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Abstract— Seizure prediction of epileptic preictal period
through electroencephalogram (EEG) signals is impor-
tant for clinical epilepsy diagnosis. However, recent deep
learning-based methods commonly employ intra-subject
training strategy and need sufficient data, which are labo-
rious and time-consuming for a practical system and
pose a great challenge for seizure predicting. Besides,
multi-domain characterizations, including spatio-temporal-
spectral dependencies in an epileptic brain are generally
neglected or not considered simultaneously in current
approaches, and this insufficiency commonly leads to
suboptimal seizure prediction performance. To tackle the
above issues, in this paper, we propose Contrastive
Learning for Epileptic seizure Prediction (CLEP) using a
Spatio-Temporal-Spectral Network (STS-Net). Specifically,
the CLEP learns intrinsic epileptic EEG patterns across
subjects by contrastive learning. The STS-Net extracts
multi-scale temporal and spectral representations under
different rhythms from raw EEG signals. Then, a novel
triple attention layer (TAL) is employed to construct
inter-dimensional interaction among multi-domain features.
Moreover, a spatio dynamic graph convolution network
(sdGCN) is proposed to dynamically model the spatial
relationships between electrodes and aggregate spatial
information. The proposed CLEP-STS-Net achieves a sen-
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sitivity of 96.7% and a false prediction rate of 0.072/h
on the CHB-MIT scalp EEG database. We also validate
the proposed method on clinical intracranial EEG (iEEG)
database from our Xuanwu Hospital of Capital Medical
University, and the predicting system yielded a sensitivity
of 95%, a false prediction rate of 0.087/h. The experimental
results outperform the state-of-the-art studies which vali-
date the efficacy of our method. Our code is available at
https://github.com/LianghuiGuo/CLEP-STS-Net.

Index Terms— EEG, contrastive learning, spatio-
temporal-spectral dependencies, dynamic graph
convolution, triple attention, seizure prediction.

I. INTRODUCTION

EPILEPSY is one of the most common brain functional
diseases, which is caused by sudden neurological dis-

orders [1] and affects more than 40 million people in the
world [2]. It is estimated that approximately 25% of patients
have no suitable treatments to alleviate seizure symptoms
[3], and the epilepsy surgery remains challenging because of
multiple seizure foci, poor localization of seizure focus [4].
Especially, patients whose seizures arisen from important brain
functional regions are not candidates for resection surgery,
since it may cause the decline of brain functions such as motor
and language [5]. Therefore, the study of epileptic seizure
predicting, which can provide early warning of the incoming
seizure, is becoming increasingly important. The majority of
previous seizure prediction methods made the assumption that
epileptic EEG signals can be divided into four consecutive
brain activity states: interictal, preictal, ictal and postictal [2].
The goal of a seizure prediction method is to accurately
classify interictal and preictal states and warn the patients
before the seizure onset.

Recently many deep learning-based approaches are studied
for automatic EEG seizure prediction. Most of these methods
have been proposed for EEG feature extracting in time domain
[2], [6], [7], [8], frequency domain [9], [10], [11], [12] and
spatial domain [13], [14], [15], [16]. However, most studies
mainly focused on intra-subject EEG pattern learning, which
require a collection of sufficient data within one subject. For
instance, convolution neural network (CNN) was commonly
applied on the wavelet transformation of EEG which learned
quantitative signatures for EEG classification [6], [11]. The
short-time Fourier transform (STFT) was used to capture
time-frequency characteristics from EEG signals and CNN was
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adopted for classification [12], [17]. Ozcan et al. [2] further
investigated 3D CNN for evaluating the spatio-temporal cor-
relations in EEG classification. In addition, recurrent neural
network (RNN) was also introduced in many recent studies
[18]. The above approaches are time-consuming during train-
ing process which becomes a major obstacle for the clinical
use of EEG-based seizure predicting system. Therefore, devel-
oping the good cross-subject generalization ability is desirable
for a practical seizure prediction application especially in the
cases of new patients. Therefore, the substantial inter-subject
variabilities of epilepsy-related EEG activities should be con-
sidered. Recently, contrastive learning for the EEG feature
extraction has found that contrastive objectives can learn better
representations than the supervised learning [19]. For example,
Shen et al. [20] used contrastive learning to maximize the
similarity in EEG representations for cross-subject emotion
recognition. Banville et al. [21] further utilized the contrastive
learning in EEG-based sleep staging and pathology and out-
performed the supervised learning. Therefore, we explore
contrastive pretraining for seizure predicting, which learns
generic representations of epileptic EEG from source subjects
and can be easily adapted to a target subject.

Additionally, in order to extract supplementary information
in temporal-spectral domain for the seizure prediction, some
recent studies introduced attention mechanisms into the feature
extraction. Specifically, Li et al. [15] used the squeeze-and-
excitation network (SENet) to capture correlations between
EEG channels. Similarly, an additional branch was used to
generate individual dependencies among EEG channels [22].
Moreover, Yang et al. [17] adopted attentions in both spectral
and channel domain, which built global dependencies on
spectrums and interdependence on EEG channels. The above
attention methods have been proved helpful in boosting the
seizure prediction performance. However, most of them mainly
focused on building the channel attention of EEG signals,
where the spatial attention was not considered. We take
inspiration from the Convolutional Block Attention Module
(CBAM) [23], which successfully demonstrated the impor-
tance of building spatial attention along with the channel
attention. However, the attention method in CBAM did not
account for the cross-dimension interaction, which ignored the
relation between channel dimension and spatial dimension,
and thus may degrade the performance. Motivated by this,
we attempt to introduce a comprehensive attention mecha-
nism to capture the cross-dimension interaction, which can
characterize both inter-channel and spatial dependencies while
building inter-dimensional interaction between channel and
spatial attentions.

It should be noticed that, although the CNN has shown the
promising performance in EEG classification tasks [24], it can
only captured the spatial information between EEG channels
in a short range due to its regular operation and the local
receptive field [25]. Moreover, the non-Euclidean structure of
EEG electrodes cannot be fully represented by the standard
convolution operation [26]. Therefore, in order to mitigate
the above disadvantages of the CNN, a graph convolutional
network (GCN) was investigated, which viewed the EEG
signals as graph representations and captured spatio-temporal
features from EEG [25]. Specifically, EEG graphs were built

by associating signals’ spatial and temporal properties with
graph nodes and edges [27], and then fed into the GCN
for feature extraction. For example, Wang et al. [28] applied
the phase locking value (PLV) to capture spatial information
between EEG channels. Variational Instance-adaptive graph
(V-IAG) was used to characterize the dependencies among
EEG channels [22]. Zhong et al. [29] adopted the differential
entropy (DE) to represent temporal correlations in EEG signals
and build graph nodes. However, these methods merely relied
on handcrafted features to represent EEG graphs, and the
priori indicators probably ignored the heterogeneities between
different epileptic patients, which affected the generalization
ability of the GCN. Thus, in this study, we focus on building
a dynamic GCN framework which can infer a patient-specific
EEG graph and extract spatio-temporal responses with the
graph convolution jointly.

In summary, to deal with the above issues, in this paper,
we propose Contrastive Learning for Epileptic seizure Pre-
diction (CLEP) using a Spatio-Temporal-Spectral Network
(STS-Net). Specifically, our CLEP strategy pretrained the
EEG Encoder using the contrastive learning, which optimizes
an EEG contrastive (EC) loss to learn generic EEG repre-
sentations. Then, the proposed STS-Net serves as the EEG
Encoder and includes three subnets as follows. The pyramid
convolution net first captures multi-scale temporal-spectral
evolutions from raw EEG signals under five rhythms. Second,
the triple attention fusion net is followed, including fives
parallel branches, each of which takes a certain group of
temporal-spectral evolutions as inputs and fuses the features
by consecutive triple attention layers (TAL). Third, the spatial
embedded net is applied which embeds spatial information
between electrodes into the refined feature maps through the
proposed spatio dynamic graph convolution network (sdGCN).
Experiment results on two epileptic EEG datasets show that
our CLEP-STS-Net can predict seizures accurately and the
performance is better than the state-of-the-art studies.

The main contributions of this study are summarized below:
1) A novel CLEP-STS-Net scheme is proposed for the

seizure prediction, which explores multi-scale spatio-
temporal-spectral features from EEG signals through
our STS-Net. Besides, the contrastive learning strat-
egy CLEP is proposed to minimize the similarity of
inter-class epileptic EEG patterns and maximize the
similarity of inner-class patterns across subjects, which
improves the generalization ability and benefits the
patient-specific seizure predicting;

2) A triple attention layer (TAL) is introduced for build-
ing inter-dimensional interaction between input feature
maps, which encodes inter-channel and spatial depen-
dencies through a triplet attention structure;

3) We propose a spatio dynamic graph convolution net
(sdGCN) to better capture the preictal transitions in
EEG, which embeds channel-information into temporal-
spectral features under different rhythms dynamically by
using the graph convolution;

II. METHODOLOGY

The proposed seizure prediction framework is shown in
Fig. 1, and summarized as follows: (1) The proposed CLEP
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Fig. 1. The illustration of the proposed CLEP-STS-Net, where the proposed EEG Encoder: STS-Net can be found in Section II-B.

strategy is applied to pretrain EEG Encoder on the source
subjects using the contrastive learning; (2) The proposed
STS-Net contains three modular subnets, i.e., the pyramid
convolution net, the triple attention fusion net, the spatio
embedded net, performs as the EEG encoder and is fine-tuned
on target subject; (3) The optimized CLEP-STS-Net is then
transformed into a practical seizure warning system through a
post-processing scheme.

A. CLEP: Contrastive Learning for Epileptic Seizure
Prediction

Deep-Learning-based seizure prediction methods commonly
need sufficient data and train the model in a patient-specific
way, which means that extensive EEG signals are required for
one patient for seizure prediction. However, it usually takes a
long time and cost to prepare enough data clinically. Besides,
the patient-specific model has little generalization ability due
to heterogeneities among patients. Therefore, to overcome
the challenges of data insufficiency and low generalization
ability, the proposed CLEP performs contrastive pretraining
on source subjects and fine-tunes the model on the target
subject, which transfers relevant epileptic EEG patterns to
help the learning task for a new patient. The proposed CLEP
framework is shown in Fig. 1, which includes the following
steps. First, the CLEP pretrains the EEG encoder on the source
subjects using both the contrastive learning and the supervised
learning. Given a batch of N EEG trial, suppose there are
m preictal representations and n interictal representations in
a batch. We decide that every two preictal representations
form a matched pair, every two interictal representations form
a matched pair. Therefore, we get m2

+ n2 matched pairs
and 2×m×n incorrect pairs in each batch. In the contrastive
learning, the CLEP is trained to predict which of the N × N
possible pairs match and which do not match. Therefore,
the CLEP trains the EEG Encoder to maximize the cosine
similarity of the m2

+ n2 matched representation pairs in the
batch while minimizing the cosine similarity of the 2×m × n
incorrect representation pairs.

We optimize a new EEG contrastive (EC) loss over these
cosine similarity scores. Given the input EEG representations

Xeeg = {(X i , yi )|i = 1, 2, . . . ,N }, where X i ∈ R1×T is the
i-th EEG representation with a feature vector length of T , N
is the batch size. yi is the corresponding label of X i , either
preictal or interictal. The cosine similarity score of two input
representations X A and X B is given by:

sim(X A, X B) =
X A·X B

∥X A∥∥X B∥
(1)

where X A·X B is the inner product of X A and X B . The EC
loss is calculated by the following formula:

L EC
i = −

1
Nyi

log

∑N
j=1 1[yi =y j ]exp(sim(X i , X j )/τ)∑N

k=1 exp(sim(X i , Xk)/τ)
(2)

where Nyi is the number of samples that have the same label as
yi in a batch. 1[yi =y j ]∈ {0, 1} is an indicator function which is
set to 1 if yi = y j . τ is the temperature and controls the range
of the softmax, which is directly optimized during training to
avoid turning as a hyperparameter. By minimizing EC loss
in Eq. (2), the model will increase the similarities between
representations that come from the same class and reduce
the similarities between preictal and interictal representations.
During pretraining, the CLEP also uses the supervised learning
as a supplement, which predicts whether an EEG representa-
tion is preictal or interictal, and this is implemented by the
cross-entropy loss:

LC E
= −

1
N

∑N

i=1
[yi log (pi ) + (1 − yi ) log (1 − pi )] (3)

where pi is the predicted probability of preictal and yi is the
label. By combing the contrastive learning and the supervised
learning, the CLEP is pretrained by using the hybrid loss
function:

L = αL EC
+ (1 − α) LC E (4)

where α is a hyperparameter and set to 0.5. When pretrain-
ing is done on the source subjects, the CLEP finetunes the
EEG Encoder on the target subject to eliminate interdomain
differences. The EEG Encoder is then trained by using the
supervised learning which adapts the extracted representa-
tions to the target domain. Finally, our CLEP-STS-Net is
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Fig. 2. The structure of the proposed EEG Encoder: Spatio-Temporal-Spectral Network (STS-Net).

well-trained to serve as a real-time seizure prediction system,
which is able to perform inference on unlabeled EEG signals
from target subject.

B. STS-Net: Spatio-Temporal-Spectral Network
In this subsection, we describe how the proposed

EEG Encoder: STS-Net is built in details, which extracts
temporal-spectral features from different rhythms while
embedding dynamic spatial information to generate classifica-
tion results of epileptic EEG signals. Fig. 2 shows the structure
of STS-Net, which is demonstrated as follows:

C. Design of the Pyramid Convolution Net
EEG signals contain abundant temporal, spatial and spec-

tral features, which are difficult to define manually [30],
[31]. In order to capture significant temporal and spectral
responses from epileptic EEG, the pyramid convolution net
is implemented by two separate pyramids: spectral pyramid
and temporal pyramid, extracting multi-level spectral features
and multi-scale temporal features, respectively. The structure
of the pyramid convolution net is shown in Fig. 2.

Since neural activities in an epileptic seizures may be
of different frequencies, the spectral pyramid is designed to
obtain spectral feature responses under different scales, which
also correspond to the clinical frequency subbands: δ rhythm
(0-4Hz), θ rhythm (4-8Hz), α rhythm (8-13Hz), β rhythm (13-
30Hz), γ rhythm (30-50Hz) [32]. Specifically, the spectral
pyramid net consists of hierarchical wavelet convolutions
(waveConv), which implements wavelet decomposition on the
input EEG sample through the convolution layer. Inspired by
the Daubechies order-4 (Db4) wavelet, which is useful in
spectral analysis due to its high correlation coefficients with
the epileptic spikes [33], [34], Db4 is applied in the waveConv
in this study. Specifically, for a given input EEG representation
x at time sample t , the waveConv performs in a way analogous
to the discrete wavelet transform, and is defined by:

xA (t) =

∑R

r=0
x (s × t − k) × u (r)

xD (t) =

∑R

r=0
x (s × t − k) × v (r) (5)

where u and v denote the approximation filter and the detail
filter, respectively. xA and xD are approximation coefficients
and detail coefficients. r and s refer to the kernel size and
stride, set to 8 and 2, both of which are consistent with
the order of Db4 wavelet filter [35]. The approximation
coefficients xA is then fed into the next waveConv layer, and
the consecutive waveConv layers perform spectral analysis
iteratively through L pyramid level, where L is defined by the
signal sampling rate fs : L =

⌊
log2 ( fs)

⌋
− 3, and ⌊·⌋ is the

rounding-down operation [30]. Through the above hierarchical
waveConv layers, the frequency boundaries of xA and xD of
the l-th pyramid level are (0, fs /2l+1) and ( fs /2(l+1), fs /2l),
respectively, where l=1, 2, . . . , L . Moreover, since we set
the strider to 2 in each layer, we get spectral feature map of
shape ((E +1) @ C× T /2l) from the l-th pyramid level. As a
result, a set of pyramid spectral features under five standard
physiological subbands are captured. Note that the waveConv
involves no learnable parameters, whose weights are preloaded
from Db4 wavelet filter.

The pyramid spectral analysis is essential for EEG feature
extraction [36], the previous studies was also proved to be
helpful by using temporal patterns for EEG classification
[37], a temporal pyramid net is thus implemented through
several parallel temporal convolution layers. Specifically, the
pyramid level is set to 5 in order to generate temporal
representations consistent with 5 pyramid spectral features
[35]. The kernel sizes and strides are empirically set to {k/8,
k/4, k/2, k, k}, where k = 2L , to get pyramid temporal
features with the consistent sizes as pyramid spectral features
above. Note that each temporal convolution layer is followed
by batch normalization and exponential linear unit (ELU).
Next, in order to combine the above spectral and temporal
analysis, the pyramid spectral features and temporal features
are concatenated channel-wisely, resulting in five groups of
temporal-spectral features.

D. Design of the Triple Attention Fusion Net
Although abundant feature extraction is proved helpful in

EEG classification, inappropriate fusion method may involve
redundant information and produce a poor performance.
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Fig. 3. The architecture of the triple attention layer (TAL).

Therefore, the triple attention fusion net is employed to empha-
size the most discriminative representations by the proposed
triple attention layer (TAL), which is shown in Fig. 2. Unlike
SENet [38] and CBAM [23] which required a certain amount
of learnable parameters, the goal of TAL is to model channel
attention and spatial attention cheaply but effectively while not
involving dimension reduction.

The channel attention in SENet focuses the model to
learn more on certain channels, while the CBAM introduced
a spatial attention as a complementary module telling the
model which channel should be emphasized. However, the
channel attention and the spatial attention are considered
separately, and the relation between channel dimension and
spatial dimension is ignored. Motivated by the above attention
mechanism, for the input tensor X in ∈ RC×H×W , a cross-
dimension attention is considered, named triple attention layer,
which uses three branches to capture dependencies between
(H , W ), (C , W ) and (H , C) dimensions of the input tensor,
respectively.

The structure of the proposed TAL is given in Fig. 3. Con-
sidering the existing of heterogeneity between multi-domain
feature maps, the TAL first applies group convolution on the
input temporal-spectral features X in ∈ RC×H×W . The parame-
ter group is set to 2, which reduces the computational cost [39]
and the alleviates aliasing effect as well [40]. Next, the feature
maps are passed into three branches respectively, and the first
branch is designed to capture interaction between (H , W)
dimensions and performed on X H W ∈ RC×H×W . At the
beginning, the channel-wise max-pooling and average-pooling
are applied to reduce the channel dimension and then the
pooled features are concatenated. This shrinks the feature maps
to make further computation lightweight and results in a rich
representation X pool , which is defined by:

X pool = Max Pool(X H W )©Avg Pool(X H W ) (6)

where X pool ∈ R2×H×W is the pooled feature, Max Pool (·)

and Avg Pool (·) refer to the channel-wise max-pooling and
average-pooling, © is the channel-wise concatenating. X pool is
then fed into a standard convolution with kernel of 7 × 7 and
a sigmoid activation layer, which provides the intermediate
attention weights Xw ∈ R1×H×W . The generated attention
weights are then applied to the input X H W through element-
wise multiplication. The second branch acts similarly, and
a permuting operation is added to permute the input tensor

Fig. 4. A schematic illustration of the sdGCN.

into XCW ∈ RH×C×W , which aims at capturing dependencies
between (C , W) dimensions. Moreover, another permuting
operation at the end of the second branch transforms the
tensor into the original input shape. The third branch is built
in the same way, and the first permuting operation outputs
the tensor X HC ∈ RW×H×C to build dependencies between
(H , C) dimensions. The outputs of the three branches are
then aggregated by averaging to generate the refined feature.
In summary, to obtain the refined feature Xre f from an input
tensor X in ∈ RC×H×W , the operation of the proposed TAL
can be represented by:

Xre f =
1
3
(X H W ⊙ X1

w + XCW ⊙ X2
w + X HC ⊙ X3

w) (7)

where X H W equals to the input tensor X in , XCW and X HC
are the permuted results from X in , X i

w (i = 1, 2, 3) is the
attention weighs generated from the i-th attention branch, ⊙

is the broadcast element-wise multiplication, −−− denotes the
permuting operation.

As a result, the triple attention fusion net branches into
five subnets, and the five groups of temporal-spectral features
are fed into the subnets respectively. Each subnet adopts
consecutive TAL operations to generate coarser representations
from multi-domain and refine the feature maps through triple
attention. The outputs of five subnets are then passed into an
average pooling layer and the fused temporal-spectral feature
U = [µγ , µβ , µα, µθ , µδ] is obtained, where µi ∈ RE×F ,
and F is the length of feature vector under each rhythm.

E. Design of the Spatio Embedded Net
From the above subnets, multi-scale temporal-spectral fea-

tures are captured from the EEG signals and refined, but
the interdependencies between different electrodes have not
been considered yet. Therefore, we build EEG graphs by
using a proposed sdGCN, which explicitly explores spatial
relationships between EEG channels through dynamic graph
convolution. The structure of the proposed sdGCN is given in
Fig. 4.

Previous studies commonly use 2D position projection of
electrodes to build EEG graph [41]. However, the 2D pro-
jection of EEG electrodes was merely a rough approximation
which partially represented the EEG graph but ignored precise
distance measurement [26]. Considering this, we propose
a position embedding method to represent the correlation
between two electrodes using 3D position. First, we define
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a set including distance between any two EEG electrodes
by: Dis = {di j |i, j ∈ (1, E) , i ̸= j , where di j denotes the
Euclidean distance of node i and node j , E is the number of
electrodes. The distance can be acquired from the international
10-20 system. Then we define two electrodes are neighbors
if the distance di j is smaller than the average value of Dis .
Moreover, the distance between an electrode and itself is
defined as the average distance of all neighboring electrodes
to this electrode. In summary, we embedded 3D positions into
adjacent matrix A ∈ RE×E through the proposed position
embedding methods, which is defined by:

Ai j =


1

di j
i f di j < M(Dis)

0 i f di j ≥ M(Dis)
1

M({diq |diq < M(Dis)})
i f i = j

(8)

where M (Dis) is the mean value of distance set Dis . However,
the above position embedding method is subject-independent,
and the spatial information embedded in electrodes is captured
in a fixed mode, which is not able to precisely model the
heterogeneity among different subjects. Therefore, the pro-
posed sdGCN further applies a self-gating method on the
adjacent matrix A. Specifically, the self-gating method forms
a bottleneck with two fully-connected (FC) layers to perform
the squeeze-and-excitation on the adjacent matrix A, where
the first FC layer applies dimensionality-reduction and the
second FC layer is for dimensionality-increasing. A rectified
linear unit (ReLU) is further followed to prune negative
correlations in A. Namely, the combination of the FC layers
and ReLU nonlinearities turns A into a learnable dynamic
matrix adapted to different subjects, which dynamically model
the dependencies between electrodes. The self-gating method
is defined by:

Ãd = σ(W2δ(W1( Ã))) (9)

where Ã ∈ R(E×E)×1 is reshaped from A, W1 ∈

R((E×E)/r)×(E×E) and W2 ∈ R(E×E)×((E×E)/r) are weight
matrixes of the first and second FC layer, r denotes the reduc-
tion ratio, whose influence will be discussed in Section IV-F.
δ (·) is the ELU activation function and σ (·) is the ReLU
activation function, which is adopted to get a sparse graph and
suppress negative values. As results, a dynamic adjacent matrix
Ad is obtained by reshaping Ãd ∈ R(E×E)×1 into RE×E .
Once the connection relationship between electrodes is built,
the sdGCN applies graph convolution on the temporal-spectral
feature U and the dynamic adjacent matrix Ad by:

Gi
= δ(D−1 Adδ(µi21)22) (10)

where Gi
∈ RE×F is the dynamic EEG graph under the i-

th rhythm, δ is the ELU activation function, Di i
=

∑
j Ai j

d
is the degree matrix of Ad , µi ∈ RE×F is the fused
temporal-spectral feature under the i-th rhythm, where i = 1,
2,. . . , 5. 21 ∈ RF×F and 22 ∈ RF×F are the weight matrixes
of convolution kernels in the first and second 1 × 1 convolu-
tion layer. Therefore, the spatial information is dynamically
embedded into temporal-spectral feature under five rhythms.

TABLE I
DATA INFORMATION OF THE PUBLIC CHB-MIT DATABASE

Finally, consecutive fully connected (FC) layers at the end of
the spatio embedded net map the multi-domain feature into
the seizure predicting results.

F. Post-Processing and Implementing Details
In this section, the optimized CLEP-STS-Net is translated

into a practical seizure warning system through a persistent
post-processing scheme [42]. First, the proposed CLEP-STS-
Net generates probability series P(i) from the input EEG
signals, where P(i) denotes the probability the input signal
belongs to preictal from the i-th EEG sample. Then a moving
average filter is applied on P(i) to alleviate the oscillation and
get the smoothed probability series Ps(i) [2], [15]. The lengths
of the moving average filter are set to 15s for CHB-MIT
and 25s for Xuanwu dataset, which will be discussed in
Section IV-H.

Next, when Ps(i) exceeds a pre-defined threshold ω,
a trigger Tr (i) of duration τω will start to warn the patient
for an imminent seizure. The threshold ω for CHB-MIT
and Xuanwu is set to 0.6, whose influence will be dis-
cussed in Section IV-H. τω is the persistence parameter and
is equal to the preictal period length [42]. For a true warning,
Tr (i) should start at least τω0 prior to the seizure onset, and
remain activated until the seizure onset, otherwise it becomes
a false warning. τω0 is the detection interval, which ensures the
patient to be prepared for the incoming seizure [42]. Recent
studies commonly define τω0 less than 1-minute [2], [15], and
we set τω0 to 30-second in this study. At last, the seizure warn-
ing system is produced through the proposed CLEP-STS-Net.

III. EXPERIMENTAL RESULTS

A. Dataset Description
The effectiveness of the proposed CLEP-STS-Net is evalu-

ated on two epileptic datasets described in this section.
1) CHB-MIT scalp EEG Dataset [43]: The CHB-MIT dataset

consists of scalp EEG recordings from 23 pediatric patients,
sampled at 256Hz from 18 common electrodes. Details
about CHB-MIT dataset can be found in Table I, including
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TABLE II
DATA INFORMATION OF OUR XUANWU DATABASE

115 seizures in total. In this paper, patients with at least two
seizures and three-hour interictal recordings are included for
the seizure predicting evaluation [2]. Data within two-hour
after a seizure are removed in order to eliminate effect
of postictal period [15]. For the seizure prediction, we are
interested in whether our proposed method can predict the
leading seizure. Therefore, in the case where several seizures
cluster within two-hour period, only the first seizure is used
[12], [17], [42]. Finally, due to the above criterion, 99 out of
115 seizures are used in this paper.

2) Xuanwu iEEG Dataset: The Xuanwu dataset was
recorded by the Xuanwu Hospital of Capital Medical Univer-
sity, Beijing, China. It contains multi-channel iEEG recordings
from 5 patients. Totally there are 19 seizures and each patient
has at least 2 seizures. The total duration of recordings is
about 42 hours. The start time and end time of each seizure
were labeled clearly according to expert judgments. All the
experimental protocols have been approved by the Ethics
Committee of Xuanwu Hospital, and informed consent was
obtained from all patients participated in our study. Details
about Xuanwu dataset can be found in Table II.

Deep learning-based seizure predicting methods usually
crop EEG signals into clips through a sliding window ranging
from 1s to 5s [2], [6], [10], [15]. In this study, for both datasets,
the EEG signals are sampled into 5-second clips before fed
into the proposed CLEP-STS-Net [15]. Moreover, previous
studies commonly define the preictal period varying from 15 to
30 minutes [2], [15], [17]. Inspired by this, we define the 15-
minute period before seizure onset as the preictal period, and
define the interictal period at least 2-hour away before seizure
onset and after seizure ending [12], [15].

B. Experimental Settings and Evaluation Metrics
In order to balance the interictal and preictal data, the

interictal clips are randomly sampled to the same number
of preictal clips [8]. Moreover, patient-specific leave-one-out
cross-validation (LOOCV) is used to evaluate the performance
of the proposed method. Specifically, suppose there are total N
seizures for a specific patient, N -1 seizures are used for train-
ing and the left one is for testing. This procedure is repeated
for N times, which ensures that all the N seizures are covered
in testing. The performance for the specific patient is averaged
across N times, and the overall performance is averaged across
all patients. The performance of the proposed CLEP-STS-Net
is evaluated by using four metrics: Area under curve (AUC),
Sensitivity (Sn , the ratio of truly predicted seizures to the total
number of seizures), False Predicting Rate (FPR/h), and p-

value. The p-value is used to evaluate the significance of the
improvement over a chance predictor [2], [42].

C. Overall Performance
The proposed CLEP-STS-Net is a more competitive method

in the presence of the pyramid convolution net, the triple
attention fusion net and the spatio embedded net. In this
section, the patient-specific overall performance of the pro-
posed CLEP-STS-Net is evaluated by comparing with the
following baseline methods. All these methods are retested
on two datasets.

1) DCNN+Bi-LSTM [8]: This method used deep con-
volutional network for EEG spatial feature extraction
and applies a bidirectional LSTM to capture temporal
features and perform the classification, which is a typical
deep learning strategy for seizure predicting.

2) STFT+CNN [12]: This method first used short-time
Fourier transform to generate spectrograms from EEG
and CNN was adopted for further feature extraction and
classification, which becomes the backbone architecture
of many seizure predicting model.

3) CE-stSENet [35]: This method introduced attention
mechanism into epileptic seizure classification task,
which adopted squeeze-and-excitation attention to model
the dependency between EEG channels and improved
the classification performance.

Note that the above baseline methods conduct experiments
using 8, 13 and 19 patients from CHB-MIT dataset in their
original paper, respectively. For a fair and comprehensive
comparison, all these methods are retested under the same
environment and use 19 patients from CHB-MIT dataset. From
Table III, the proposed CLEP-STS-Net yields an average AUC
of 0.918, while other baseline methods only get average AUC
of 0.856, 0.886 and 0.857 respectively, which shows the robust
classification ability of our proposed method. Especially, AUC
values from patient 1, 23 are greater than 0.99, indicating that
our method is capable of distinguishing preictal EEG signals
from interictal ones. Moreover, our seizure predicting system
warns total 96 out of 99 seizures, which also outperforms
all other methods. Meanwhile, the average FPR/h of our
method is 0.072/h, which is lower than the baseline methods.
Additionally, the p-values of our predicting system are less
than 0.05 for all patients, which proves the robustness of
the proposed CLEP-STS-Net. The comparisons on Xuanwu
dataset are given in the Table IV.

D. Influence of the Contrastive Pretraining Strategy
In order to measure how the contrastive pretraining strategy

contributes to the model, we remove the CLEP and retest
our STS-Net on each patient. From Table V, our CLEP-STS-
Net achieves a higher Sn of 2.4% on CHB-MIT comparing
to the STS-Net. Moreover, with the CLEP, the FPR/h values
gets 0.055 and 0.06 lower in two datasets. These increases
show that the proposed contrastive learning can effectively
benefits the seizure predicting model. In addition, Fig. 5(a)
and Fig. 5(b) shows the comparing results on two datasets.
We can see that AUC of all patients are boosted with the
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TABLE III
THE OVERALL COMPARISON OF THE PERFORMANCE ON CHB-MIT DATABASE

TABLE IV
THE OVERALL COMPARISON OF THE PERFORMANCE ON OUR XUANWU DATABASE

Fig. 5. (a) Comparison with and without the CLEP on CHB-MIT;
(b) Comparison with and without the CLEP on our Xuanwu dataset;
(c) Comparison between the different reduction ratio r.

CLEP involved, which shows the effectiveness of the CLEP
in learning general representations for the seizure prediction.
Especially, benefitting from the contrastive learning, a max-
imum AUC increasement of 0.01 is reached on the patient
2 from CHB-MIT, and this indicates that the learned represen-
tations are not only invariant to subjects but also generalizable
to different epileptic patterns. Besides, the decrease in standard
deviation (Std) among all patients indicate that the CLEP can
combat the heterogeneity between different patients.

Fig. 6. Performance comparison with baseline methods under different
amount of training samples per class in the fine-tuning step on CHB-MIT
dataset. “all data” means the model is trained using all available data.

In addition, we illustrate that our CLEP facilitates the
training process of seizure prediction. In Fig. 6, we compare
the performance of our CLEP-STS-Net with STS-Net and
three baseline methods using different amount of the fine-
tuning data. While it is intuitive to expect model with less
data to underperform model with more data, we instead find
that our CLEP-STS-Net fine-tuned with 450 samples per
class almost matches the performance of the STS-Net fine-
tuned with 900 samples per class, and outperforms all other
methods with 900 samples per class. This is likely due to the
important pretrained representations generated from the CLEP.
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TABLE V
ABLATION STUDIES ON TWO DATASETS

The contrastive pretraining strategy allows for EEG features to
be general which facilitates the fine-tuning step. By contrast,
normal supervised learning must train from scratch which
do not utilize any pretrained knowledge [44]. Besides, from
Fig. 6, we can observe that, benefited by the contrastive
pretraining, our CLEP-STS-Net fine-tuned with 2250 samples
per class matches the performance of the STS-Net trained
with all data, which reduces the amount of data required for
training to achieve the same seizure predicting performance.
Specifically, for CHB-MIT dataset, each patient has an average
of 3800 samples for training in this paper. Therefore, an aver-
age amount of 2250 samples are required on each patient for
the fine-tuning of CLEP-STS-Net, which is able to match the
performance of model without the contrastive pretraining, and
outperforms three baseline methods.

E. Impact of the Pyramid Convolution Net
In this subsection, we evaluate the effectiveness of the pyra-

mid convolution net by comparing our CLEP-STS-Net with
two simplified models: (1) model without spectral pyramid
net; (2) model without temporal pyramid net. The seizure
predicting performances on both datasets are given in Table V
with average AUC, Sn and FPR/h. First, with the waveConv
layers extracting multi-level spectral features, our CLEP-STS-
Net gains higher AUC than the model without spectral pyramid
on two datasets, and gains increases of 0.006 and 0.014,
respectively. Also, the Sn shows increases of 3.2% and 11.7%
and the FPR/h declines by 0.398 and 0.404, which further
demonstrate that the waveConv layers contribute to the seizure
predicting abilities. Moreover, comparing to the model without
temporal pyramid, which only captures spectral features from
EEG, our CLEP-STS-Net yields higher AUC of 0.011 and
0.001, higher Sn of 2.8% and 1.2%, and lower FPR/h of
0.2 and 0.601. These improvements show that extracting only
spectral representations may omit important temporal feature
responses, which also proves the efficiency of Temporal Pyra-
mid in extracting multi-scale temporal features. In summary,
we can learn that the proposed CLEP-STS-Net outperforms
the two simplified models on two datasets, which intuitively
demonstrates the effectiveness of the spectral pyramid net and
temporal pyramid net.

F. The Influence of the Triple Attention Layer
Our next attempt is to adopt the triple attention fusion net

which helps to alleviate the differences between the spectral

features and temporal features generated from pyramid con-
volution. In this section, we exploit the advantage of using
TAL in the training of seizure predicting model. We first
evaluate the performance of our CLEP-STS-Net with or with-
out TAL, and show the average AUC, Sn and FPR/h on two
datasets in Table V. Concretely, our CLEP-STS-Net achieves
a higher AUC of 0.004 and 0.005 comparing to the model
without TAL. Moreover, the FPR/h values gets 0.044 and
0.011 lower in two datasets with TAL. These increases show
that the proposed triple attention fusion method is able to
fuse the temporal-spectral features under the preictal transition,
which combats the heterogeneity between different patients
and effectively benefits the seizure predicting model.

G. The Performance of the Spatio Dynamic Graph
Convolution Network

In order to embed spatial epileptic activities into the
temporal-spectral responses, the sdGCN is adopted to dynami-
cally model the relationships between electrodes and aggregate
spatial information. We further compare the classification
performance between our CLEP-STS-Net and a simplifier
one without sdGCN, and Table V shows the results. We can
see that with sdGCN, AUC and Sn are 0.035 and 1.3%
higher on CHB-MIT, and AUC also gets improvements of
0.015 on Xuanwu dataset. Moreover, the FPR/h declines by
0.06 and 0.159 on two datasets. These improvements show
that the proposed sdGCN algorithm actually contributes to the
seizure predicting, and this is probably due to its learnable
transformation which turns the static electrode position into
dynamic spatial graph. Next, the reduction ratio r has influence
on the sparsity of the dynamic adjacent matrix Ad , which
allows us to vary the capacity and computational cost of the
sdGCN. The best hyperparameters are subjective and vary
for each dataset, since the amount of data and the number
of patients are different. To investigate this influence, we set
r with the range from 1 to 32 to evaluate the classification
performance. From Fig. 5(c), we can observe that with r = 8,
it reached the best performance on the Xuanwu datasets; with
r = 16, it achieved the highest AUC for CHB-MIT dataset.

We further investigate how the dynamic adjacent matrix
Ad changes during training process, and Fig. 7 shows the
transitions from the original adjacent matrix A to the final
Ad in the training process. We can observe that the zero value
in A are replaced by the learned values in the Ad , and this
indicates that certain spatial correlations are built between
the corresponding electrode pairs. Moreover, the original A
is transformed from a symmetric matrix into an asymmetric
directed matrix. From the perspective of the causal interaction,
the direction of the information flow between brain regions
can reveal more information about brain interactions [45].
Therefore, this directed graph provides more precise infor-
mation than simpler undirected graphs [46], which makes the
sdGCN to learn more diverse information from the electrode
position embeddings. Fig. 7 also presents the visualization
of Ad on scalp topologies, which clearly shows how the
electrode correlation is built during the training of the sdGCN.
In addition, we can see that our sdGCN learns a patient-
specific Ad . If we use the static position embedding method
which all patients share the same adjacent matrix, the het-
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TABLE VI
THE COMPARISON OF MODEL COMPACTNESS

Fig. 7. Transitions of the dynamic adjacent matrix Ad during the training
process of the patient 8 from CHB-MIT. (a) the values of Ad; (b) the 2D
visualization of Ad on scalp topologies.

erogeneity of individuals is ignored and not precise enough
for a patient-specific seizure prediction method. In summary,
compared to the static position embedding method, our sdGCN
learns the dynamic correlations among different EEG channels
and embeds the spatial relationships into feature maps, which
boosts the classification performance.

IV. DISCUSSIONS

A. Efficacy of Model Compactness
In order to evaluate the compactness of our CLEP-STS-Net,

we compare the number of parameters with baseline methods
in Table VI. The proposed CLEP-STS-Net involves 2.85×105

parameters which is less complex than the DCNN+BiLSTM
and similar with the previous CE-stSENet. Although the
network in STFT+CNN contains less parameters, it is not an
end-to-end seizure predicting method and additional computa-
tion cost is spent in building the spectrums before the network.
In addition, we evaluate the inference time which starts from
the input of EEG sample and ends with output probability.
We perform all experiments on Pytorch framework with Intel
Core i7-4790 3.60GHz CPU and the NVIDIA V-100 GPU with
32GB. Although our proposed CLEP-STS-Net method takes
longer time than the STFT+CNN methods, our inference time
(689.1µs) is much less than the length of an input EEG sample
(5s), which is suitable enough for real-time seizure prediction
tasks.

B. Performance Comparison of Different Methods
Table VII lists the state-of-the-art methods in seizure pre-

diction on CHB-MIT. It is difficult to decide which is the best
approach since each method used a limited set of selected
data according to the pre-defined preictal and interictal inter-
val. For example, Truong et al. [12] and Yang et al. [17]
combined the STFT with CNN and tested their approaches
on 13 patients, which resulted in suboptimal performance
compared with our proposed CLEP-STS-Net. This is probably

Fig. 8. (a) The seizure prediction results on one seizure from the typical
patient 1 of CHB-MIT, where the results are shown one-hour before the
seizure onset; (b) patient-specific seizure prediction time.

due to the lack of temporal and spatial EEG pattern in their
method. In comparison with Ozcan et al. [2] and Zhang et
al. [6] which extract features from the frequency and time
domain, our proposed method considers the spatio-temporal-
spectral representation of EEG and yields 9.7%, 4.71% higher
in Sn and 0.024, 0.048 lower in FPR/h. Also, compared
with Gao et al. [13] which used a dilated CNN for spatial
pattern extraction, our CLEP-STS-Net applies sdGCN to build
patient-specific EEG graphs and embeds spatial information
into the temporal-spectral feature maps, and gains a higher Sn
of 3.41%. Moreover, compared with our LOOCV validation
scheme which does not break the continuity of signals when
testing, 10-fold CV in [11] and [14] shuffles EEG signals and
ignores the continuous variation inside seizures. As results,
our CLEP-STS-Net achieves more promising Sn and FPR/h
against most of the recent studies.

C. Analysis of Seizure Predicting Time
To further evaluate the ability of predicting in time, the

seizure prediction time of each patient is shown in Fig. 8.
We use the filter length of 15 for CHB-MIT and 25 for
Xuanwu, and threshold of 0.6 for both datasets, which are
optimized in Section IV-H. Fig. 8(a) is an example of the pre-
diction generated by our method on one seizure of the patient
1 from CHB-MIT. Fig. 8(b) shows the patient-specific seizure
predicting time on two datasets. The proposed CLEP-STS-Net
yields average prediction time of 12.62 min on CHB-MIT and
11.45 min on Xuanwu, respectively. Especially, for the patient
23 from CHB-MIT, our proposed method advances seizure
onset with an average prediction time of 14.89 min, which is
early enough for the patient to get prepared for the incoming
seizure.

D. Visualization Interpretation of Our CLEP-STS-Net
The proposed CLEP-STS-Net can produce robust seizure

prediction results using the epileptic EEG signals. However,
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Fig. 9. Grad-CAM visualization results based on five outputs of the pyramid convolution net, where the EEG data is from the typical patient 1 of
CHB-MIT, the brighter parts are the regions which the model pays more attention to the corresponding class, the top row is the results for interictal
class, and the bottom row is the results for preictal class, respectively.

TABLE VII
EXPERIMENTAL SETTINGS AND THE PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART METHODS ON CHB-MIT

it is hard for human to distinguish between interictal EEG and
preictal EEG, so we wonder how the model is able to classify
the EEG samples. Therefore, we adopt the Gradient-weighted
Class Activation Mapping (Grad-CAM) to visualize how our
CLEP-STS-Net learns from the interictal and preictal EEG
signals. We concatenate one interictal sample and one preictal
sample as input and use the five outputs of the pyramid
convolution net for the visualization, where each represents
a certain rhythm. Fig. 9 shows the activation maps generated
by Grad-CAM, and we can see that when the input EEG is
labeled with interictal class, the activation maps are brighter
in the interictal period. Also, when the input is labeled with
preictal class, the model focuses mainly on the preictal period.
The different regions of interests in temporal period indicates
that our CLEP-STS-Net is sensitive to the temporal transitions
of epileptic EEG. In addition, from Fig. 9, we can see that
this difference is more distinct in δ and θ rhythms, where
we can observe a clear transition of the f region of interests
from interictal class to preictal class. This indicates that the
preictal EEG tends to activate our CLEP-STS-Net especially
in δ and θ rhythms, which is in line with the previous studies
that the propagation of seizure causes a shifting from higher
rhythm activities in a focal region to slower rhythms across
widespread areas [15].

V. CONCLUSION

In this paper, a novel epileptic seizure prediction system is
built by using the proposed CLEP-STS-Net. Specifically, our
STS-Net first extracts multi-scale temporal-spectral features
under different rhythms through the pyramid convolution net.
Meanwhile, an attention mechanism called TAL is adopted
to construct inter-dimensional dependencies among feature
maps and effectively fused the temporal-spectral features.

Then, the proposed sdGCN is applied to dynamically construct
the spatial correlations between EEG electrodes. Finally, the
contrastive learning strategy CLEP learns the intrinsic epileptic
patterns from source subjects and improves the generalization
ability. Seizure prediction performance is evaluated on mul-
tiple patients with both scalp EEG and iEEG signals. Our
proposed CLEP-STS-Net yields promising results in AUC,
Sn and FPR/h, which outperform all the compared baseline
methods. Moreover, we evaluate the effectiveness of the CLEP,
pyramid convolution net, TAL and sdGCN through ablation
studies. Additionally, the visualization investigation shows that
our proposed method is able to extract spatio-temporal-spectral
features related to different rhythms from epileptic EEG
signals. Experimental results demonstrate that the proposed
CLEP-STS-Net can predict the incoming seizures accurately
and further facilitate epileptic patients’ daily life.
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