies, EMD has been used in the EEG signal process
field with pretty good performance [17], [18]. Since there
is usually only one temporal frequency in SSVEP visual
acuity assessment, EMD is theoretically suitable to eliminate
artifact interference and some IMFs may concentrate around
the stimulus frequency and its harmonics. By analyzing the
IMF concentrating around the stimulus frequency, an SSVEP
response with a higher signal-to-noise ratio (SNR) can be
obtained, possibly improving the accuracy of visual acuity
results. However, until now, little is known about the effect of
denoising methods, e.g., mode decomposition, on the SSVEP
visual acuity performance.

Therefore, this study aimed to explore the effect of mode
decomposition methods on the single-channel SSVEP visual
acuity assessment. First, the SSVEP dataset corresponding
to six spatial frequencies and six electrode channels from
11 subjects was obtained from our previous study [9]. Then,
EMD, EEMD, ICEEMDAN, and VMD were applied to the
single-channel SSVEP signal of the Oz electrode, and the
mode decomposition methods with good performance for
further signal processing were chosen. Next, for each selected
mode decomposition method, SSVEP visual acuity can be
acquired by the threshold estimation criterion, and the statis-
tical analyses were used to explore the performance of mode
decomposition methods on SSVEP visual acuity.

II. MATERIALS AND METHOD

A. SSVEP Dataset
In this study, we used the SSVEP dataset in our previ-

ous work [9]. Eleven healthy subjects (four females, ages
22–27 years) were recruited. EEG was sampled by an EEG
system (g.USBamp, g.tec, Schiedlberg, Austria) at six elec-
trodes (O1, Oz, O2, PO3, POz, and PO4) with a 1200 Hz
sampling frequency. As for the visual stimuli, the vertical
sinusoidal gratings with a reversal frequency of 7.5 Hz were
used with a Michelson contrast of 50% and a mean background
luminance of 80 cd/m2. The experimental process contained
six blocks corresponding to six spatial frequencies of 3.0,
4.8, 7.5, 12.0, 19.0, and 30.0 cycles per degree (cpd) in

logarithmically equidistant steps for each eye. A total of fifteen
eyes completed the test.

B. Mode Decomposition Methods

1) EMD: EMD is a data-driven and adaptive algorithm
to analyze non-linear and non-stationary signals [12]. EMD
decomposes a signal into a set of IMFs. As an effective
IMF, it requires satisfying two conditions: (1) the numbers of
extrema and zero-crossings are the same or differ at most by
one; (2) the average of the upper envelope and lower envelope
is zero at any point. Given any signal x(t), the EMD algorithm
can be described as follows:

(i) Find all local extrema of x(t).
(ii) Interpolate all maxima/minima to obtain an upper/lower

envelope emax (t) /emin (t).
(iii) Compute the local mean by averaging envelops:

m1 (t) = (emax (t) + emin (t))/2. (1)

(iv) Compute the IMF candidate by subtracting the local
mean from the original data:

h1 (t) = x (t) − m1 (t) . (2)

(v) Check the properties of h1 (t).
If h1 (t) fulfills the conditions of IMF, h1 (t) is regarded as

an IMF, and it can be expressed as:

c1 (t) = h1(t). (3)

If h1 (t) does not fulfill the conditions of IMF, h1 (t) is treated
as the original data:

x (t) = h1(t). (4)

Then repeat steps (i) to (v) above process until h1(t)
becomes an IMF.
(vi) Compute the residue:

r1(t) = x (t) − c1(t). (5)

Then treat r1 as the new input data in step (i).
(vii) Repeat the procedure from (i) to (vii) for the subsequent

residuals until the final residual satisfies the predefined
stopping criterion, that is:

r2 (t) = r1 (t) − c2(t)
...

rn (t) = rn−1 (t) − cn (t) . (6)

Hence, the signal x(t) can be decomposed into n IMFs and
a residual:

x (t) =

n∑
i=1

ci (t) + rn (t) . (7)
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2) EEMD: Mode mixing is the most significant drawback of
EMD, which means either a single IMF consisting of signals
of dramatically disparate scales or a signal of the same scale
appearing in different IMF components. To overcome this
problem, some improvements to EMD were proposed [19].
EEMD adds white noise into the IMFs decomposition process,
and the bits of signals of different scales can be automatically
designed onto proper scales of reference. This algorithm can
be described briefly below:

(i) Add a white noise series to the original signal.
(ii) Decompose the signal containing added white noise into

IMFs using EMD.
(iii) Repeat steps (i) and (ii) with various white noise series

each time.
(vi) Obtain the ensemble means of corresponding IMFs of

the decompositions as the final result, that is:

c j (t) =
1
N

N∑
k=1

{
c j,k (t) + αrk (t)

}
, (8)

where c j,k(t)+αrk(t) is the kth decomposition of the j th IMF
with the noise-added signal, N is the ensemble trials, α is the
standard deviation of the white noise, and rk (t) is the residual
after extracting k IMFs. In this study, α was set to 0.2, and N
was set to 200.

3) ICEEMDAN: EEMD also has some drawbacks, e.g., each
EMD decomposition does not necessarily generate the same
number of IMFs, complicating the process of final averaging.
Hence, CEEMDAN and ICEEMDAN were proposed. Here,
this study concentrated on the ICEEMDAN method, which
has overcome many of the problems associated with EEMD
and was regarded as one of the most suitable methods for the
analysis of EEG signals [20]. According to previous studies
[15], [21], a brief introduction to ICEEMDAN is presented
below:

(i) Let Ek(·) be the operator which produces the kth mode
obtained by EMD. Let ω(i) be the white noise and its
i th average value and unit variance are zero. Let M(·) be
the operation for calculating the mean value. For x i (t) =

x(t)+β0 E1
(
wi (t)

)
, calculate the mean value of results

of I realizations via EMD, obtaining the first residual:

r1(t) = M
(

x i (t)
)

, (9)

where β0 = ε0std(x(t))/std
(
E1

(
wi (t)

))
, and ε0 is defined as

the reciprocal of the desired signal to SNR between the first
added noise and the analyzed signal.

(ii) Calculate the first mode at the first stage:

c1 (t) = x(t) − r1(t). (10)

(iii) Estimate the second residue as the mean of the realiza-
tion r1(t)+β1 E2

(
wi (t)

)
, and then the second mode can

be defined:

c2(t) = r1(t) − r2(t)

= r1(t) − M
(

r1(t) + β1 E2

(
wi (t)

))
. (11)

(iv) Calculate the kth residue and kth mode (k = 3, . . . , K ):

rk(t) = M
(

rk−1(t) + βk−1 Ek

(
wi (t)

))
, (12)

ck(t) = rk−1(t) − rk(t). (13)

(v) Go back to step (iv) for the next k until the resulting
residual’ no further decompositions can be performed.

4) VMD: VMD was proposed by Dragomiretskiy et al.
[16], and it can non-recursively decompose a signal f (t)
into a discrete number of quasi-orthogonal sub-signals uk(t)
compacting around a center frequency ωk with limited band-
width. The specific steps to resolve the bandwidth issue are
as follows:

(i) Obtain the analytical signal and unilateral spectrum by
applying the Hilbert transform to IMF:(

σ(t) +
j

π t

)
× uk(t) (14)

(ii) Multiplied by the exponential function e− jωk t , move the
center band to the baseband:[(

σ(t) +
j

π t

)
× uk(t)

]
× e− jwk t (15)

(iii) Estimate the bandwidth of the IMF by calculating the
square of the L2 norm of the modulation signal gradient:

min
{uk },{ωk }

{ K∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
π t

)
× uk(t)

]
e− jωk t

∥∥∥∥2

2

}

s. t.
K∑

k=1

xk(t) = x(t) (16)

where {uk} = {u1, . . . , uK } are the band-limited IMFs of the
center frequency ωk obtained by decomposition.
(iv) The above formula can be addressed by introducing

a quadratic penalty and Lagrangian multipliers, The
augmented Lagrangian is given as follows:

L
(
{uk} , {ωk} , λ

)
= α

K∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
π t

)
× uk(t)

]
e− jωk t

∥∥∥∥2

2

+

∥∥∥∥∥ f (t) −

K∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ (t), f (t) −

K∑
k=1

uk(t)

〉
(17)

where α is the quadratic penalty factor, and λ is the Lagrange
multiplier. Hence, this problem can be solved with the alternate
direction method of multipliers (ADMM) [22]. The modes
gained from solutions frequency-domain can be described
below:

ûn+1
k (w) =

f̂ (w) −
∑

i ̸=k ûi (w) + λ̂ (w)/2

1 + 2α (w − wk)
2 (18)

where ûn+1
k (w), f̂ (w), and λ̂ (w) are obtained by the Fourier

transform of un+1
k (w), f (w), and λ (w); ûn+1

k (w) is the output
after f̂ (w) −

∑
i ̸=k ûi (w) wiener filtering. wk is computed

at the center of gravity of the corresponding mode’s power
spectrum, and wk is updated using the formula below.

ωk =

∫
∞

0 ω
∣∣ûk(ω)

∣∣2 dω∫
∞

0

∣∣ûk(ω)
∣∣2 dω

(19)
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C. Signal Processing
Firstly, we chose the Oz electrode as the analyzing

single-channel signal [23], and the SSVEP data segments
were extracted following the start and end times of each
trial. Next, five different preprocessing methods, i.e., 3-40 Hz
band-pass filter, EMD, EEMD, ICEEMDAN, and VMD, were
used, and then the IMFs containing the stimulus frequency of
7.5 Hz were chosen for further processing. Next, the Fourier
transform was carried out to extract the SSVEP features, and
the amplitude at 7.5 Hz on the frequency-domain spectrum
was regarded as the SSVEP amplitude. Besides, the signal
noise was defined by the mean value of the 20 adjacent
amplitudes of either side of the fundamental frequency of
7.5 Hz on the frequency-domain spectrum, and then SNR can
be described as:

SN R =
NSVEP amplitude

Noise

=
a( f )

1
10 ∗

∑k=10
k=1 a( f k ∗ 1 f )a( f − k ∗ 1 f )

(20)

in which a( f ) denotes the frequency-domain amplitude at
frequency f , and the frequency resolution 1 f is 0.1 Hz.

For the SSVEP-based visual acuity definition, the estimation
criterion of linear extrapolation to noise level baseline was also
used in this study [7], [23]. After plotting SSVEP amplitude
versus spatial frequency, a regression line can be extrapolated
from the last significant SSVEP peak to a noise level baseline.
The SSVEP visual acuity was defined as the spatial frequency
corresponding to the intersection point of the regression line
and the noise level baseline. The significance of the SSVEP
response was judged by the preset SNR level, and the noise
level baseline was defined as the mean of the noise of the six
spatial frequency steps.

D. Statistical Analyses
The agreement and difference between the psychophysical

FrACT and objective SSVEP visual acuity were evaluated by
Bland–Altman analysis for each mode decomposition method.
Besides, the SNR difference among each preprocessing mode
decomposition method was evaluated by one-way repeated-
measures ANOVA, and the post-hoc analysis with Bonfer-
roni correction for multiple comparisons was subsequently
employed.

III. RESULT

A. Mode Decomposition Methods
Five methods, i.e., the band-pass filter of 3-40 Hz, EMD,

EEMD, ICEEMDAN, and VMD, were used to prepro-
cess single-channel EEG signals from the Oz electrode,
respectively. As shown in Fig. 1, all four mode decomposition
methods can decompose the original signal into several IMFs,
and at least one IMF has a significant peak at the stimulus
frequency of 7.5 Hz in the frequency-domain, demonstrating
mode decomposition methods can be used as a signal denois-
ing method for SSVEPs. For example, as shown in Fig. 1(a),
the EMD method decomposes the original signal into six IMFs
and one residual signal, and IMF2 and IMF3 show a significant

Fig. 1. IMF decomposition diagram and frequency spectrum from
Oz single-channel signal at 3.0 cpd (subject S9, right eye). (a) EMD.
(b) EEMD. (c) ICEEMDAN. (d) VMD.

response peak at the stimulus frequency of 7.5 Hz in the
frequency-domain, Hence, the IMF2 and IMF3 were used to
regenerate new signal to reduce noise. Likewise, the IMF5 and



Fig. 2. Time-domain, frequency-domain, and time–frequency-domain
analyses of regenerated SSVEPs at 3.0 cpd. (a) 3-40 Hz band-pass fil-
tering. (b) EMD. (c) EEMD. (d) ICEEMDAN. (e) VMD. “f” in all subfigures
represents the stimulus frequency of 7.5 Hz.

IMF6 of EEMD, the IMF6 of ICEEMDAN, and the IMF7 of
VMD were used to regenerate new signals, respectively.

B. SSVEP Response Performance
Fig. 2 shows the time-domain, frequency-domain, and time-

frequency-domain analyses of the regenerated SSVEPs in
Fig. 1. For time-domain analyses, the 5-s single-channel
regenerated signals were averaged to obtain the 0.53-s non-
overlapping data segments with each segment containing four
periods of a 7.5 Hz reversal process. For frequency-domain
analyses, the Fourier transform was carried out for 5-s regen-
erated signals. For the time-frequency-domain analyses, the
2.0-s window length with 0.1-s sliding length over the 5-s
regenerated signals was used to obtain the time-frequency-
domain characteristics.

The time-domain waveforms and frequency-domain spec-
trums show all the regenerated signals after being preprocessed
by the five methods, i.e., 3-40 Hz band-pass filtering, EMD,
EEMD, ICEEMDAN, and VMD, had the main periodicity
at the fundamental reversal frequency of 7.5 Hz. Compared
to 3-40 Hz band-pass filtering and EMD, the signals prepro-
cessed by EEMD, ICEEMDAN, and VMD had a higher energy
concentration at 7.5 Hz, as shown in time-frequency-domain
analyses, indicating that the mode decomposition methods
suppressed the artifact noise of the original EEG signal, and
thereby enhancing the SNR.

C. Mode Decomposition Effect
The mode decomposition effect aims to suppress the non-

SSVEP components to enhance SNR. Hence, here, this study
mainly compared the SNR values of various mode decom-
position methods to judge the mode decomposition effect.
As shown in Fig. 3, the amplitude and SNR values corre-
sponding to the spatial frequency of 3.0 cpd were compared

Fig. 3. Comparison of amplitude and SNR of regenerated SSVEPs at
3.0 cpd over all subjects.

since the visual stimuli at this spatial frequency were the
clearest to all subjects. Fig. 3 shows that the SNR val-
ues from EMD (4.054±1.212), EEMD (3.933±1.153), and
VMD (4.037±1.168), were higher than that of the traditional
band-pass filtering (3.861±1.188), with ICEEMDAN had a
slightly lower SNR (3.793±1.265). Then, one-way repeated-
measures ANOVA found that there was a significant difference
(F(4,60) = 4.611, P = 0.003) in the SNR values of regenerated
SSVEPs, and subsequently, the Bonferroni post-hoc analysis
showed no difference between any pair of SNR values, demon-
strating that the SNR values had a good agreement among
these regenerated SSVEPs.

D. SSVEP Visual Acuity Estimation
SSVEP visual acuity threshold was defined by the corre-

sponding spatial frequency of the intersection point between
the noise level baseline and the regression line extrapolating
from the significant SSVEP peak to the last data point with an
SNR higher than the preset SNR level. For the band-pass fil-
tering, the suggested value of the SNR level, i.e., 1.0, has been
given by the previous studies [7], [24]. And then, as shown in
Fig. 4, since the SNR values of SSVEPs regenerated from the
mode decomposition methods had no difference from that of
the band-pass filtering, the SNR level of 1.0 was also suitable
for the four mode decomposition methods.

As shown in Fig. 5, the tuning curves of SSVEP visual
acuity estimation criterion for 3-40 Hz band-pass filtering,
EMD, EEMD, ICEEMDAN, and VMD can be obtained,
respectively. The range for the linear regression is defined
from the first data peak point. e.g., 1.140 µV in Fig. 5(a),
to the last significant data point with an SNR higher than 1.0,
e.g., 0.118 µV with an SNR of 1.508 in Fig. 5(a). Then the
SSVEP visual acuity can be obtained as the spatial frequency
of the intersection point of the regression line and the noise
level baseline, e.g., 26.554 cpd in Fig. 5(a). Similar to this, the
visual acuity thresholds for Fig. 5(b)-(e) were 26.431, 26.347,
25.312, and 26.217 cpd.

E. Visual Acuity Results
According to the process above, the SSVEP visual acuity

over all subjects was obtained, as shown in Table I. Here,
the unit of logMAR was used to express the final visual
acuity results for its uniformity in spatial frequency [5],
[23]. Since all the subjects had normal or corrected-to-normal
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TABLE I
VISUAL ACUITY RESULTS OF FRACT AND SSVEP

TABLE II
RESULTS OF BLAND-ALTMAN ANALYSIS BETWEEN SUBJECTIVE

FRACT AND OBJECTIVE SSVEP VISUAL ACUITY. LOA-, THE

LOWER BOUND OF 95% LIMIT OF AGREEMENT; LOA+, THE

UPPER BOUND OF 95% LIMIT OF AGREEMENT

visual acuity, the visual acuity results were in the vicinity of
0.0 logMAR with a mean value of −0.02±0.06 logMAR for
the subjective FrACT test.

The reliability analysis of Bland-Altman was used to
describe the difference and agreement between subjective
FrACT and objective SSVEP visual acuity, as shown in
Table II. The difference between FrACT and SSVEP visual
acuity for band-pass filtering, EMD, EEMD, ICEEMDAN,
and VMD were −0.095±0.129 logMAR, −0.112±0.083 log-
MAR, −0.098±0.120 logMAR, −0.093±0.103 logMAR,
and −0.090±0.108 logMAR with a 95% limit of agree-
ment were 0.253, 0.163, 0.235, 0.202, and 0.212 logMAR,
respectively.

Compared to FrACT visual acuity, these five SSVEP visual
acuity all had a good agreement with it, demonstrating that
mode decomposition methods had a good performance in the
SSVEP visual acuity assessment. Besides, the visual acuity
obtained by these four mode decompositions had a lower limit
of agreement and a lower or close difference compared to
the traditional band-pass filtering method, proving that the
mode decomposition methods can enhance the performance
of single-channel SSVEP-based visual acuity assessment.
According to Table II, this study recommended ICEEEMDAN
as the best choice of mode decomposition methods for single-
channel EEG signal denoising in the SSVEP visual acuity
assessment as it performed the lowest difference and lower
limit of agreement.

IV. DISCUSSION

The main advantage of EMD is that it is a data-driven
method to analyze non-stationary signals stemming from non-
linear systems and no need to postulate the mother wavelet
and level of decomposition as in wavelet transform [12].
Next, to overcome the limitation of mode-mixing, EEMD
was first proposed, which performs the decomposition over an
ensemble of noisy copies of the original signal, obtaining the
final results by averaging [19]. Then, as an improvement on
EEMD, CEEMDAN, and ICEEMDAN achieve a negligible
reconstruction error and solve the problem of the different
number of modes for different realizations of signal plus
noise [14]. Compared to EMD and its variants EEMD and
CEEMDAN, VMD can adaptively calculate the appropriate
bands and gives a concurrent estimate of corresponding modes
and a more robust and well-defined time-domain analysis [25].

There were some parameter settings required for EEMD,
ICEEMDAN, and VMD in this study. For the settings of these
parameters, there were two bases in this study. On one hand,
a series of pre-experiments and pre-process were performed
before the final parameters were determined. On the other
hand, the relevant settings also referred to the previous studies.
For EEMD and ICEEMDAN, the ensemble number was set
to 200. For VMD, the main parameters contain penalty factor
α, decomposition layer number K , fidelity coefficient τ , and
termination condition ε. Decomposition layer number K is the
most important parameter that influences VMD performance.
Penalty factor α mainly influences the bandwidth of the fre-
quency band. The fidelity coefficient τ can ensure the integrity
of the signal after reconstruction. Here, according to previous
studies [26], penalty factor α was to 2000; decomposition layer
number K was set to 7; fidelity coefficient τ was set to 0.3;
termination condition ε was to 10−7.

This study mainly focused on the signal performance around
the stimulus frequency of 7.5 Hz. As shown in Fig. 3, the mean
SSVEP amplitude in mode decomposition methods showed a
lower level except for EEMD, which may be caused by the
mode-mixing meaning that other IMFs may also contain a little
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Fig. 4. Regenerated SSVEP response to six spatial frequency steps.
(a) 3-40 Hz band-pass filtering. (b) EMD. (c) EEMD. (d) ICEEMDAN.
(e) VMD.

signal energy around 7.5 Hz. As for EEMD, the additional
added white noise may cause a slightly higher amplitude. As
for SNR, the EMD, EEMD, and VMD had slightly higher
mean SNR than band-pass filtering, demonstrating that these
mode decomposition methods suppress noise to a certain
extent and enhance SNR.

As shown in Fig. 1, EMD and EEMD methods show a more
severe mode mixing than ICEEMDAN and VMD. Even at the
target frequency of 7.5 Hz, EMD and EEMD had obvious
peaks in at least two different IMFs, showing that the simple
EMD or EEMD method is insufficient in the decomposition
of SSVEPs. As for ICEEMDAN and VMD, the single IMF
contained the vast majority of SSVEP information, suggesting
VMD or ICEEMDAN as a prior choice in decoding SSVEP
patterns from EEG [26].

This study provides evidence of enhancing SSVEP visual
acuity performance by mode decomposition, demonstrating

Fig. 5. Tuning curves for SSVEP visual acuity estimation criterion.
(a) 3-40 Hz band-pass filtering. (b) EMD. (c) EEMD. (d) ICEEMDAN.
(e) VMD.

that the denoising methods may offer an alternative method
to improve the SSVEP visual acuity assessment, and also
showing that signal processing technology in the engineering
field and clinical diagnosis technology in the medical field can
be integrated to better serve human society. Besides, our pre-
vious study introduced spatial filtering in multi-channel visual
acuity assessment, finding canonical correlation analysis-based
SSVEP visual acuity had a better performance than the tra-
ditional single-channel method [9], and it also proves this
hypothesis. Hence, in the future, other signal processing
methods, i.e., empirical wavelet transform (EWT) [27], image
filtering [28], and singular spectrum analysis (SSA) [29], can
be used to further enhance the performance of SSVEP visual
acuity assessment.

Some limitations must be addressed. First, although single-
channel signals are more convenient to record, their validity
is relatively easy to be affected by the system environment.
Therefore, follow-up research on the validity of the data is
necessary. Second, the best parameters setting of EEMD,
ICEEMDAN, and VMD is related to the characteristics of the
data itself and it may be affected by the SSVEP acquisition
factors, e.g., the visual stimuli, the hardware equipment, and
the subject. Hence, the previously recommended parameter
settings may not be very suitable here, and future studies
can focus on the parameter optimization process of mode
decomposition methods. Third, some other factors, e.g., the
data length of one trial, the trial number, the stimulus paradigm
type, and the spatial frequency settings, may also influence
the SSVEP visual acuity assessment results. Although the
International Society for Clinical Electrophysiology of Vision
(ISCEV) has recommended some set standards [23], [30], the
standardization of clinical electrophysiology of vision also
requires more joint effort by researchers.
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V. CONCLUSION

This study introduced the mode decomposition methods,
i.e., EMD, EEMD, ICEEMDAN, and VMD, in the single-
channel SSVEP visual acuity assessment, finding that the
visual acuity obtained by these four mode decompositions
had a lower limit of agreement and a lower or close differ-
ence compared to the traditional band-pass filtering method.
This study proved that the mode decomposition methods
can enhance the performance of single-channel SSVEP-based
visual acuity assessment, and also recommended ICEEEM-
DAN as the mode decomposition method for single-channel
EEG signal denoising in the SSVEP visual acuity assessment.
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