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Dynamic Multi-Graph Convolution-Based
Channel-Weighted Transformer Feature

Fusion Network for Epileptic
Seizure Prediction

Yifan Wang , Weigang Cui , Tao Yu , Xiaoli Li , Xiaofeng Liao , Fellow, IEEE,
and Yang Li , Senior Member, IEEE

Abstract— Electroencephalogram (EEG) based seizure
prediction plays an important role in the closed-loop
neuromodulation system. However, most existing seizure
prediction methods based on graph convolution network
only focused on constructing the static graph, ignoring
multi-domain dynamic changes in deep graph structure.
Moreover, the existing feature fusion strategies gener-
ally concatenated coarse-grained epileptic EEG features
directly, leading to the suboptimal seizure prediction
performance. To address these issues, we propose a
novel multi-branch dynamic multi-graph convolution based
channel-weighted transformer feature fusion network (MB-
dMGC-CWTFFNet) for the patient-specific seizure predic-
tion with the superior performance. Specifically, a multi-
branch (MB) feature extractor is first applied to capture
the temporal, spatial and spectral representations fromthe
epileptic EEG jointly. Then, we design a point-wise dynamic
multi-graph convolution network (dMGCN) to dynamically
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learn deep graph structures, which can effectively extract
high-level features from the multi-domain graph. Finally,
by integrating the local and global channel-weighted
strategies with the multi-head self-attention mechanism,
a channel-weighted transformer feature fusion network
(CWTFFNet) is adopted to efficiently fuse the multi-domain
graph features. The proposed MB-dMGC-CWTFFNet is
evaluated on the public CHB-MIT EEG and a private
intracranial sEEG datasets, and the experimental results
demonstrate that our proposed method achieves outstand-
ing prediction performance compared with the state-of-
the-art methods, indicating an effective tool for patient-
specific seizure warning. Our code will be available at:
https://github.com/Rockingsnow/MB-dMGC-CWTFFNet.

Index Terms— Seizure prediction, multi-graph convolu-
tion network, transformer, EEG, epilepsy.

I. INTRODUCTION

EPILEPSY is one of the most common brain diseases of
nervous system, producing recurrent seizures and threat-

ening the patients’ life [1]. Recently, more than 50 million
people worldwide suffer from epilepsy, and there are approx-
imately 30% of patients deteriorating into refractory epilepsy,
despite both drug and surgical treatment [2]. Fortunately, the
seizure prediction based on Electroencephalography (EEG)
provides an additional solution for these refractory epilepsy
patients, who can give early warning for advanced neuromod-
ulation treatments [3], so as to suppress seizures effectively.
The previous studies divided the long-term recorded epileptic
EEG signals into four neurophysiological periods: inter-ictal,
pre-ictal, ictal and post-ictal periods [4], [5]. Therefore, the
core problem for the epileptic seizure prediction is how to
accurately distinguish the pre-ictal period from inter-ictal
period, promoting intelligent waring before seizure onset for
patients and clinicians [6].

For automatic EEG seizure prediction, the primary chal-
lenge is to extract discriminative EEG features of the epileptic
activity. Due to the high temporal resolution of EEG, the long
short-term memory (LSTM) [7], [8] was introduced to the
seizure prediction models to capture the temporal information
of the epileptic EEG. In addition, to exploit the spectral repre-
sentation in epileptic rhythms, the wavelet transformation [9]
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and the short-time Fourier transform [10] were combined
with the convolution neural network (CNN), which can
learn quantitative time-frequency characteristics to facilitate
the classification of inter-ictal and pre-ictal periods. More-
over, Ahmet et al. [4] proposed a 3D-CNN seizure prediction
framework to evaluate the spatio-temporal evolution correla-
tion from multi-channel EEG time series. Zhang et al. [11]
designed a spatial filter of common spatial pattern to extract
distinguishing spatial features from epileptic EEG, which
further fed into a shallow CNN to discriminate between the
pre-ictal and inter-ictal states. However, these methods just
obtained the coarse-grained EEG features in single or multi
domains by a fixed mode, without taking full advantage of the
patient-specific temporal, spectral and spatial signatures simul-
taneously, which may lead to the loss of essential epileptic
activity information. Thus, a multi-branch feature extractor is
needed to capture the multi-level fine-grained representations
from the epileptic EEG in multiple domains.

Another existing issue is that the CNN framework in seizure
prediction task can only learn low-dimensional spatial corre-
lations among EEG channels, due to its regular convolution
operation and the local receptive field [12]. It is difficult to
track the complex non-Euclidean structure in the epileptic
seizures [13]. To deal with this problem, the graph convo-
lutional network (GCN) were investigated in recent studies of
the seizure prediction field [14], [15]. The common procedure
in GCN is to define the prior adjacency matrix for constructing
the graph structure among channels, which helps to convert
the epileptic EEG signals to a graph representation with graph
nodes and edges [16]. For example, Wang et al. [17] employed
phase locking value (PLV) in EEG data to construct the
adjacency matrix of graph edges. The differential entropy (DE)
was applied in the inference of the spatial coupling in network
topology to calculate the temporal correlations of EEG and
yield the graph nodes [18]. Unfortunately, these GCN methods
based on the information theory depended on the handcrafted
features to generate EEG graphs, neglecting the dynamic
changes in patient-specific graph construction. Lian et al. [14]
developed a joint graph structure and representation learning
network (JGRN) to predict seizures, where the graph struc-
tures can be jointly optimized with patient-specific connection
weights of temporal channels. A similar study proposed a
subject-independent seizure predictor by using geometric deep
learning, realizing the seizure prediction from LSTM EEG
graph synthesis [15]. It is notable that most of these models
ignored the spatial position relationship among EEG channels,
and only focused on the single and shallow static EEG graph
construction without the spatial position guidance, which
cannot fully represent the dynamic changes of individualized
channel connectivity in multiple domains. Therefore, a novel
GCN is highly required to jointly characterize high-level multi-
domain features, and map patient-specific dynamic EEG graph
representations.

Additionally, in order to integrate comprehensive feature
information for the precise seizure prediction, some feature
fusion strategies were designed to fuse the EEG features
from different scales and domains. For example, Li et al. [19]
adopted a temporal-spectral squeenze-and-excitation scheme

to fuse the hierarchical multi-domain representations of
epileptic EEG, which reduced the information redundancy
of high-dimensional features. Gao et al. [20] combined the
attention mechanism with dilated convolution to aggregate
spatio-temporal multi-scale features, providing a promising
solution for EEG-based seizure prediction. Although these
feature fusion methods obtained a comprehensive feature,
they only considered the general fusion of low-level features
in Euclidean space [21]. High-level EEG graph node fea-
tures, embedded in non-Euclidean graph structures, urgently
need a specific fusion approach to enable robust seizure
prediction.

The main motivation of our study aims to break through
limitations of the existing prediction methods, including
coarse-grained EEG features in single domain, shallow static
EEG graph construction without spatial position guidance and
difficulties in high-level graph feature fusion. Thus, we pro-
pose a novel multi-branch dynamic multi-graph convolution
based channel-weighted transformer feature fusion network
(MB-dMGC-CWTFFNet), for the patient-specific seizure pre-
diction. First, a multi-branch (MB) feature extractor is used to
capture multi-level fine-grained features from epileptic EEG
in multiple domain. Second, in order to extract multi-domain
graph features, a point-wise dynamic multi-graph convolu-
tion network (dMGCN) is constructed to adaptively learn
three-view dynamic graph structure with spatial position
guidance. Finally, we investigate a channel-weighted trans-
former feature fusion network (CWTFFNet) to efficiently
fuse the multi-domain graph features, which introduces the
channel-weighted self-attention mechanism to map discrim-
inative fused representations for the seizure prediction. The
proposed MB-dMGC-CWTFFNet is evaluated on two kinds
of epileptic datasets, i.e., CHB-MIT EEG dataset and our
Xuanwu intracranial stereo-electroencephalography (sEEG)
dataset, and achieves the promising performance compared
with the state-of-the-art methods, which validates its outstand-
ing capability in seizure prediction task.

In general, the main contributions of our study are summa-
rized as follows:

1) A novel MB-dMGC-CWTFFNet is proposed to pre-
dict seizures for the individual epilepsy patient, which can
efficiently fuse multi-domain graph features, yielding the high-
est prediction performance on both CHB-MIT and Xuanwu
datasets, respectively.

2) We design a MB feature extractor, including three
parallel sub-branches in temporal, spatial and frequency
domains respectively, to capture the multi-level fine-grained
features jointly, which offsets the inadequate representation of
coarse-grained EEG features in traditional feature extractors.

3) A dMGCN is constructed by point-wise dynamic
graph neural network, which can learn dynamic changes of
three-view graph structures with spatial position guidance, and
extract deep multi-domain graph features, and thus overcomes
insufficient expression of spatial connectivity in shallow static
EEG graph.

4) A CWTFFNet is developed by introducing both the
local and the global channel-weighted self-attention into
the transformer network. The local graph edge weights are
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Fig. 1. The framework of the proposed MB-dMGC-CWTFFNet for the seizure prediction.

complementary to the global channel position information,
which can implement efficient fusion of high-level graph
features against current feature fusion strategies.

II. METHODOLOGY

The seizure prediction framework of our proposed MB-
dMGC-CWTFFNet is displayed in Fig. 1. The overall archi-
tecture mainly consists of the multi-branch feature extractor,
the point-wise dynamic multi-graph convolution network and
the channel-weighted transformer feature fusion network,
summarized as follows: 1) The MB feature extractor is
primarily designed to extract the multi-domain temporal-
spatial-spectral features from EEG signals. 2) The dMGCN
is further employed to transform the temporal-spatial-spectral
features into high-level graph representations from temporal,
spatial and spectral views. 3) The CWTFFNet is adopted to
obtain the fused feature maps, and the fully connected layers
are utilized to generate the recognition results ultimately.
The well-trained MB-dMGC-CWTFFNet is then transformed
into a practical seizure warning system by a post-processing
strategy. Details of each step are given in following subsection.

A. Multi-Branch Feature Extractor
The epileptic EEG signals are defined as E = (xi , yi )|i =

1, 2, . . . , N , where xi ∈ RC×S represents the i-th EEG trial
with C channels and S sampling points. N is the total number
of EEG trials. yi is a binarized label of pre-ictal or inter-ictal
state corresponding to xi .

Considering the individualized differences of epileptic activ-
ities in both time domain, frequency domain and spatial
domain, we firstly construct the MB feature extractor to cap-
ture the temporal-spatial-spectral representations from epilep-
tic EEG signals. In Fig. 1, the MB feature extractor includes
three sub-branches: the multi-scale temporal-conv branch,

the multi-band spectral-conv branch and the multi-channel
spatial-encoding branch.

1) Multi-Scale Temporal-Conv Branch: Epileptic seizure
recordings involved the critical electrophysiological fluctua-
tion from inter-ictal period to pre-ictal period [22]. In order
to capture the comprehensive temporal information of EEG
with its higher time resolution in time domain, a multi-
scale temporal-conv branch is first designed with nparallel
temporal convolution (TConv) layers. Thus, we can gain the
multi-scale temporal features with different sizes from TConv-
1 to TConv-n, denoted as Fk ∈ RC×Tk , k = 1, 2,· · · , n, where
Tk is the output scale of the temporal feature from the k-th
TConv. Additionally, the batch normalization and exponential
linear unit (ELU) are also applied in the each TConv of the
multi-scale temporal-conv branch to accelerate the training
and convergence of the proposed model. Accordingly, these
multi-scale temporal features are concatenated to generate the
overall feature map in time domain: FT ∈ RC×DT , where DT
is the sum of Tk , k = 1, 2,· · · , n.

2) Multi-Band Spectral-Conv Branch: Previous studies have
proven that the epileptic activities may be of different frequen-
cies for epilepsy patients [23]. Thus, according to the clinical
five frequency sub-bands: δ band (0-4Hz), θ band (4)-8Hz),
α band (8)-13Hz), β band (13)-30Hz), γ band (30-50Hz) [24],
the multi-band spectral-conv branch is adopted to contain
the hierarchical wavelet convolutions (WaveConv) based on
Daubechies order-4 (Db4) wavelet [25]. The wavelet decom-
position can be accomplished on the EEG trials due to its high
correlation coefficients with the epileptic signal [26] to obtain
the wavelet spectral features in the five sub-bands. The hierar-
chical WaveConv layers perform successive spectral analysis
by means of L-level iteration, where L =

⌊
log2( fs)

⌋
− 3,

determined by the EEG sampling rate fs , and ⌊·⌋ represents the
rounding-down operation [27]. Then, the frequency boundaries
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of the l-th WaveConv are (0, fs/2(l+1) ) and ( fs/2(l+1), fs/2l),
respectively, where l = 1, 2,· · · , L . After inputting the EEG
trial xi ∈ RC×S into the multi-band spectral-conv branch,
we can obtain the multi-band wavelet spectral features: Fδ ∈

RC×H1 , Fθ ∈ RC×H2 , Fα ∈ RC×H3 , Fβ ∈ RC×H4 , Fγ ∈

RC×H5 corresponding to five standard physiological frequency
sub-bands, where H = S/2l is the output dimension of the
wavelet spectral features generated from the l-th WaveConv.
Additionally, due to the similar of time-frequency analysis
with the discrete wavelet transform, the WaveConv operators
have no learnable parameters in the processing of the fea-
ture extraction, which weights are fixed and given by Db4
wavelet filter. Then, the five-band wavelet spectral features
are concatenated into the integral spectral feature map in
frequency domain: FR ∈ RC×DR , where DR is the sum of
H1, H2, . . . H5.

3) Multi-Channel Spatial-Encoding Branch: Apart from the
multi-scale temporal-conv branch and multi-band spectral-
conv branch, we also propose a multi-channel spatial-encoding
branch to excavate the representations of channel mapping in
spatial domain. Specially, the multi-channel EEG trials are
transposed to the channel-wise slices, which are imported into
the channel position encoder and spatial feature encoder to
complete the channel correlation construction and the spa-
tial feature extraction, respectively. For the channel position
encoder, a distance set U is foremost established by U =

{ui j |i, j ∈ [1, C], i ̸= j}, where ui j represents the Euclidean
distance of the i-th channel and the j-th channel, C is the total
number of channels. we can get the ui j from the international
standard electrode system [28]. Then the initialized channel
adjacency matrix A ∈ RC×C is generated by the following
position embedding method:

ai j =


1

ui j
i f ui j < M(U )

0 i f ui j ≥ M(U )
1

M({ui j |ui j < M(U )})
i f i = j

(1)

where M(·) is the mean operation, ai j is the element of
the i-th row and the j-th column of adjacency matrix
A ∈ RC×C . Therefore, the channel adjacency matrix Acontains
the global position information of the multi-channel relation-
ship, which will be used to construct the dynamic graph
in the following point-wise dMGCN. Additionally, we adopt
the spatial feature encoder based on the channel-wise spatial
convolution [29], [30] to extract the multi-channel spatial char-
acteristics, which are ultimately concatenated and reshaped as
FS ∈ RC×DS , where DS is the output dimension of integrated
spatial feature map.

B. Point-Wise Dynamic Multi-Graph Convolution Network
To further learn deep dynamic connectivity of different

brain regions for the individual epilepsy patient, in this
subsection, a novel point-wise dMGCN is proposed to extract
multi-domain graph features. Three synchronized dynamic
graph convolution networks are involved by temporal, spatial
and spectral views. Three views constitute the point-wise

Fig. 2. The architecture of the point-wised dynamic multi-graph convo-
lution network (dMGCN).

dMGCN in Fig. 2, which can explore the deep channel rela-
tionship of the temporal feature map FT , the spatial feature
map FS and the wavelet spectral feature map FR , respectively.
For each graph convolution view, the initialized adjacency
matrix A ∈ RC×C , depicting original distance between any
two channels, has been calculated by the channel position
encoder of the MB feature extractor. To further guide the
dynamic evolution process of the channel relationship from
three kinds of views, a self-gating strategy is employed in
initialized adjacency matrix A as follows:

ÃT = σ(W11δ(W12( Ã1))) (2)

ÃS = σ(W21δ(W22( Ã2))) (3)

ÃR = σ(W31δ(W32( Ã3))) (4)

where Ã1, Ã2, Ã3∈R(C×C)×1 are reshaped from A ∈

RC×C , W12, W22, W32∈R((C×C)/r)×(C×C) and W11, W21,

W31∈R(C×C)×((C×C)/r) are weight matrixes of fully-
connected layers, r is the reduction ratio, ·δ() and ·σ()

are the ELU activation function and the rectified linear
unit (ReLU). Hence the three dynamic adjacency matrixes
AT , AS, AR∈RC×C corresponding to temporal, spatial and
spectral graph convolution nets are acquired by reshaping
ÃT , ÃR, ÃS∈R(C×C)×1 into R(C×C).

After constructing the dynamic connectivity of epileptic
activities from three views, the operations of the dynamic
graph convolution are performed on the temporal feature map
FT ∈ RC×DT , the spatial feature map FS ∈ RC×DS and
the wavelet spectral feature map FR ∈ RC×DR , respectively,
which are formulated by:

GT = δ(D−1
T AT δ(FT 211)212 + FT ) (5)

GS = δ(D−1
S ASδ(FS221)222 + FS) (6)

G R = δ(D−1
R ARδ(FR231)232 + FR) (7)

where GT ∈ RC×DT , GS ∈ RC×DS , G R ∈ RC×DR are
the dynamic graph features corresponding to FS, FT , FR
with the hidden non-Euclidean topology in epileptic activ-
ities, Di i

T =
∑

j Ai j
T , Di i

S =
∑

j Ai j
S , Di i

R =
∑

j Ai j
R are

the degree matrixes corresponding to AT , AS, AR respective,
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Fig. 3. The outline of channel-weighted transformer feature fusion
network (CWTFFNet).

211, 212 ∈ RDT ×DT , 221, 222∈RDS×DS , 232, 232∈RDR×DR

represent the weight matrixes of convolution kernels in the
point-wise convolution unit [31]. Therefore, we obtain the
dynamic multi-domain graph features GT , GS, G R with their
corresponding dynamic adjacency matrix AT , AS, AR , which
will be fed into the CWTFFNet to conduct the final feature
fusion in the next subsection.

C. Channel-Weighted Transformer Feature Fusion
Network

To further fuse the high-level graph features GT , GS, G R,

the CWTFFNet is proposed by combining the dynamic
adjacency matrix AT , AS, AR with multi-head self-attention
mechanism. In Fig. 3, the CWTFFNet can be divided into
a local channel-weighted multi-head self-attention (Local
CW-MHSA), a global channel-weighted feature fusion block
(Global CW-FFB) and the multi-layer perception (MLP).

The Local CW-MHSA consists of three heads: the
AT -weighted self-attention unit (SAU), the AS-weighted SAU
and the AR-weighted SAU. For each self-attention head, three
kinds of weight matrixes, denoted as WQ ∈ RD×dK , WK ∈

RD×dK , WV ∈ RD×dV , are initially introduced to encode the
input graph features, where dK and dV both represent the
hyperparameters. So, the query Q,the key Kand the value Vare
calculated via:

Q = GWQ (8)
K = GWK (9)
V = GWV (10)

where the G ∈ {GT , GS, G R} indicates three kinds of graph
features. We introduce the local channel-weighted strategy by
applying the dynamic adjacency matrixes in multi-head self-
attention mechanism. Then, the local features Zlocal ∈ RC×dK

from Local CW-MHSA is obtained by:

ZT = AT so f tmax(
Q1 K T

1
√

d K
)V1 (11)

ZS = ASso f tmax(
Q2 K T

2
√

d K
)V2 (12)

Z R = ARso f tmax(
Q3 K T

3
√

d K
)V3 (13)

Zlocal = Concat (ZT , ZS, Z R) (14)

where ZT , ZS, Z R are the outputs from the three self-attention
heads respectively, and ·Concat () is the concatenation func-
tion. To further capture the global information, we employ the
Global CW-FFB and MLP in local features Zlocal according
to the following equations:

Zglobal = so f tmax(A)Zlocalso f tmax(G AP(Zlocal)) (15)

Z f used = F2
f c(ReLU (F1

f c(L N (Zglobal)))) + F M(Zglobal)

(16)

where Zglobal ∈ RC×dK is the global features,A ∈ RC×C is
the initialized adjacency matrix from the channel position
encoder, ·G AP() represents the global average pooling, ·L N ()

means the layer normalization, ·ReLU () is the rectified linear
unit, F1

f c and F2
f c denote the FC layers, and ·F M() is a

feedforward module (including two feedforward layers and
an ELU activation). Therefore, we acquire the fused features
Z f used ∈ RC×dK through the constructed CWTFFNet.

Finally, two fully-connected layers are used to conduct the
decoding for the fused features. They are flattened into a
1-dimensional tensor to feed into the fully connected layers,
then the classification probabilities of the pre-ictal and the
inter-ictal states are estimated by the Softmax function, and
the index corresponding to the maximum of probabilities rep-
resents the final result of seizure prediction. Moreover, a cross-
entropy loss functionis employed for the patient-specific
model training of proposed MB-dMGC-CWTFFNet, the
cross-entropy loss LC E between the prediction result and the
label is minimized by:

LC E =

N∑
i=1

M∑
j=1

−log(pi )ϕ(yi = l j ) + λ ∥θ∥ (17)

where pi is the conditional probability of the i-th EEG trial
outputted by the proposed MB-dMGC-CWTFFNet, l j is the
class from the label set, ·ϕ() represents the indicator function,
Nis the total number of samples, M =2 is the number of
classes. λ ∥θ∥ belongs to the trade-off regularization term
of Eq. (17), and aims to alleviate the overfitting problem
during the model training, where λ is the regularization
parameter and the θ denotes the updatable parameters of
the model. As a result, a personalized well-trained model of
the proposed MB-dMGC-CWTFFNet is generated, and will be
performed the individual seizure prediction by the following
post-processing [32].
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TABLE I
PATIENTS’ DETAILS OF THE XUANWU INTRACRANIAL SEEG DATASET

D. Post-Processing Strategy
Eventually, the well-trained MB-dMGC-CWTFFNet is then

transformed into a practical seizure warning system by a
post-processing strategy [33]. Specifically, after inputting the
consecutive EEG signals into the well-trained MB-dMGC-
CWTFFNet, the probability series P(i) belonging to pre-ictal
class from i-th epoch is generated. Then we employ a moving
average filter on P(i) to reduce the oscillation and obtain the
smoothed probability series Ps(i) over time [32]. The lengths
of the moving average filter are configured to 15s and 25s for
CHB-MIT and our Xuanwu dataset respectively, which will
be discussed by the experimental results in Section IV-B.

III. EXPERIMENTAL RESULTS

A. Dataset Description
The performance of the proposed MB-dMGC-CWTFFNet

is evaluated on two epileptic datasets, wich is given as follows:
1) CHB-MIT Scalp EEG Dataset [34]: The CHB-MIT dataset

contains the scalp EEG signals from 23 patients, which were
recorded with 18 common electrodes and sampled at 256Hz
in the Children’s Hospital Boston. In this study, there were at
least two seizures and three-hour inter-ictal recordings from
each patients, who were selected for the patient-specific model
evaluation of seizure prediction [4]. In addition, the neural
recordings within two hours after a seizure are removed to
exclude the effect of post-ictal period [32]. Specially, if sev-
eral seizures cluster within two hours, only the first seizure
prediction is considered as an effective evaluation, because a
successful warning depends on whether the model can predict
the leading seizure [35].

2) Xuanwu Intracranial sEEG Dataset: The Xuanwu dataset
is collected by the Xuanwu Hospital of Capital Medical
University, Beijing, China, which consists of sEEG recordings
on the intracranial depth electrode for 5 focal epilepsy patients,
which sampled at 256Hz with 15 channels. From Table I, there
are total 16 seizures, and the recording duration of sEEG from
these patients is 42 hours. The labels of the inter-ictal, pre-ictal
and ictal states were marked by the professional clinicians.
This study was approved by the Ethics Committee of Xuanwu
Hospital, Capital Medical University (LYS2018041) in Beijing
and complied with the ethical standards of the Declaration of
Helsinki. Informed consent was obtained from all patients.

B. Experimental Settings and Evaluation Metrics
In this study, based on the recent research [4], [11], the

EEG signals from CHB-MIT and Xuanwu datasets are both

cropped into 5-second clips before fed into the proposed
MB-dMGC-CWTFFNet. Additionally, the pre-ictal period was
popularly defined by 15 minutes before seizure onset in the
latest methods [4], [32]. Thus, we adopt the identical setting
to the pre-ictal period, and the inter-ictal period is defined at
least 2 hours away prior to seizure onset and after seizure
ending [10].

To conduct a comprehensive performance evaluation of the
proposed MB-dMGC-CWTFFNet, the patient-specific leave-
one-out cross-validation (LOOCV) [20] is employed in this
study. Since the inter-ictal period is much larger than the
pre-ictal periodin the model training stage, the inter-ictal
clips are randomly down-sampled to the same number of
the pre-ictal clips [8]. Then, assuming that there are total
Ni seizures for the i-th patient, in each leave-one-out loop,
Ni − 1 seizures are utilized for training while the left one
is for testing, during the training stage, the cross-validation is
use to divide training set and validation set. It is repeated with
Ni loops until the proposed model completes the prediction
evaluation of all seizures for the i-th patient. Since the number
of seizures and the recording duration are both different for
each patient in two datasets, for each leave-one-out loop, the
number of training data samples varies from 3028 to 18241,
the validation data size varies from 572 to 3543, the test-
ing data size varies from 3131 to 7508, and the total data
size varies from 6731 to 29292. The proposed MB-dMGC-
CWTFFNet is evaluated via four metrics, including area under
curve (AUC), sensitivity (Sn), false prediction rate (FPR/h)
and the p-value. AUC mainly reflects the classification perfor-
mance for the inter-ictal and the pre-ictal states. Sn denotes the
ratio of successfully predicted seizures to the total number of
seizures. FPR/h indicates the number of false alarms per hour,
and the p-value represents the significance of an improvement
over chance-level, which is used to evaluate statistically sig-
nificance whether the seizure warning system is better than a
random predictor [4].

C. Overall Performance
In order to illustrate the patient-specific prediction efficiency

of the proposed MB-dMGC-CWTFFNet, we compare our
proposed model with the following state-of-the-art methods
in the same chance-level, which are tested on two datasets.

1) DCNN-Bi-LSTM [8]: This is a typical deep learning
method by combining the deep convolutional network
with a bidirectional long short-term memory, extract-
ing the spatial and temporal features of epileptic EEG
signals respectively, which were used for the seizure
prediction.

2) CE-stSENet [19]: This method used a temporal-spectral
squeenze-and-excitation network to capture hierarchi-
cal multi-domain representations, which introduced the
attention mechanism into the epileptic seizure detection
task and improved the recognition performance.

3) TS-MS-DCNN [20]: This advanced model encoded the
multi-scale EEG features by designing temporal and spa-
tial multi-scale stages, and a dilated convolution block
was constructed to further expand the feature receptive
and achieving the EEG-based seizure prediction.
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TABLE II
THE PATIENT-SPECIFIC OVERALL COMPARISON OF PERFORMANCE ON CHB-MIT DATASET

TABLE III
THE PATIENT-SPECIFIC OVERALL COMPARISON OF PERFORMANCE ON XUANWU DATASET

The experimental results of the patient-specific compar-
ison on public CHB-MIT and our Xuanwu datasets are
listed in Table II and Table III respectively. From Table II,
we can observe that the DCNN-Bi-LSTM, CE-stSENet and
TS-MS-DCNN gain the average AUC of 0.865, 0.857 and
0.890 respectively on CHB-MIT dataset, while our proposed
MB-dMGC-CWTFFNet reaches the highest average AUC
of 0.935. Especially for Patient 1, 8, 13 and 23, which the AUC
are all greater than 0.985, indicating an excellent performance
of our method in distinguishing between the inter-ictal state
and the pre-ictal state. In the seizure prediction scenario, the
average sensitivity of our proposed model achieves an ideal
97.8% as well, which outperforms three baseline methods
with 7.1%, 11.8% and 6.3% respectively. The distinct advance-
ment on Sn demonstrates that our proposed model, which
is transformed into the seizure warning system, performed
a more successful seizure warning for an individual patient.
In addition, our proposed model yields the lowest average
FPR/h of 0.059, which is at least 58.7% improvement against
other methods. Meanwhile, the p-value of our seizure warning
system is less than or equal to 0.001 for all patients, implying
the improvement-over-chance of our seizure predictor is statis-
tically significant with 99.9% confidence interval. It indicates
that our proposed MB-dMGC-CWTFFNet has the significantly
patient-specific capability for the epileptic seizure prediction.

Additionally, to further validate the effectiveness of our
proposed method, Table III lists the prediction results for
five focal epilepsy patients on Xuanwu dataset. It is obvious
that our proposed model achieves more excellent performance
on AUC and Sn with average 0.984 and 100% respec-
tively, which are at least 5.1% and 10.0% higher than that
of the state-of-the-art models. The average FPR/h of our
method is 0.079, which is lower than other methods. These
encouraging experimental results demonstrate the remarkable
performance (p <0.05) of our MB-dMGC-CWTFFNet frame-
work in the subject-independent intracranial seizure prediction
task, which makes it possible to predict seizure by implanting
intracranial deep electrode, and it enables more convenient
treatment for refractory epilepsy patients [36].

IV. DISCUSSIONS

A. Ablation Studies
To prove the innovation of each component of our proposed

MB-dMGC-CWTFFNet, the ablation studies are conducted
on both CHB-MIT and Xuanwu datasets. In this subsection,
we discuss the efficacy of each innovation by comparing
the proposed method with and without this component,
which contributes to justifying the positive influence. The
overall experimental result of ablation studies is presented
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TABLE IV
ABLATION STUDIES ON TWO DATASETS

Fig. 4. Performance comparison of AUC between the models with and
without MB feature extractor on CHB-MIT and Xuanwu datasets.

in Table IV, and the impacts of MB feature extractor, point-
wise dMGCN and CWTFFNet are demonstrated respectively
as follows:

1) Impact of MB Feature Extractor: In order to give a com-
prehensive assessment for the proposed MB feature extractor,
we compare our MB-dMGC-CWTFFNet with three simpli-
fied sub-models: a) the model without temporal-conv; b) the
model without spatial-encoding; c) the model without spectral-
conv. From Table IV and Fig. 4, firstly, when using the
temporal-conv to extract the multi-scale temporal features
on two datasets, the AUC of our MB-dMGC-CWTFFNet
increased by 2.6% and 3.1% respectively compared with
the model without the temporal-conv. The Sn also get the
improvements of 3.0% on CHB-MIT dataset, 15.0% on our
Xuanwu dataset. Additionally, the FPR/h declines by 79.9%
and 45.9% on two datasets respectively, which illustrates
the availability of the temporal-conv in capturing multi-scale
temporal evolution, and indicates the effectiveness of MB
feature extractor in extracting fine-grained temporal features.

Meanwhile, the spatial-encoding also plays an important
role in the feature extraction of multi-channel spatial features.
For instance, compared to the model without the spatial-
encoding, the AUC of the proposed model increase from
0.907 and 0.948 to 0.935 and 0.984 on two datasets respec-
tively, and the Sn are improved from 94.8% and 85% into
97.8% and 100%. The FPR/h decrease from 0.337 and 0.243 to
0.059 and 0.079. It verifies that the spatial-encoding branch
enables exact spatial expression with cortical multi-channel
representations, which contributes to the seizure prediction
with distinct improvements of performance metrics.

In addition to the above two branches proposed in
MB feature extractor, the effect of the spectral-conv is

Fig. 5. The t-SNE visualization in 2D embedding space of inter-ictal and
pre-ictal features by comparing the models with and without MB feature
extractor on CHB-MIT and Xuanwu datasets.

further discussed. From Table IV, we can find that the pro-
posed method with spectral-conv shows a better performance.
For the CHB-MIT dataset, its evaluation metrics of AUC and
Sn are 4.8% and 4.4% higher than that of the model without
spectral-conv, and the FPR/h declines by 88.5%. Similarly,
when using the spectral-conv on the Xuanwu dataset, our
MB-dMGC-CWTFFNet achieves the improvement of 2.3%
AUC and 5.0% Sn over the model without spectral-conv,
whose FPR/h are reduced by 37.8% accordingly. These eval-
uation results also prove that the designed spectral-conv can
extract comprehensive spectrum characteristics in five clinical
physiological rhythms, which facilitates the construction of
the patient-specific MB feature extractor by combining with
temporal-conv and spatial-encoding branches.

Moreover, to further validate the superiority of the proposed
MB feature extractor intuitively, the t-SNE is applied to
visualize the temporal-spatial-spectral features, which were
extracted by the models with and without MB feature extractor.
The t-SNE visualization in 2D embedding space of inter-ictal
and pre-ictal features on two datasets is shown in Fig. 5.
We can see that the binary-class feature distributions, learned
by MB feature extractor, presents a better discrimination than
the model without MB feature extractor on both CHB-MIT and
Xuanwu datasets. Especially for the models without spatial-
encoding, some inter-ictal and pre-ictal features are confused
together. In contrast, the proposed model using MB feature
extractor obtain more discriminative features, embodied in
visible inter-class distance and dense intra-class distribution on
both two datasets. These phenomena also explain that the best
seizure prediction performance can be produced by combining
the temporal-conv, the spatial-encoding and the spectral-conv
branches simultaneously, which fully illustrates the innovation
of MB feature extractor in extracting the multi-level fine-
grained features jointly.

2) Influence of Point-Wise dMGCN: To judge the contri-
bution of the proposed point-wise dMGCN, we perform an
ablation experiments for our point-wise dMGCN to investigate
its influence in the patient-specific seizure prediction. Fig. 6
shows the comparison of AUC between the proposed models
with and without point-wise dMGCN for each patient. For
CHB-MIT dataset, we can see that the average AUC of
our MB-dMGC-CWTFFNet is 7.3% higher than that of the
model without point-wise dMGCN. Especially, a maximum
AUC increase of 0.18 (about 22.5% improvement) occurs on
Patient 13. For Xuanwu dataset, the AUC of our proposed
model increased by about 7.5% compared to the model without
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Fig. 6. Performance comparison of AUC between the proposed
models with and without point-wise dMGCN on (a) CHB-MIT dataset
and (b) Xuanwu dataset.

Fig. 7. Performance comparison of AUC between the proposed model
with and without CWTFFNet on (a) CHB-MIT dataset and (b) Xuanwu
dataset.

point-wise dMGCN, where the AUC gets an encouraging
ascending from 0.876 to 0.988 on Patient 3. Moreover, the rel-
atively low standard deviations of 0.055 and 0.01 on CHB-MIT
and Xuanwu demonstrates the robustness of our proposed
model with point-wise dMGCN. These improvements of AUC
on two datasets validate the outstanding capability of the pro-
posed point-wise dMGCN in spatial representation learning.
Besides, in Table IV, after employing point-wise dMGCN,
the Sn of our model outperform that of the ablation model
with 8.1% and 16.7% on two datasets respectively, and the
FPR/h is decreased from 0.326 into 0.059 on CHB-MIT, from
0.651 into 0.079 on Xuanwu dataset. These enhancements give
substantial evidences that point-wise dMGCN can better learn
the three-view graph structures with spatial position guidance,
and extract deep multi-domain graph features, which promotes
the overall performance in seizure prediction warning.

3) Efficacy of CWTFFNet: In order to fuse the dynamic
multi-domain graph features, the CWTFFNet is adopted
integrate the local and global representation based on the
channel-weighted self-attention mechanism. Therefore, we fur-
ther compare the efficacy between our MB-dMGC-CWTFFNet
and the model without CWTFFNet. The results of the ablation
experiment on two datasets are presented in Fig. 7. It can be
noted that the CWTFFNet increases the average AUCs from
0.880 and 0.936 to 0.935 and 0.984 on two datasets, respec-
tively. The standard deviations achieve 0.013 and 0.032 lower
than that of the model without CWTFFNet, which indi-
cate the better generalization performance of our proposed
CWTFFNet across multiple patients. Especially for Patient
7 from CHB-MIT and Patient 3 from Xuanwu, their AUCs
achieve greater improvements of 21.0% and 13.7% respec-
tively. In addition, compared to the model without CWTFFNet
in Table IV, the proposed model gains higher Sn of 7.5%
on CHB-MIT and 13.3% on Xuanwu, and FPR/h values get
decline of 0.135 and 0.227 after utilizing CWTFFNet on
two datasets. It proves the advantage of incorporating the

Fig. 8. Performance comparison of the seizure prediction time with and
without CWTFFNet from (a) CHB-MIT and (b) Xuanwu dataset.

multi-domain graph features by means of the CWTFFNet. The
local graph edges can be fully weighted into the multi-head
attention, and complement global channel position informa-
tion, which generates more distinguishable fused features for
the seizure prediction.

To further evaluate the ability of the proposed CWTFFNet
contributing to the performance of the seizure prediction,
we conduct the comparison of the prediction time with and
without CWTFFNet on CHB-MIT and Xuanwu respectively,
and the results are unfolded in Fig. 8. The proposed models
with and without CWTFFNet both successfully implement
the seizure prediction in pre-ictal periods. However, for the
identical seizure from CHB-MIT dataset, the model without
CWTFFNet just achieves the seizure prediction with 5 minutes
prior to the seizure onset, while our proposed model using
CWTFFNet obtain a 9-minute advance of prediction time.
For Xuanwu dataset, the prediction time was improved from
13 minutes to 15 minutes before the seizure onset, and these
improvements in seizure prediction time strongly embody
the innovative contribution of CWTFFNet. Specifically, the
channel-weighted transformer in our CWTFFNet can rein-
force the learning of the model by multi-channel-weighted
self-attention mechanism. Accordingly, the fused features,
containing local multi-graph structures and global channel
information, are more conducive to the seizure prediction.

B. Parameters Analysis of Post-Processing
In this subsection, we mainly analyze the influence of two

hyperparameters for our training model, the filter length and
the threshold ω, on the seizure warning system transformed
by our MB-dMGC-CWTFFNet. In the post-processing, the
moving average filter can smooth the probability outputs of
our model by filtering the outliers, resulting in practical seizure
prediction results. Hence, the filter length in the moving
average filter is set from 5 to 60 with a step of 5 (unit:
second), and the corresponding variations of Sn and FPR/h on
two datasets are shown in Fig. 9(a) respectively. Interestingly,
in both two datasets, the larger filter length leads to the
unsatisfactory Sn , while the smaller filter length causes the
poor FPR/h. The main reason is that a large filter length
may result in over-smoothed prediction results, and thus some
short-duration warnings are probably missed. However, a small
filter length may retain more predicted outliers, which greatly
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TABLE V
EXPERIMENTAL SETTINGS AND PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART METHODS ON CHB-MIT

Fig. 9. Performance comparison of Sn and FPR/h with different post-
processing parameters. (a) filter length; (b) threshold.

increases the probability of false alarm [32]. Consequently,
to maintain the trade-off between Sn and FPR/h, the filter
lengths are configured to 15 for CHB-MIT dataset and 25 for
Xuanwu dataset.

Since the seizure warning depends on whether the predicted
probability exceeds threshold ω, we discuss this hyperparam-
eter to evaluate its sensitivity on the proposed model. The
threshold ω is varied in the range from 0.1 to 0.9 with a stride
of 0.1, and the performance trade-off between Sn and FPR/h is
also displayed in Fig. 9(b). As can be observed, the variation
trends of two evaluation metrics along with the threshold ω are
similar to that with the filter length. The best trade-off results
between Sn and FPR/h both appear in the 0.6 threshold on two
datasets. Thus, to achieve optimal seizure prediction after the
post-processing, we set ω to 0.6 as the final fixed threshold
for CHB-MIT and Xuanwu datasets, which is consistent with
existing studies [9], [32].

C. Performance Comparison of the State-of-the Art
Methods

The performance comparison of the state-of-the-art seizure
prediction methods on CHB-MIT dataset is summarized

in Table V. In order to discuss the advantages of our pro-
posed model, we conduct an objective comparative analysis
among these methods. For example, Truong et al. [10] and
Yang et al. [35] both employed the short-time Fourier trans-
form (STFT) in the CNN of seizure prediction frameworks,
which were tested on 13 patients and achieved the sensitivities
of 81.2% and 89.25% respectively, lower than our MB-dMGC-
CWTFFNet. This is mainly because our proposed MB feature
extractor can extract multi-level fine-grained features com-
pared to traditional time-frequency feature extraction methods.
Compared with two deep learning methods using spectral
power [4] and common spatial pattern (CSP) [11] respectively,
our proposed method applies the point-wise dMGCN learns
three-view graph structures and captures deep multi-domain
graph features, so it yields 10.8%, 5.81% higher in Sn and
0.127, 0.061 lower in FPR/h. Unlike the study [20] that
fused the multi-scale temporal-spatial features by attention
mechanism based dilated CNN, our MB-dMGC-CWTFFNet
introduces the local and global channel-weighted strategy
into the multi-head self-attention units, which is beneficial
to efficient feature fusion for complex graph structures and
outperforms the TS-MS-DCNN with 4.51% Sn . Although
some advanced methods [9], [15] gained the suboptimal per-
formance in seizure prediction, their validation scheme using
10-Fold CV shuffled original EEG signals and destroyed the
continuity of epileptic activity over time, and is not conducive
to real-time seizure warning compared with our adopted
LOOCV scheme. Additionally, compared with the model
proposed by Liang et al. [37], our MB-dMGC-CWTFFNet
achieves 9.01% higher in Sn and 0.123 lower in FPR/h.
Because our proposed method considers multi-domain variable
information and constructs the multi-graph framework, it off-
sets the lack of partial domain information from the feature
alignment strategy in SSDA-SPM. In summary, compared to
most of existing studies, the main differences and advantages
of our MB-dMGC-CWTFFNet include that it can dynamically
learn changes in multi-graph topologies with spatial position
guidance. Meanwhile, it efficiently fuses multi-domain graph
features by using channel-weighted multi-head self-attention
mechanism.
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D. Limitations and Future Directions

Although our proposed prediction framework achieves sat-
isfactory seizure prediction performance, two limitations still
exist in our study. First, our MB-dMGC-CWTFFNet can
realize the end-to-end seizure warning without complicated
EEG pre-processing, but the artifacts in epileptiform dis-
charges and potential bad channels may interfere with the
predictor and cause some false positives in practical warning
scenario. Therefore, we will devote to exploring the adaptive
channel selection [38], [39] and unsupervised artifact removal
algorithms [40], and further eliminating the redundant infor-
mation in raw epileptic signals. Second, our proposed method
conducts a patient-specific seizure prediction by training with
the same patient’s data, while it is difficult to complete the
model fine-tuning across patients. Thus, we will combine the
domain-adversarial transfer learning strategies [41], [42] with
our seizure prediction framework in the future work, which
aims to handle the drifting distribution between target domain
and source domain, and contributes to the cross-patient seizure
prediction.

V. CONCLUSION

In this study, we propose a novel EEG-based MB-dMGC-
CWTFFNet framework for patient-specific seizure prediction.
The MB feature extractor is adopted to effectively capture the
multi-level fine-grained representations in multiple domains.
The designed point-wise dMGCN is further employed to
dynamically learn the deep graph structures with spa-
tial position guidance, which contributes to extracting the
multi-domain graph features from temporal, spatial and spec-
tral views. Finally, the CWTFFNet utilizes the local and global
channel-weight strategy to facilitate the efficient fusion of
high-level graph features. Furthermore, we conduct the com-
parative experiments on two epileptic datasets, and the results
show our proposed MB-dMGC-CWTFFNet obtains a better
evaluation metrics, whose AUC, Sn , FPR/h achieve 0.935 and
0.984, 97.8% and 100.0%, 0.059 and 0.079 on CHB-MIT and
Xuanwu datasets respectively, outperforming the state-of-the-
art methods. These findings prove the outstanding performance
of our proposed MB-dMGC-CWTFFNet in patient-specific
seizure prediction, and indicate its potential application
prospect in neurostimulation treatment of refractory epilepsy
patients.
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