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Disease Delineation for Multiple Sclerosis,
Friedreich Ataxia, and Healthy Controls
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Abstract— Neurodegenerative disease often affects
speech. Speech acoustics can be used as objective
clinical markers of pathology. Previous investigations of
pathological speech have primarily compared controls
with one specific condition and excluded comorbidities.
We broaden the utility of speech markers by examining how
multiple acoustic features can delineate diseases. We used
supervised machine learning with gradient boosting

Manuscript received 23 January 2023; revised 20 September 2023;
accepted 28 September 2023. Date of publication 4 October 2023;
date of current version 1 November 2023. This work was under-
taken in collaboration with the Melbourne Data Analytics Platform
(MDAP) at The University of Melbourne. Data collection for the multi-
ple sclerosis group was supported by a National Health and Medical
Research Council (NHMRC) Project grant (#108546). Adam P. Vogel
was supported by a NHMRC Fellowship (#1135683) and an Australian
Research Council Future Fellowship (#220100253). (Corresponding
author: Benjamin G. Schultz.)

Benjamin G. Schultz was with the Department of Audiology and
Speech Pathology, The University of Melbourne, Carlton, VIC 3055,
Australia. He is now with PSI Connect, Melbourne, VIC 3060,
Australia, and also with Escient, Melbourne, VIC 3000, Australia (e-mail:
ben.schultz@psiconnect.org; ben.schultz@escient.com.au).

Zaher Joukhadar, Usha Nattala, and Maria del Mar Quiroga are with
the Melbourne Data Analytics Platform, The University of Melbourne,
Carlton, VIC 3055, Australia (e-mail: zaher.joukhadar@unimelb.
edu.au; usha.nattala@unimelb.edu.au; mar.quiroga@unimelb.edu.au).

Gustavo Noffs was with the Department of Audiology and Speech
Pathology, The University of Melbourne, Carlton, VIC 3055, Australia.
He is now with the Department of Medicine, Nursing and Health
Sciences, Monash University, Clayton, VIC 3168, Australia (e-mail:
gustavo.noffs@monash.edu).

Sandra Rojas was with the Department of Audiology and Speech
Pathology, The University of Melbourne, Carlton, VIC 3055, Australia.
She is now with the Escuela de Fonoaudiología, Facultad de Odon-
tología y Ciencias de la Rehabilitación, Universidad San Sebastián,
Santiago 8340593, Chile (e-mail: sandra.rojas@uss.cl).

Hannah Reece was with the Department of Audiology and Speech
Pathology, The University of Melbourne, Carlton, VIC 3055, Australia
(e-mail: hannahreece@ymail.com).

Anneke Van Der Walt is with the Bruce Lefroy Centre, Murdoch
Children’s Research Institute, The Royal Children’s Hospital Melbourne,
Parkville, VIC 3052, Australia, and also with the Central Clinical
School, Monash University, Melbourne, VIC 3004, Australia (e-mail:
anneke.vanderwalt@monash.edu).

Adam P. Vogel is with the Department of Audiology and Speech
Pathology, The University of Melbourne, Carlton, VIC 3055, Australia,
also with the Department of Neurodegenerative Diseases, Hertie Insti-
tute for Clinical Brain Research, University of Tübingen, 72076 Tübin-
gen, Germany, and also with Redenlab, Melbourne, VIC 3000, Australia
(e-mail: vogela@unimelb.edu.au).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2023.3321874, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2023.3321874

(CatBoost) to delineate healthy speech from speech
of people with multiple sclerosis or Friedreich ataxia.
Participants performed a diadochokinetic task where they
repeated alternating syllables. We subjected 74 spectral
and temporal prosodic features from the speech recordings
to machine learning. Results showed that Friedreich ataxia,
multiple sclerosis and healthy controls were all identified
with high accuracy (over 82%). Twenty-one acoustic
features were strong markers of neurodegenerative
diseases, falling under the categories of spectral qualia,
spectral power, and speech rate. We demonstrated that
speech markers can delineate neurodegenerative diseases
and distinguish healthy speech from pathological speech
with high accuracy. Findings emphasize the importance of
examining speech outcomes when assessing indicators
of neurodegenerative disease. We propose large-scale
initiatives to broaden the scope for differentiating other
neurological diseases and affective disorders.

Index Terms— Neurodegenerative disease, speech
acoustics, machine learning, multiple sclerosis, Friedreich
ataxia, dysarthria, speech science.

I. INTRODUCTION

NEURODEGENERATIVE disease can alter speech due to
impaired motor control and execution. Acoustic features

of speech can be used as objective clinical markers for
diseases of the central nervous system (CNS). Previous studies
examining acoustic changes in neurodegenerative disease have
primarily focused on differences between healthy controls and
various patient populations, such as, multiple sclerosis (MS)
[1], [2], [3], [4], [5], Huntington’s disease (HD) [6], [7], [8],
Parkinson’s disease (PD) [4], [5], [9], [10], and Friedreich
ataxia (FA) [9], [11], [12]. These studies report that various
acoustic features change as the disease progresses, and patients
tend to exhibit slower and more variable speech rates, lower
and more variable pitch, and reduced spectral clarity compared
to patients. Although machine learning has been used to
differentiate healthy controls from single, well-defined patient
populations (e.g., Parkinson’s disease, spasmodic dysphonia),
real-world machine learning implementations will encounter
multiple different diseases that may have overlapping acoustic
profiles. The present study aims to broaden the utility of
these speech markers by determining how different acoustic
profiles of speech may accurately identify specific neurodegen-
erative diseases. We will move beyond discriminating between

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8306-0206
https://orcid.org/0000-0002-8130-270X
https://orcid.org/0000-0002-0360-6900
https://orcid.org/0000-0002-8943-2808
https://orcid.org/0000-0002-9766-115X
https://orcid.org/0000-0002-3505-2631


SCHULTZ et al.: DISEASE DELINEATION FOR MS, FA, AND HC 4279

healthy and pathological speech by examining differences
between different neurodegenerative diseases with similar
speech phenotypes (ataxia) simultaneously across multiple
acoustic dimensions.

Clinicians use a combination of tools to diagnose neurode-
generative disease including genetic sequencing, neurological
scans (e.g., magnetic resonance imaging), and neuropsycho-
logical and motor tests. Comorbidities across modalities makes
differential diagnosis or genetic test selection (where possible)
challenging and can exacerbate the length of time to correct
diagnosis (e.g., [13], [14]). Clinical acoustic markers have
several advantages over traditional tools. First, speech can be
recorded remotely in a home environment without the need
to visit a specialist or hospital. Given that some populations
with neurodegenerative disease are considered at-risk, remote
identification reduces the risk of contracting potentially life-
threatening pathogens. Remote testing is also more accessible
for populations with limited mobility and those living in
rural areas. Second, acoustic markers are obtained using non-
invasive techniques. Invasive procedures (e.g., blood tests,
surgery) can cause discomfort and have a risk of infection.
These procedures can also impose large financial burdens, par-
ticularly when multiple tests are required due to misdiagnosis.
Acoustic markers have the potential to alleviate these burdens
and streamline processes by providing accessible, low-cost,
and low-risk tests that can guide clinician decisions in the
early stages of diagnosis.

Acoustic features of speech can be used to construct profiles
of different patient populations. The most common acoustic
features used to identify pathologies include speech rate, the
number of syllables per second, pauses, the duration between
utterances or syllables, and frequency information related to
the pitch of the voice (fundamental frequency; f0) and its
formants [15], [16]. These features reflect underlying cortical,
subcortical, or cerebellar pathology of clinical populations
leading to multiple speech subsystem impairments [7].

Speech can be elicited through specific tasks or naturalistic
settings. The diadochokinetic (DDK) task is a common task in
which the speaker repeats a syllable string. (e.g., /PATAKA/)
as quickly and clearly as possible for 10 seconds [17]. The
DDK task is a controlled method of speech elicitation that
allows high consistency between different speakers while
remaining sensitive to speech performance [18]. Although
other speech tasks (e.g., reading, semi-structured interviews)
increase ecological validity, they may also increase cognitive
load, which may induce speech changes based on individual
differences like education level, language or reading impair-
ments, or cognitive ability [19], [20]. Moreover, the linguistic
content may encourage changes in prosodic features based
on emphasis, stress patterns, and emotion which may differ
based on personality, accent, or emotional state. To avoid
these concerns, the present study examined speech from a
DDK task that was performed by healthy controls (HC) and
two patient populations (FA, MS) using uniform practices
(see Methods). We calculated acoustic features that have been
examined in previous studies comparing HCs and various
patient populations (1–9) and include several new acoustic
features related to speech quality [15] and speech timing [21],
[22] that may improve the differentiation of these groups.

Previous implementations of machine learning on speech
have compared healthy controls with only a single patient
group (cf. [16]). For example, machine learning approaches
using acoustic features have shown high accuracy (>90%)
when differentiating healthy control groups from patient
groups with Parkinson’s disease [23], spasmodic dysphonia
[24], and various other vocal conditions (e.g., oral cancer or
vocal fold nodules) [16]. Although these approaches are useful
as initial triage for identifying pathological voice disturbances
that require further investigation [25], they do not provide
nuanced classification of the underlying pathology or disease
phenotypes potentially due to small sample sizes and, conse-
quently, low accuracy [26]. This is especially relevant for deep
learning models with hidden layers that reflect latent variables
that are not defined and, therefore, do not aid in developing
specific acoustic profiles that may characterize a disease [27].
We used an interpretable machine learning approach using gra-
dient boosting that quantifies the contribution of each acoustic
feature in distinguishing between healthy and pathological
voices, and between multiple diseases [28].

II. METHODS
A. Participants

Healthy controls were recruited through advertisements
within Australia. Clinical groups were recruited through med-
ical centers in Australia. We recruited people diagnosed with
multiple sclerosis (N = 112) and Friedreich ataxia (N = 73)
as well as healthy controls (N = 229). All patient participants
were diagnosed by a physician and confirmed genetically
for patients with Friedreich ataxia. Demographic information
of participant groups is shown in Table I. Some participants
were recorded on more than one occasion, leading to a larger
final number of speech tokens per group: Multiple sclerosis
(N = 787), Friedreich ataxia (N = 158), and healthy controls
(N = 483). To ensure that results were not driven by profiles
of individuals, data were averaged over participants, resulting
in one data point per participant for training and test phases
(see [29]).

B. Apparatus
A condenser headset microphone (AKG C520, AKG Acous-

tic, Vienna, Austria) positioned 8-10cm from the mouth at an
angle of 45◦ recorded speech. A Roland Quad-capture external
soundcard connected to a Dell laptop using captured speech
through Audacity software [30] and Redenlab ®software at a
sampling rate of 44.1kHz.

C. Procedure
Participants performed a DDK task where the syllables /PA/,

/TA/, and /KA/ were repeated in an alternating fashion as
many times as possible within one breath for a maximum of
10 seconds. Speech recordings were screened prior to feature
analysis to manually remove speech artefacts and background
noise.

D. Acoustic Feature Extraction
Acoustic features were extracted using custom-made MAT-

LAB scripts that used standard signal processing func-
tions from MATLAB [31], onset and offset detection algo-
rithms [32], beat detection algorithms [22], music information
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TABLE I
DEMOGRAPHIC INFORMATION FOR HEALTHY CONTROLS (HC),

FRIEDREICH ATAXIA (FA), AND MULTIPLE SCLEROSIS (MS)

retrieval [33], and speech analysis toolboxes [34], [35]. Acous-
tic features consisted of summary statistics (mean, standard
deviation, coefficient of variation, minimum, maximum, range)
of 74 variables that measure different aspects of speech qualia
[15], resulting in an initial set of 444 features. These features
include speech rate, utterance duration, pause duration, funda-
mental frequency, the first five formants, intensity, summed
and peak energy across frequency bands, spectral decrease
and spread, and a range of other spectral features used in
the clinical acoustic marker literature (see Supplementary
Materials for a full list and additional references).

The acoustic features used in the present study and their
physiological and perceptual correlates have previously been
described in detail in comprehensive reviews [15], [36], [37].
The fundamental frequency (f0) is the lowest frequency of a
periodic waveform and is perceived as the pitch of a voice
[38]. Formants are the resonant frequencies in the vocal tract
that contribute to the timbre and quality of a voice [39].

Other measures of speech and sound quality were also used
[40], [41]. Spectral centroid measures the center of mass of
the frequency spectrum. Spectral slope is the slope of the
linear regression line over across the spectral amplitude values.
Spectral flatness measures the uniformity of the frequency
spectrum. Spectral decrease is the reduction in signal magni-
tude across higher frequency bands. Spectral spread measures
the distribution of frequencies around the mean frequency in
the spectrum. Spectral skew measures the asymmetry in the
spectral distribution around its mean frequency. Spectral kur-
tosis measures the shape of the spectral distribution, indicating
the presence of heavy tails or peaks. Spectral crest is the peak
amplitude in a frequency spectrum, indicating its highest point.
Spectral entropy is the degree of randomness in the distribution
of spectral components. Spectral flux is the rate of local change

of spectral magnitude and reflects shifts in energy distribution
over time.

Correlates of perceived loudness included acoustic inten-
sity, amplitude, the alpha ratio, and energy as measured by
wavelet analysis. Intensity is the power of a sound wave
per unit area, perceived as loudness [42]. The alpha ratio is
the ratio of energy below 1kHz and between 1-4kHz [43].
Amplitude is the magnitude of the maximum displacement of
a wave from its equilibrium position and is also perceived
as loudness [44]. Acoustic energy (measured here by Morlet
wavelets) is the quantification of sound energy across different
frequency components using Morlet wavelet transforms [45].
Both the summed and peak energy within frequency bands
were measured, as was the frequency at which the energy
peaked. Five frequency bands consisting of sub-bands between
1Hz and 8,000Hz were examined, specifically 1Hz to 4,000Hz
(i.e., the “broad frequency range”), 75Hz to 500Hz (i.e., the
“f0 frequency range”), 4kHz to 8kHz (i.e., the articulator
and expiration spectrum or “high frequency range”), 75Hz to
4,000Hz (i.e., the common vocal frequency spectrum or “mid
frequency range”), and 1Hz to 75Hz (i.e., the articulatory-unit
and speech-unit range or “low frequency range”). The latter
was measured to obtain energy metrics for articulation and
speech rate [22], [46], [47].

Speech rate was also measured by determining the onsets
and offsets of speech syllables based on amplitude, intensity,
spectral flux, and the summed and peak energy in the five
frequency bands described above. Onsets and offsets were
obtained using the Schultz Musical Instrument Digital Inter-
face Toolbox applied to the time series of these features
[32], [48]. From the onsets and offsets, we determined speech
rate (i.e., the time difference between consecutive onsets),
speech duration (i.e., the time between the onset and offset of
speech), and pause duration (i.e., the time between the offset
of speech and the next onset). The stress rate of speech was
also measured using a beat tracking algorithm that measures
recurrent moments of increased energy [22], [49].

E. Machine Learning Procedure
We used CatBoost as our machine leaning classification

algorithm. CatBoost is an open-source decision tree-based
algorithm with gradient boosting and hardware optimization
[50]. The main advantage of CatBoost over other algorithms
is that it builds symmetric trees, employs weighted sampling,
and performs ordered boosting. It also lowers the weights of
variables that are less useful in identifying groups. These fea-
tures decrease the need for hyperparameter tuning and reduces
the chance of overfitting [50]. Cross-validation was performed
using 67%-33% Train-Test splits with 100 resamples using
stratification to achieve the same balance for each class [28].

F. Statistical Analysis
One-sample t-tests were conducted on Matthew’s correla-

tion coefficients and f 1 scores to assess if model performance
surpassed chance levels. Effect sizes were measured using
Cohen’s d . Performance differences between groups were
analyzed using an analysis of variance with group as a fixed
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Fig. 1. Mean, dispersion, and range for classification accuracy
(A = F1 Accuracy, B = Precision, C = Recall) for healthy controls, and
groups with Friedreich ataxia and multiple sclerosis for the full model,
and models using a subset of acoustic features using the maximum
group-wise average SHAP value cut-offs of 2% and 5%.

factor and resample number as the random factor. Effect sizes
for group differences were measured using generalized eta
squared (η2

G). Spearman rank-order correlations were used to
assess relationships between the acoustic features and disease
severity scores (see Supplementary Materials). All analyses
were performed using R software [51].

III. RESULTS

A one-sample t-test revealed that overall model performance
as assessed by Matthews’s correlation coefficient (M = 0.82,
SD = 0.04) was significantly above chance (33% accuracy),
t (99) = 114.56, p < 0.001, Cohen’s d = 11.46. Classification
accuracy between groups was assessed using f 1 scores that
equally weight model specificity and sensitivity (see Sup-
plementary Materials for full statistical analysis); these were
also significantly better than chance for all groups (ps <

0.001) with large effect sizes for HC (Cohen’s d = 32.29),
MS (Cohen’s d = 11.82), and FA (Cohen’s d = 10.70). There
was a significant main effect of group, F (2, 198) = 238.20,
p < 0.001, η2

G = 0.49. As shown in Figure 1, classification
accuracy was higher for HC compared to FA (p < 0.001)
and MS (p < 0.001), and higher for FA compared to MS
(p < 0.001). Receiver operating curves (ROC) for the model
with average performance based on Matthew’s correlation
coefficients are shown in Figure 2. The ROC area under the
curve (AUC) values were 0.97 for HC, 0.98 for FA, and
0.96 for MS. These values indicate outstanding discrimination
by the model [52].

A. Model Optimization
To measure the contribution of each acoustic feature for

categorizing each group, the Shapley additive explanation

Fig. 2. Receiver operating curves for healthy controls (HC), Friedreich
ataxia (FA), and multiple sclerosis (MS) obtained from the model with
average performance.

(SHAP) values were examined. These show the probability
of each outcome based on the information provided by each
feature [53], [54]. To achieve a more parsimonious model,
we performed the same machine learning procedures twice
including features that produced SHAP values above criteria
of 2% (n = 87) and 5% (n = 21) for at least one
group (see Supplementary Materials for rankings). Overall
model accuracy (Matthew’s Correlation Coefficient) signif-
icantly increased relative to the full model (M = 82.3%,
SEM = 0.4%) for the 2% cut-off (p = 0.001; M = 83.7%,
SEM = 0.4%) and 5% cur-off (p < 0.001; M = 83.6%,
SEM = 0.4%). Pairwise comparisons of accuracy between
models for each group revealed significant increases in F1
accuracy between the full model and the 2% cut-off for all
groups (ps < .002), and between the full model and 5% cut-
off for the HC and MS group (ps < 0.03) but not the FA
group (p = 0.11) (see Figure 1). These results suggest that
high discrimination accuracy can be achieved with a reduced
subset of 21 acoustic features. It should be noted, however,
that larger subsets of variables may be required to achieve
high discrimination accuracy if a broader scope of clinical
groups are included.

B. Optimal Clinical Acoustic Markers
We describe the top 21 features overall, and top 10 for each

group and overall (see Supplementary Materials for all fea-
tures). As shown in Table II, the dominant acoustic features for
accurate classification were spectral decrease, peak f0 energy,
peak energy in the low, high, and broadband frequency ranges,
low-frequency summed energy, utterance duration based on
summed broadband energy (including low-, mid- and high-
frequency sub-bands), spectral spread, and acoustic intensity.
Figure 3 shows that healthy controls were characterized by a
less steep and less variable spectral decrease, a smaller spectral
spread and range of energy produced in low frequencies,
greater energy in low and f0 frequency bands, and shorter
utterance durations. The FA group was characterized by low
intensity and energy in low, high, and broadband frequency
bands, a higher and more variable spectral spread, and longer
utterance durations. The MS group was characterized by
a steeper and more variable spectral decrease, as well as



4282 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE II
TOP 10 ACOUSTIC FEATURES FOR CATEGORIZING GROUPS BASED ON SHAP VALUES

utterance durations and spectral spread values that fell between
the control and FA groups (see link in Figure 3 note for figures
of all acoustic features). Other acoustic features that were
useful in delineating groups include metrics of speech timing
(pause duration, speech rate, and stress rate [22]), spectral
features (crest, slope, centroid, flatness, and entropy [55]),
formants 1-5, and the alpha ratio [56].

IV. DISCUSSION

Our machine learning approach distinguished between
healthy controls, people with Multiple Sclerosis, and people
with Friedreich Ataxia with high accuracy using acoustic prop-
erties of speech alone. These results indicate that multiclass
supervised machine learning has the potential to discriminate
between diseases, a step beyond mere healthy-pathological
dichotomies. Through the accumulation of big data that merges
speech data from various patient populations, we may be able
to use machine learning to assist in the detection of specific
diseases using acoustic markers.

There are numerous advantages for using acoustic markers
to detect neurodegenerative disease including the decreased
risk and burden of travelling to a hospital to undergo a range
of tests, some of which are invasive. Speech, on the other hand,
can be recorded within a familiar and comfortable setting,
using common household devices (e.g., smartphones). Smart-
phones have demonstrated relative robustness for obtaining
acoustic clinical markers and, therefore, increase accessibility
to these automated detection methods [57]. Although the
present study recorded speech within laboratory settings, it is
also possible to record speech data remotely [58]. Practitioners
could use this information to refine test selection for differ-
ential diagnosis. This would be particularly useful for people
living in rural communities with increased travel burdens or
during situations where the risk of infection is heightened (e.g.,
pandemics). Speech markers can be used as a remote tool to

initially detect signs of neurodegenerative disease, expand our
understanding of the clinical characteristics of these diseases
to improve our ability to develop targeted interventions, and
to monitor disease progression or treatment response.

We identified several acoustic features that strongly con-
tributed to distinguishing between groups. Spectral decrease,
the average of all slopes between the peak amplitude at
the fundamental frequency and the peak amplitude of the
formants (i.e., harmonics), was the most useful variable in
distinguishing our three groups. This finding is in line with
previous results that suggest vocal fold dysfunction is asso-
ciated with greater energy in the lower frequency range
relative to higher frequencies (e.g., the soft phonation index
[59]). Other spectral features associated with the distribution
of vocal energy also contributed to classification accuracy,
including summed and peak energy within low-frequency
bands (1-75 Hz), peak energy within f0 (75-500Hz), high
(4000-8000 Hz), and broadband (1-8000Hz) frequency ranges,
and the spectral spread of peak frequencies. Therefore, the
distribution of acoustic energy across the spectrum that reflects
voice qualia culminates as a strong set of acoustic clinical
markers for distinguishing neurodegenerative diseases.

Speech timing measures were also strong contributors to
classification accuracy, specifically, the duration of syllables
based on summed energy in low and broadband frequency
ranges, and the rate of stressed syllable onsets based on
peak energy across broadband frequencies [22]. These results
corroborate previous findings that demonstrate slowed speech
rate and decreased phonation time for a range of neurodegener-
ative diseases including Parkinson’s disease [60], Huntington’s
disease [8], [61], multiple sclerosis [4], [5], and other dis-
eases [3], [16], [61] and ataxias [62], [63], [64]. Speech rate
and phonation time reflect both pneumo-articulatory capacity
and oral-motor function, and could serve as clinical acoustic
markers for monitoring the progression of neurodegenerative
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Fig. 3. Normalized (z-scores) values of the top 21 acoustic features for identifying members of the healthy control (HC), Friedreich ataxia (FA), and
multiple sclerosis (MS), groups. Note. See here for interactive figures for all acoustic features.

disease, distinguishing between diseases, and determining dis-
ease severity.

To the knowledge of the authors, this is the first paper to use
machine learning to simultaneously differentiate three groups
of disease classes (i.e., healthy controls, and people Multiple
Sclerosis or Friedreich Ataxia) using speech data. This novel
application of machine learning and acoustic analysis paves the
way for new pre-diagnostic methods that could leverage big
data to discriminate between a range of neurodegenerative dis-
eases and/or other conditions. Through initiatives that obtain
and share speech data from various clinical populations, our
innovative approach could be applied to any population that
is able to produce speech. The implications of this approach
are substantial and provide new opportunities for healthcare,
particularly for remote and rural areas where access to health
providers might be limited.

A. Limitations and Considerations
We used the most common acoustic features (or similar

proxies) based on an a priori analysis of the neurodegenerative
disease literature and timbral features used in music infor-
mation retrieval. There are, however, other acoustic features
that may increase the accuracy and sensitivity of the machine
learning algorithm that were not considered here. For exam-

ple, voice onset time, the time between the burst of a stop
consonant and the onset of the vowel, is an acoustic feature
that differs significantly between controls and people with
Parkinson’s disease [65]. We opted not to use this measure
because our data contained a high degree of coarticulation, and
there is little agreement for the best way to extract the burst
and vowel onset times and which acoustic features should be
considered (see [66]). Similarly, we did not include measures
from other voice assessment tasks (e.g., sustained vowel) [67]
that can more reliably measure certain features (e.g., jitter and
shimmer) but preclude the measurement of speech timing.
We chose to constrain the number of variables and tasks to
avoid overfitting. Future studies could use feature selection
and pruning methods (e.g., [68]) to find the best feature set
and remove unreliable variables prior to analysis.

The inclusion of non-speech performance measurements
could also increase discrimination accuracy, for instance,
cognitive [69] and motor performance [70] measures. The
primary aim of this experiment was to examine accuracy
using speech features alone because speech data can easily
be obtained in the absence of a clinician through websites
and smartphone applications [71]. Other cognitive and motor
tests often require scoring by a clinician or dedicated tools
to measure gait and tremor, although some remote tests are
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available [72]. We show that neurodegenerative diseases can
be delineated with high accuracy from speech data alone,
but future applications could also consider other non-verbal
features, for example, irregular gait patterns using smartphone
accelerometers or irregular typing patterns. Whether these
movement features or others would increase the accuracy
of machine learning algorithms for neurodegenerative disease
remains unknown.

B. Future Directions
The current study differentiated neurodegenerative diseases

with high accuracy, but the approach did not aim to determine
the severity or stage of the disease [35], [73], [74]. Future
studies could employ an approach in which the severity of
the disease is predicted or estimated following identification.
A two-phased approach might be necessary because measures
of disease severity tend to be idiosyncratic to the specific
disease. Therefore, it remains a challenge to provide a measure
of severity that can be applied to a range of diseases and
conditions while capturing the relevant clinical markers.

V. CONCLUSION

We provide strong evidence that neurodegenerative diseases
can be differentiated through acoustic clinical markers and
machine learning, even when the speech phenotype is subtle
or similar across groups. This model can be expanded and
improved through the inclusion of additional diseases and
phenotypes. Big data initiatives that bring together researchers
and speech data from multiple laboratories are necessary to
increase the scope of diseases that can be identified by acoustic
clinical markers and machine learning. Moreover, a com-
bination of remote testing tools for physical and cognitive
assessment could be included in addition to speech to improve
identification accuracy. These technologies promise to provide
tools that can aid practitioners in reaching a diagnosis and
relieve the physical and financial burden of patients.
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