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BCI-Utility Metric for Asynchronous P300
Brain-Computer Interface Systems
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Abstract— The Brain-Computer Interface (BCI) was envi-
sioned as an assistive technology option for people
with severe movement impairments. The traditional syn-
chronous event-related potential (ERP) BCI design uses
a fixed communication speed and is vulnerable to varia-
tions in attention. Recent ERP BCI designs have added
asynchronous features, including abstention and dynamic
stopping, but it remains a open question of how to evaluate
asynchronous BCI performance. In this work, we build on
the BCI-Utility metric to create the first evaluation metric
with special consideration of the asynchronous features
of self-paced BCIs. This metric considers accuracy as all
of the following three – probability of a correct selection
when a selection was intended, probability of making a
selection when a selection was intended, and probability
of an abstention when an abstention was intended. Further,
it considers the average time required for a selection when
using dynamic stopping and the proportion of intended
selections versus abstentions. We establish the validity of
the derived metric via extensive simulations, and illustrate
and discuss its practical usage on real-world BCI data.
We describe the relative contribution of different inputs
with plots of BCI-Utility curves under different parameter
settings. Generally, the BCI-Utility metric increases as any
of the accuracy values increase and decreases as the
expected time for an intended selection increases. Further-
more, in many situations, we find shortening the expected
time of an intended selection is the most effective way to
improve the BCI-Utility, which necessitates the advance-
ment of asynchronous BCI systems capable of accurate
abstention and dynamic stopping.

Index Terms— Brain–computer interface (BCI), BCI
performance metrics, ERP BCI speller.

I. INTRODUCTION

ABRAIN-COMPUTER interface (BCI) is designed for
the direct operation of external technology without
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physical movement using brain signals. While BCIs were
originally envisaged as an assistive technology option for
people with severe motion impairments, the applications of
BCIs now encompass rehabilitation treatments, recreational
applications, and passive monitoring of electroencephalogram
(EEG) responses [1], [2].

The event-related potential (ERP) BCI design [3] presents
multiple stimuli in an on-screen keyboard. The user then
selects stimuli one at a time. The stimulus the user is
currently trying to select is called the target stimulus. The
BCI classifies the EEG response after each stimulus as a
target or non-target according to whether it contains the
ERPs that are induced when the user perceives a target
stimulus. This ERP BCI design is often named after the largest
component of these ERPs, the P300, which is a positive
deflection in the EEG signal that peaks about 300 ms after
the onset of the rare and unexpected target stimulus [4],
[5]. Among the many applications of P300-based BCIs,
the P300 speller is a BCI typewriter that types characters
from a virtual keyboard by flashing groups of characters
randomly [3].

The original P300 BCI design [3] has a synchronous nature.
The synchronous (system-paced) BCI design assumes that the
user is always trying to control the BCI to make selections.
It presents a fixed number of sequences of stimuli in a trial
and always makes a selection after the trial ends, regardless
of whether the user is actually paying attention to the BCI.
As a result, the synchronous design is vulnerable to varia-
tions in attention and does not maximize the communication
speed. Recent ERP BCI designs have added asynchronous
(self-paced) features, including abstention and dynamic stop-
ping [6], [7], [8], [9], [10], [11], [12], [13]. Abstention
refers to the functionality of a BCI system that skips a trial
or declines to make any selection when the selection is a
potential error. On the other hand, dynamic stopping refers
to the capability of producing a selection as soon as the
information from the sequences that have been presented
are calculated to be adequate for an accurate selection [6],
[14], [15]. Either abstaining from producing a selection
or producing a selection quickly should result in improve-
ments in BCI usability and an asynchronous BCI selection
rate.

System performance evaluation is a vital step for BCI
system development. Many performance metrics have been
used to evaluate the communication capability of a BCI
system, including classification accuracy, Cohen’s Kappa coef-
ficient, confusion matrix, mutual information, information
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transfer rate, etc [16], [17]. Some metrics have been used as
gold standards in other communication tasks, but they have
limitations in evaluating BCI system performance. Classifica-
tion accuracy, Cohen’s Kappa coefficient and the confusion
matrix do not account for the time needed for making a
selection and thus do not measure throughput of a BCI
system. Mutual information requires the estimation of the
joint statistical distribution of the system input and output,
which is often impractical in BCI research since the number
of selections in a BCI study is typically small [16]. While
information transfer rate combines accuracy and speed into
a single metric, it only provides an unrealistic theoretical
upper bound of bits transferred for a BCI system and can-
not incorporate error correction and other rate enhancements
[18], [19].

The BCI-Utility metric [18] is a user-centered metric specif-
ically designed for BCI system evaluation. It attempts to
measure the average benefit with a BCI system over trials and
is maximized when the most benefit is obtained in the shortest
interval of time. Dal Seno et al. presented the BCI-Utility
formula for a P300 Speller with and without error correction.
However, the BCI-Utility metric is highly dependent on the
system and experimental design, and thus interface-specific.
The formulas derived by Dal Seno et al. have been sufficient
for most applications in evaluating fully-synchronous P300
spellers [20], [21], [22], [23], so only a few works have derived
new BCI-Utility metric formulas for new cases [24], [25], [26],
[27], [28].

Most metrics for BCI performance evaluation, including
the BCI-Utility metric, predate the design concepts of asyn-
chronous ERP BCI – abstention and dynamic stopping. Metric
development for asynchronous BCIs is more challenging than
that of synchronous BCIs. The overall throughput, which is
a key metric for synchronous BCIs, may not be proper for
asynchronous BCIs incorporating idle periods [16]. The com-
plexity of asynchronous BCI systems requires a metric that
accounts for both accuracy and efficiency over active periods,
and correct detection of inaction over idle periods. However,
to our knowledge, there is no literature on the development of
metrics for evaluating asynchronous BCI system performance.
Therefore, in this paper, we present the BCI-Utility metric for
asynchronous P300 BCI spellers. We provide the derivation in
the context of the P300 speller, but the derived metric can be
easily applied to evaluate other asynchronous BCIs with slight
or even without alterations.

The rest of the paper is structured as follows. Section II
first revisits the BCI-Utility metric for a fully-synchronous
P300 speller and then derives new formulas for the BCI-Utility
metric for three cases of P300 BCI spellers with asynchronous
features. Then, we validate our derived BCI-Utility metric
by extensive simulations mimicking the realistic use of the
asynchronous P300 spellers in Section III. In Section IV,
we provide and describe BCI-Utility curves under different
scenarios of parameter settings. We illustrate and discuss
the practical usage of the derived metric on real-world
BCI performance data in Section V, and conclude our
paper in Section VI with a discussion of limitations of our
work.

II. BCI-UTILITY

The BCI-Utility [18] is defined as

U = E
[

lim
T →∞

∫ T
0 b(t)dt

T

]
(1)

where b(t) is a non-negative function that measures users’
satisfaction with the BCI system at time t . For a discrete
BCI where the output is defined only at discrete time instants,
the benefit function is defined only at time instant tk when
the output is generated. Therefore, the benefit function in (1)
becomes

b(t) =

K∑
k=1

bkδ(t − tk)

where bk is the benefit received at tk and K is the number
of output, in time interval [0, T ], and δ(·) is the Dirac delta
function. Let 1tk = tk − tk−1 for all k = 1, 2, . . . and define
t0 = 0, we have T =

∑K
k=1 1tk . Then, (1) becomes

U = E
[

lim
T →∞

∑K
k=1

∫ T
0 bkδ(t − tk)dt

T

]
= E

[
lim

K→∞

∑K
k=1 bk∑K

k=1 1tk

]
= E

[
lim

K→∞
UK

]
(2)

where we define UK =
∑K

k=1 bk/
∑K

k=1 1tk as the average
benefit over the first K outputs.

In this section, we discuss BCI-Utility under four scenarios,
each with its own subsection (II-A–II-D). As the first scenario,
we revisit the BCI-Utility of a fully-synchronous P300 speller
discussed by Dal Seno et al. [18] in Section II-A. Then,
in Section II-B, we extend the first scenario by incorporating
dynamic stopping where a trial could terminate once suf-
ficient evidence are collected for making a decision before
all sequences are completed. In the third case, we allow for
the abstention of the P300 speller with dynamic stopping
in Section II-C. Finally in Section II-D, we discuss the
BCI-Utility of a P300 speller with abstention and dynamic
stopping when a skip can be intentional.

A. BCI-Utility for a Plain P300 Speller [18]
In this section, we revisit an explicit formula for the

BCI-Utility metric for a fully-synchronous P300 speller by Dal
Seno et al. [18]. A fully-synchronous P300 speller is designed
in a simple way. The BCI makes a selection and displays
the selection on the screen at the end of each trial. If the
selection is correct, the user moves on to the next selection;
otherwise, the user needs to type a backspace to delete the
incorrect selection. The speller has N possible outcomes for all
trials, with N − 1 selections and a backspace. Following [18],
we assume
A1 The accuracy of the system is constant over the trials,

thus no time-dependency is included in the model.
A2 The system is memoryless, thus each trial is not influ-

enced by the result of the previous ones.
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By the above assumptions, both {bk} and {1tk} are ergodic
processes. For a random variable X generated by an ergodic
process {Xk}, we have

lim
K→∞

∑K
k=1 Xk

K
= E[X ].

Therefore, (2) reduces to

U = E
[

E[b]

E[1t]

]
=

E[b]

E[1t]
=

bsel

Tsel
(3)

where bsel is the expected benefits of a correct selection and
Tsel is the expected time needed to make a correct selection.
We could set bsel = 1 to assign unit benefit to any selection,
or measure the benefit by the conveyed information bsel =

log2(N − 1) assuming equal probability among selections.
For the purpose of computing Tsel , we denote cT as the time

needed to complete all sequences in a trial, p as the accuracy
of the speller and Tbs as the time needed to type a backspace.
We have two possible cases in each trial,

• The P300 speller makes the correct selection. This hap-
pens with probability p, and it takes cT to complete all
sequences in the trial for making such a selection.

• The P300 speller makes the wrong selection. This hap-
pens with probability 1 − p, and it takes cT to make the
wrong selection, Tbs to delete the wrong selection and
Tsel to select the correct one.

Then, the expected time for a correct selection is

Tsel = pcT +
(
1 − p

)(
cT + Tbs + Tsel

)
= cT +

(
1 − p

)(
Tbs + Tsel

)
. (4)

Similarly, the expected time for a backspace is

Tbs = pcT +
(
1 − p

)(
cT + Tbs + Tbs

)
. (5)

By subtracting (4) and (5) we get

p
(
Tsel − Tbs

)
= 0,

thus Tsel = Tbs provided p > 0. Then, from (4) we have

Tsel = cT +
(
1 − p

)(
2 Tsel

)
.

Therefore,

Tsel =
cT

2p − 1
(6)

where we require p > 0.5. If p ≤ 0.5, the expected time
for a correct selection Tsel will diverge to infinity. Plugging
bsel = log2(N − 1) and (6) into (3) we get

U =


(2p − 1) log2(N − 1)

cT
, p > 0.5

0, p ≤ 0.5.

(7)

B. BCI-Utility in a P300 Speller With Dynamic Stopping
We now consider a P300 speller with dynamic stopping. The

design of the speller is similar to that described in Section II-A
except now the BCI can make a selection or type a backspace
before all sequences are completed in a trial. When the speller
collects sufficient information before all sequences are ended
in a trial, the speller will make a decision, end the trial

early and move on to the next trial. We consider the same
assumptions in Section II-A and thus (3) holds in this case.
We introduce 0 < c ≤ cT as the expected time for a trial and
replace cT with c in the two cases described in Section II-A.
The expected time for a correction selection and the expected
time for a backspace become

Tsel = pc +
(
1 − p

)(
c + Tbs + Tsel

)
Tbs = pc +

(
1 − p

)(
c + Tbs + Tbs

)
and with the same argument in Section II-A we get

U =


(2p − 1) log2(N − 1)

c
, p > 0.5

0, p ≤ 0.5.
(8)

Note that the BCI-Utility for a plain P300 speller in (7) is
special case of (8) for which c = cT . If we disable the dynamic
stopping functionality of the BCI system, then c = cT and
we obtain the same formula from (8) as the BCI-Utility in
Section II-A.

C. BCI-Utility in a P300 Speller With Abstention and
Dynamic Stopping

In this section, we derive the BCI-Utility for a P300 speller
with abstention and dynamic stopping. During each trial, the
BCI will make a selection or type a backspace, end the
trial and move on to the next trial once there is sufficient
evidence. If all sequences are completed but no decision is
made due to lack of evidence, the speller will abstain and skip
the trial without making any selection or typing backspace.
Note, in this section, abstention serves only to avoid poorly-
evidenced selections. Intentional abstentions will be discussed
in the next section. We extend assumption A1 in Section II-A,
A1a The selection accuracy of the system and the probabil-

ity of abstention are constant over the trials, thus no
time-dependency is included in the model.

With assumption A1a and other assumptions described in
Section II-A, (3) holds for a P300 speller with abstention and
dynamic stopping.

For the purpose of computing Tsel , we first introduce some
notation,

• psel : the probability of making a selection
• pskip

= 1 − psel : the probability of skipping a trial
without typing either letters or backspace

• pcorrect
sel : the probability of correct selection given a

selection being made
• pwrong

sel = 1 − pcorrect
sel : the probability of incorrect

selection given a selection being made
• cT : the duration of a complete trial
• c: the expected duration of a trial; c < cT if a decision

is made before all sequences are completed
• Tbs : the expected time of typing a backspace.

Then for each trial, we have three possible cases,
• A selection is made and the selection is correct. This

happens with probability psel pcorrect
sel , and c is the time

needed to make the selection.
• A selection is made but the selection is wrong. This

happens with probability psel pwrong
sel , and it takes c to
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spell the wrong letter, and extra Tbs + Tsel to delete the
wrong selection and make the right one.

• The algorithm decides to skip the trial without typing any
letters or backspace. This happens with probability pskip.
It takes cT to end the trial and Tsel to type the letter.

Therefore, the expected time to spell a letter Tsel is

Tsel = psel pcorrect
sel c + psel pwrong

sel
(
c + Tbs + Tsel

)
+ pskip(cT + Tsel

)
(9)

Similarly, the expected time to type a backspace Tbs is

Tbs = psel pcorrect
sel c + psel pwrong

sel
(
c + Tbs + Tbs

)
+ pskip(cT + Tbs

)
(10)

and from (10) and (9) we obtain Tsel = Tbs . Then, Tsel can
be written as

Tsel = pselc + (1 − psel)cT + (1 + psel
− 2psel pcorrect

sel )Tsel

which implies

Tsel =
pselc + (1 − psel)cT

psel(2pcorrect
sel − 1)

(11)

for pcorrect
sel > 0.5 and psel > 0. When pcorrect

sel ≤ 0.5 or
psel

= 0, the expected time Tsel to make an intended selection
diverges to infinity. With bsel = log2(N − 1) and (11),
we finally get

U =


log2(N − 1)

Tsel
, pcorrect

sel > 0.5 and psel > 0

0, pcorrect
sel ≤ 0.5 or psel

= 0
(12)

where Tsel is as in (11).
Note that (7) in Section II-A and (8) in Section II-B are

special cases of (12). We have already shown the BCI-Utility
in Section II-B is the same as that in Section II-A when
dynamic stopping is disabled. When there is no abstention as
in Section II-B, psel

= 1 and pskip
= 0, and pcorrect

sel in this
section has the same meaning as p in Section II-B. Therefore,
in this case, (8) reduces to (12).

D. BCI-Utility in a P300 Speller With Intentional Skip,
Abstention and Dynamic Stopping

Here, We discuss the BCI-Utility for a P300 speller with
abstention and dynamic stopping when a trial skip can be
intentional. The design of the P300 speller is identical to that
in Section II-C. However, now the intended outcomes not only
include available selections and but may also include a skip
of a trial. We model the process of benefits {bk} as a mixture
of two processes of benefits {bk,sel} and {bk,skip},

bk = skbk,sel + (1 − sk)bk,skip sk ∼ Bernoulli(π i
k,sel)

where {bk,sel} is the process of benefits for intended selections
and {bk,skip} is the process of benefits for intentional skips; sk
is a binary process indicating the membership in the mixture;
π i

k,sel is the probability of intentional selections at time instant
k. We further extend assumption A1a to A1b
A1b The selection accuracy of the system, the probability of

selections being intended, and the probability of system

abstention given user’s intention are constant over time,
thus no time-dependency is included in the model.

The assumption that the probability of selections being
intended is constant implies the process sk is a Bernoulli
process consisting of i.i.d. random variables {sk} with π i

k,sel =

π i
sel . Then, {bk} is an ergodic process. Similarly, we model the

process {1tk} as a mixture of {1tk,sel} and {1tk,skip},

1tk = sk1tk,sel + (1 − sk)1tk,skip sk ∼ Bernoulli(π i
sel)

and {tk} is an ergodic process. Then, from (2) we have

U = E
[

E[b]

E[1t]

]
= E

[
π i

selbsel + π i
skipbskip

π i
sel Tsel + π i

skipTskip

]

=
π i

selbsel + π i
skipbskip

π i
sel Tsel + π i

skipTskip
(13)

where we denote bsel and bskip as the expected benefit carried
by any correctly spelled letter and the benefit carried by a
correct skip, and Tsel and Tskip as the expected time to type an
intended letter and the expected time to make an intentional
skip. The benefits bsel and bskip can be customized values.
Assuming equal probability among selections, the conveyed
information is bsel = log2(N − 1) bits.

For the purpose of computing Tsel and Tskip, we first
introduce some notation,

• psel
skip: the probability of the system making a selection

given a skip is intended
• pskip

skip = 1 − psel
skip: the probability of the system skipping

a trial given a skip is intended
• psel

sel : the probability of the system making a selection
given a selection is intended

• pskip
sel = 1 − psel

sel : the probability of the system skipping
a trial given a selection is intended

• pcorrect
sel : the probability of correct selection given a

selection being intentional and being made
• pwrong

sel : the probability of incorrect selection given a
selection being intentional and being made

• cT : the duration of a complete trial
• c: the expected duration of a trial; c < cT if a decision

is made before all sequences are completed
• Tbs : the expected time of typing a backspace.

Then for a trial where a skip is intended, we have two possible
cases,

• The system makes a selection. This happens with proba-
bility psel

skip and it takes c + Tbs to make the selection and
delete the selection and then Tskip to make the intended
skip.

• The system makes the right decision to skip. This happens
with probability pskip

skip and it takes cT to make the decision
to skip.

Therefore, the expected time for an intended skip Tskip is

Tskip = psel
skip(c + Tbs + Tskip) + pskip

skipcT . (14)
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For a trial where a selection is intended, we have three
possible cases,

• The system makes a selection as intended. This happens
with probability psel

sel pcorrect
sel . It takes c to make the

selection.
• The system makes a wrong selection. This happens with

probability psel
sel pwrong

sel . It takes c + Tbs + Tsel to make
the wrong selection, delete the wrong selection and make
the intended selection.

• The system decides to skip the trial. This happens with
probability pskip

sel . It takes cT + Tsel to skip the trial and
make the intended selection.

Then, the expected time for an intended selection is

Tsel = psel
sel pcorrect

sel c + psel
sel pwrong

sel
(
c + Tbs + Tsel

)
+ pskip

sel
(
cT + Tsel

)
. (15)

Similarly, the expected time for an intended selection is

Tbs = psel
sel pcorrect

sel c + psel
sel pwrong

sel
(
c + Tbs + Tbs

)
+ pskip

sel
(
cT + Tbs

)
. (16)

From (16) and (15), we can find Tsel = Tbs . Then, from (15)
we have

Tsel = Tbs =
psel

sel c +
(
1 − psel

sel
)
cT

psel
sel

(
2pcorrect

sel − 1
) (17)

and solve Tskip in (14) we get

Tskip =
psel

skip(c + Tbs) + (1 − psel
skip)cT

1 − psel
skip

, (18)

where we require pcorrect
sel > 0.5, psel

sel > 0 and
psel

skip < 1. Then we plug Tsel and Tskip into (13) to compute
the BCI-Utility metric

U =


π i

selbsel + π i
skipbskip

π i
sel Tsel + π i

skipTskip
,

pcorrect
sel > 0.5, psel

sel > 0 and psel
skip < 1

0, pcorrect
sel ≤ 0.5, psel

sel = 0 or psel
skip = 1

(19)

where Tsel and Tskip are as in (17) and (18), respectively.
We would like to note that the BCI-Utility discussed in

previous sections are special cases of the BCI-Utility derived
in this section. We have already shown that the Section II-A
and Section II-B are special cases of Section II-C. For the
case in Section II-C, since there is no intentional trial skip,
π i

skip = 0 and π i
sel = 1 in (13), then (13) reduces to (3). Also,

psel
sel and pcorrect

sel in this section would be equivalent to psel

and pcorrect
sel in Section II-C, respectively, because a selection

is intended in each trial. Then, (17) reduces to (11), and with
the same definition of bsel we reach the same formula for the
BCI-Utility in this section and Section II-C.

Fig. 1. Scatter plot of the observed average benefits in a simulated
process UK in bit/s (y-axis) against the BCI-Utility in bit/s computed by
our formula U (x-axis). One point is corresponding to one of the 834,176
combinations of parameters.

III. SIMULATIONS AND EVALUATIONS

We conduct a series of simulations to evaluate the validity
of our BCI-Utility metric under various scenarios. Specifically,
we simulate processes that mimic the use of the asynchronous
P300 speller using the BCI system described in Section II-D.
Note as all previously discussed cases are special cases of
Section II-D. For each simulated process, we consider 5,000
intended outcomes, which may include selections or skips,
and vary the values of four parameters (π i

sel , psel
skip, psel

sel , and
pcorrect

sel ) as defined in Section II-D. Possible values of these
parameters are summarized in Table I. We select a finer grid
in ranges of those parameters that represent BCI systems
with desired performance. We consider all combinations across
possible values of the four parameters, with a total of 834,176
simulated processes. We set c = 14.75 seconds and cT =

31.625 seconds [29], and bsel = bskip = log2(36) as in a
Row-Column Paradigm BCI [3], where N = 37 because a
trial skip is an additional outcome.

For each simulated process, we compute the observed
average benefits

UK =

∑K
k=1 bk∑K

k=1 1tk
(20)

where K = 5, 000 and compute the BCI-Utility U from
the formula using the parameters that generate the processes.
To evaluate the validity of our BCI-Utility metric, we plot
the scatter plot of the {BCI-Utility from formula U , observed
average benefits UK } pair for all simulated processes (see
Figure 1). Each of the 834,176 points corresponds to a simu-
lated process. The points on the scatter plot align well along
the diagonal line, indicating that the difference between the
observed average benefits and the BCI-Utility computed from
our formulas is small across all scenarios, which confirms the
validity of our BCI-Utility metric.

To evaluate the variation of the observed average benefits
UK , we select specific parameter combinations that correspond
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Fig. 2. Scatter plots of BCI-Utility U (x-axis, bit/s) versus observed average benefits UK (y-axis, bit/s) for the simulation where assumptions
of time-independence of accuracies and memoryless system are violated. We simulate 10,000 processes with violated assumptions. For each
simulated process, we compare the observed average benefits UK over all intentions with (a) BCI-Utility for all intentions, (b) BCI-Utility for the first
half intentions, (c) BCI-Utility for the second half intentions and (d) the arithmetic mean of the BCI-Utility calculated by the two halves.

TABLE I
POSSIBLE VALUES OF THE PARAMETERS IN THE SIMULATIONS.

A TOTAL OF 38 × 28 × 28 × 28 = 834,176 CASES ARE CONSIDERED

TABLE II
THE PARAMETER COMBINATIONS (πi

sel , psel
skip , psel

sel AND pcorrect
sel ) AND

THE SD (×10−3 BIT/S) AND MEAN (×10−3 BIT/S) OF OBSERVED

AVERAGE UTILITY ESTIMATED OVER 10,000 SIMULATED PROCESSES

to desired BCI system performance. For each parameter com-
bination, we simulate 10,000 processes, each consisting of
5,000 intended outcomes, and compute the standard deviation
(SD) of UK . We present selected parameter combinations and
their means and SDs of UK in Table II. We observe that the SD
of UK increases as either π i

sel or psel
sel increases, but remains

relatively stable when psel
sli p and pcorrect

sel vary. We provide the
analysis programs in the supplementary materials to interested
readers.

We undertake an additional simulation to evaluate the valid-
ity of BCI-Utility when the assumptions of time-independent
accurary and memoryless system are violated. In practice,
when we calculate BCI-Utility by our formula for a specific
timeframe of BCI utilization, the proper interpretation is the

average benefits of the BCI system over time when the usage
time goes to infinity if all critical attributes of the BCI
system, including accuracies, the expected time needed for
a selection and etc., remain constant in the future. Once the
data is recorded, the accuracy within the given duration can
be treated as a fixed parameter. Therefore, the BCI-Utility
yielded by our formula serves as a reasonably good synopsis
of the BCI system’s performance within the observed and
fixed usage duration, irrespective of whether the assumptions
of time-independence of accuracies and a memoryless sys-
tem are transgressed. However, the violation of assumptions
makes it invalid to generalize the expected average benefits
(BCI-Utility) calculated from our formula to the unobserved
duration of BCI usage. To elucidate the point, in this simula-
tion, we assume a degradation of accuracies and an increment
in the expected time for a selection, both linearly proportionate
to the number of intentions. Additionally, we assume that
accuracies and the expected time for a selection revert to
their initial values for one intention following a mistake.
We simulate 10,000 such processes, and each composed of
100 intentions (comprising 20 intended selections succeeded
by 5 intended skips, iterated 4 times). The initial accuracy
is set to be 90%, and is presumed to decay linearly at a
rate of 0.2% per intention. The expected time for a selection
is assumed to increase linearly with rate 0.2 second per
intention, starting from 14.75 seconds, with a maximum of
the complete trial duration cT = 31.625 seconds. For each
simulated process, we calculate the BCI-Utility by (19) for
all intentions, the first half of the intentions and the second
half of the intentions. We then calculate the average of the
first half and second half values. We compare BCI-Utility
with the observed average benefit UK calculated over all
intentions as in (20) (see Figure 2). Figure 2a shows that the
BCI-Utility calculated using all intentions is a accurate esti-
mate of the observed average benefits. As shown in Figure 2b,
the BCI-Utility calculated using the first half duration tends
to overestimate the observed value, given that it approximates
accuracies during a less-decayed duration but we attempt to
extrapolate the value to a more-decayed duration. Conversely,
computing the BCI-Utility using the second half duration tends
to underestimate the observed value due to the estimation
of accuracies over a more-decayed duration (Figure 2c). The
average benefits calculated by either half exhibit substantial
variations. Another observation is that, in this example, the
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simple arithmetic mean of the BCI-Utility calculated by the
two halves does not provide an accurate estimation of the
observed average benefits, although it fares better than employ-
ing either half in isolation (Figure 2d).

IV. BCI-UTILITY CURVES UNDER
DIFFERENT SCENARIOS

To better illustrate the behaviour of the BCI-Utility metric
for specific cases, we provide the BCI-Utility curves for a
extensive range of parameter settings in Figure 3. We first
consider the special cases of continuous typing without any
intentional skips (Figure 3a) and of a long period without
any intended selections (Figure 3b). Then we consider the
general case where both intentional trial skips and selections
are possible (Figure 3c). We will use the notations defined in
Section II-D, which presents the most general case discussed
in this paper. We fix bsel = bskip = log2(36). Generally,
the value of the BCI-Utility metric increases as the accuracy
increases, decreases as the error rate increases, and decreases
as the expected time c for an intended selection increases.
In our discussion, we define accuracy and error rate in a
broad sense. We consider accuracy as any of the following
three – the probability of a correct selection given that a
selection is intended and made (pcorrect

sel ), the probability of
the system making a selection given a selection is intended
(psel

sel ), and the probability of the system skipping a trial
given a trial skip is intended (pskip

skip ). Similarly, the error

rate includes pwrong
sel = 1 − pcorrect

sel , pskip
sel = 1 − psel

sel and
psel

skip = 1 − pskip
skip .

The first case (Figure 3a) is when there is no intentional trial
skip (i.e., all intended outcomes are selections), thus π i

skip =

0 in (13). This corresponds to the scenario discussed in
Section II-C where a long period of continuous use is expected,
and only three parameters are involved (psel

sel , pcorrect
sel and

c). The BCI-Utility metric has an increasing trend as the
probability of the system making a selection (psel

sel ) increases
(in this case, as all intended outcomes are selections, psel

sel has
the same meaning of psel in Section II-C). A higher selection
accuracy (pcorrect

sel ) and a shorter expected time for an intended
selection lead to a higher BCI-Utility.

The second case (Figure 3b) is when there is no inten-
tional selection (i.e., all intended outcomes are trial skips),
which corresponds to the scenario where a long period of
no-control is expected. In this case, π i

sel = 0, and (13)
reduces to U = bskip/Tskip. However, even if all intended
outcomes are trial skips, psel

sel and pcorrect
sel are involved as

in (17) and (18) because when the system mistakenly makes
a selection, the user would want to type a “backspace” to
delete the unintended character. Therefore, four parameters are
involved (psel

sel , pcorrect
sel , psel

skip and c). The BCI-Utility metric
increases as the selection accuracy (pcorrect

sel ) or the probability
of the system making a selection given that a selection is
intended (psel

sel ) increases, and decreases as the probability of
the system making a selection given that a skip is intended
(psel

skip) increases. A shorter expected time for an intended
selection yields a higher BCI-Utility. Note that the time for
an intended skip is always fixed at cT .

The third case (Figure 3c) is more general in that both
intentional trial skips and selections are possible. Five param-
eters are involved in the calculation of the BCI-Utility metric
(π i

sel , psel
sel , pcorrect

sel , psel
skip and c). The trend of the BCI-Utility

metric is similar as previously discussed – increases as accu-
racy increases or the expected time of an intended selection
decreases, and decreases as error rate increases. However, the
BCI-Utility may either increase or decrease as π i

sel varies,
depending on other parameters. This inconsistency is expected.
The BCI-Utility metric is in favor of a higher probability of
intended selections (π i

sel ) in situations with high pcorrect
sel and

psel
sel . In contrast, the BCI-Utility is higher when π i

sel decreases
in the case where pskip

skip = 1−psel
skip is relatively high. However,

fixing all other parameters, a higher accuracy would always
lead to a higher BCI-Utility.

Besides the general trend, there are more implications from
the BCI-Utility curves. First, the BCI-Utility metric generally
does not change linearly as a parameter changes. In many
situations, changing one parameter is more effective than
changing other parameters for obtaining a higher BCI-Utility.
In addition, the effect of π i

sel on the BCI-Utility metric is
highly dependent on other parameters. Therefore, to opti-
mize the system performance in terms of the BCI-Utility
metric, we suggest researchers take partial derivatives of the
BCI-Utility formula with respect to all parameters, and then
determine the most effective parameter to optimize to improve
performance by looking for the most sensitive parameters at
the point of current system performance. Finally, in many
cases, shortening the expected time of an intended selection
is the most effective way to improve the BCI-Utility. This
necessitates further development of asynchronous BCI systems
capable of abstention and dynamic stopping.

V. DISCUSSION OF APPLICATION TO REAL DATA

We apply the derived BCI-Utility metric to real-world BCI
performance data, thereby illustrating the practical use of
this metric. For this example, we use data collected from a
single research participant who gave informed consent to a
protocol approved by the University of Michigan Institutional
Review Board. The dataset comprises 117 target outcomes,
with 107 intended selections and 10 intended skips. The
keyboard had either 49, 55, 63, or 69 possible selections and
each target outcome had three sequences of recorded data
with 20 or 24 stimulus groups per sequence depending on
the number of possible selections. Stimuli were presented for
125 ms with 62.5 ms between stimuli, so each sequence was
either 3750 ms or 4500 ms in duration. There were 10,000
milliseconds between selections.

The data was subjected to analysis using an offline dynamic
stopping and abstention algorithm. The details of the algorithm
are irrelevant to the application of the metric. The calculation
of the BCI-Utility relies on several parameters extracted from
the performance data. Firstly, accuracies are directly estimated
as per their definition. The probability of the system making a
selection when a selection is intended (psel

sel ) is the percentage
of the number of intended selections where a selection was
produced. For the example dataset, there were 107 intended
selections and 94 of these resulted in a selection being made,
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Fig. 3. BCI-Utility curves under different parameter settings for three cases: (a) there is no intentional trial skip, i.e., all trials have intended
selections; (b) there is no intentional selection, i.e., all trials are intended to be skipped; (c) there are both intentional trial skips and selections. The
x-axis represents different parameters; the y-axis always stands for the BCI-Utility value.

so psel
sel = 87.9%. Likewise, the dataset had 10 intended

skips and 8 were correctly identified, so pskip
skip = 80.0%.

For pcorrect
sel , it is important to note that this is the per-

centage of correct selections that resulted when a selection
was intended. So, although the BCI made 96 selections,
only 94 were made when a selection was intended. Thus

pcorrect
sel = 75/94 = 80.0%. Then, we approximate the pro-

portions of intended selections by π i
sel = 107/117 = 91.5%.

For this dataset, the maximum trial length is 3 sequences.
If all sequences were of uniform length, then the expected time
for a complete trial cT would be the number of sequences in
a complete trial times the length of a sequence plus the time
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between selections. Since our data has variations in the length
of a sequence, we estimate the expected time for a complete
trial cT by averaging the duration of all complete trials then
adding the 10-second delay between selections. Since there
are 16 trials with duration of 3750 ms and 101 trials with
4500 ms, cT =

16×3750+101×4500
117 +10, 000 = 23192 ms, which

is 23.19 seconds.
The expected time c for a selection is approximated as the

average time taken for any selection. Again, if the sequence
length were constant, this could be calculated by multiplying
the average number of sequences (1.64 in our example) times
the length of a sequence and adding the time between selec-
tions. However, for our data with variable sequence duration
for different screens, we take the average duration of all the
selections (7.21 seconds) and add the 10-second delay between
selections to get c = 17.21 seconds per selection.

The benefit for a selection and the benefit for a skip is
user-specified. One may choose the unit benefit, which gives
the BCI-Utility an interpretation of selection rate, while here,
we utilize bsel = bskip = log2(N ), with N signifying the
number of on-screen keys, thus attributing an information
transfer rate interpretation to the BCI-Utility. When the count
of on-screen keys fluctuates across different trials, we suggest
calculating average benefits through averaging log2(N ) across
trials. For this dataset, bsel = bskip = 5.8.

With all the parameters estimated from data, we first com-
pute Tsel = 34.27 seconds according to (17) and Tskip =

36.06 seconds according to (18). Then, the BCI-Utility for
this duration of BCI usage is 0.169 bit/s by plugging needed
values into (19), effectively measuring system throughput
by amalgamating accuracy, typing speed, and the benefit of
intentional periods without typing.

However, computing the proportion of intentional selections
(π i

sel ) is more intricate than a straightforward ratio of inten-
tional selections to total trials. It is noteworthy that, in our
derivation, intentional selections made for error correction
purposes do not yield benefits and are considered part of the
fulfillment of initially intended selections. For instance, if a
user intends to type a character but the system erroneously
selects another, subsequent actions like utilizing backspace
to rectify the error and then typing the correct character
do not contribute to the proportion of intentional selections
due to the absence of benefits. In essence, the proportion of
intentional selections encompasses solely the initially intended
selections, omitting error-correction selections. While deter-
mining initially intended selections is relatively uncomplicated
in online data, it poses challenges in offline scenarios in which
classification, dynamic stopping, or abstention algorithms are
applied and compared, since using recorded data will evaluate
an algorithm based on data that would not have been generated
by that algorithm if used online.

Nonetheless, in practical terms, we can still compute the
proportions of intended selections and skips on a per-selection
basis, incorporating the intentional selections for error cor-
rection. In most cases, because the ratio of error correction
to total selections is small, this would only slightly shift
the estimated proportion of intended selections from its true
value if corrections are executed. Additionally, it leaves other

parameters unaffected. These deviations in π i
sel would have

small impact on the computed BCI-Utility, particularly when
other parameters fall within reasonable ranges, as demon-
strated in Figure 3. From Figure 3c, as π i

sel varies, the
BCI-Utility values remain stable, so even with the inclusion
of error correction selections that would not be needed by
a better-preforming algorithm, our BCI-Utility formula still
serves as an reasonable approximation.

VI. CONCLUSION

In this work, we present the BCI-Utility metric for
evaluating asynchronous P300 spellers. We consider three
asynchronous cases – dynamic stopping, dynamic stopping and
abstention, and finally dynamic stopping with abstention and
intentional idle periods. While our work is in the context of
the P300 speller, the derived metric should also be applicable
to other asynchronous BCIs.

The derived BCI-Utility metric is particularly useful for
dynamic stopping and abstention algorithm comparison on
offline recorded data in which the trial duration is fixed at the
time of recording. We assume time-independence for accuracy,
error rate and the proportion of intended selection to simplify
the derivations. However, in a long period of BCI use, users
may get tired, which is likely to result in a lower accuracy and
a higher error rate. The proportion of intended selections may
also vary over time with periods of active use and periods of
relatively little use.

Online use of an asynchronous BCI may most fully be
implemented by making decisions based on the EEG responses
within a sliding window of a fixed or variable number of
sequences. In this design, two consecutive sliding windows
are dependent because they only differ by the first and last
sequence and overlap in the middle sequences. Thus, the
time-independent accuracy and memoryless system assump-
tions required in our derivations are violated. Therefore, future
investigations are needed to develop a BCI-Utility metric that
can be applied to the sliding window BCI design. However,
it may be worth noting that once recorded, data from a
sliding window design can be evaluated using the currently
derived BCI-Utility formulas by considering the data preced-
ing each selection as a separate trial with a fixed number of
sequences.
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