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Abstract— This research introduces a novel, highly pre-
cise, and learning-free approach to locomotion mode
prediction, a technique with potential for broad applications
in the field of lower-limb wearable robotics. This study rep-
resents the pioneering effort to amalgamate 3D reconstruc-
tion and Visual-Inertial Odometry (VIO) into a locomotion
mode prediction method, which yields robust prediction
performance across diverse subjects and terrains, and
resilience against various factors including camera view,
walking direction, step size, and disturbances from mov-
ing obstacles without the need of parameter adjustments.
The proposed Depth-enhanced Visual-Inertial Odometry
(D-VIO) has been meticulously designed to operate within
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computational constraints of wearable configurations while
demonstrating resilience against unpredictable human
movements and sparse features. Evidence of its effec-
tiveness, both in terms of accuracy and operational time
consumption, is substantiated through tests conducted
using open-source dataset and closed-loop evaluations.
Comprehensive experiments were undertaken to validate
its prediction accuracy across various test conditions such
as subjects, scenarios, sensor mounting positions, camera
views, step sizes, walking directions, and disturbances
from moving obstacles. A comprehensive prediction accu-
racy rate of 99.00% confirms the efficacy, generality, and
robustness of the proposed method.

Index Terms— Locomotion mode prediction, terrain
reconstruction, visual-inertial odometry, learning-free,
wearable robots.

I. INTRODUCTION

RECENT years have seen a surge in interest towards
lower-limb wearable robotics, encompassing both pros-

theses and exoskeletons, owing to their significant impact on
the restoration and enhancement of human locomotion. This
burgeoning area of research has found extensive applications
in healthcare and rehabilitation, as evidenced by numerous
studies [1], [2], [3], [4]. It is critical to note that humans
adopt distinct modes of locomotion contingent upon various
types of terrains, prominently including level ground walking,
and ascending or descending on ramps or stairs. It is therefore
imperative for these wearable robots to anticipate the imminent
locomotion mode and make appropriate adjustments to their
control strategies accordingly.

The study of locomotion mode acquisition has been an
extensive field of research. A collection of researchers have
endeavored to discern locomotion modes by characterizing
human movements. Specifically, these studies typically employ
Inertial Measurement Units (IMUs) and other sensors affixed
to designated positions on the human body to record cor-
responding postures and velocities, subsequently utilizing
pattern recognition techniques for classification into distinct
locomotion mode categories [5], [6], [7], [8], [9]. Notwith-
standing, these techniques predominantly focus on recognizing
the locomotion mode shortly after the gait cycle commences
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rather than predicting the mode in advance. Further, the
general applicability of such methods presents a formidable
challenge as the walking patterns of individuals traversing
identical terrains can vary significantly [5]. Indeed, even a
single individual may exhibit diverse walking patterns on
the same terrain, including jogging, striding, and wander-
ing [8], [10]. Furthermore, variations in terrain parameters,
for instance, stair height or ramp slope, may also engender
disparities in walking patterns and consequent degradation of
accuracy. As such, these variables require a technically adept
approach for effective management [8], [9].

Alternatively, a burgeoning body of research has concen-
trated on predicting locomotion mode by directly capturing
the terrain ahead of a human using a camera. The resul-
tant image is then typically subjected to the classification
of locomotion modes employing Machine Learning (ML)
techniques [11], [12], [13], [14], [15], [16]. These approaches
often demonstrate greater robustness and universality, as well
as advancements in prediction instance compared to the earlier
discussed human movement characterization techniques. Nev-
ertheless, akin to other ML tasks, these methods frequently
necessitate considerable volumes of data and an intricate
training process, and require sophisticated techniques for
improvements [12]. Furthermore, these studies do not compre-
hensively incorporate walking information such as step size
or walking direction relative to the viewed image. Indeed,
variations in step size [16], camera pose [17], or walking
direction [15] may result in the terrain captured in the
camera view not reflecting the terrain of the next step.
Moreover, to conserve computational power in wearable con-
figurations, these methods typically rely on single image input,
increasing their vulnerability to interference from moving
objects and thus posing challenges for deployment in open
environments [16].

To date, the realm of wearable robotics is yet to pos-
sess a highly accurate method for locomotion prediction that
(1) effectively blends camera-view data and walking infor-
mation to manage predictions in intricate environments with
variations in step size and walking direction; (2) demon-
strates robustness against a wide array of terrains, subjects,
camera views, and locomotion disparities; (3) obviates the
need for comprehensive data accumulation and sophisticated
training processes typical of ML approaches; and (4) exhibits
resilience amidst external disturbances. This paper proposes
such a method. By employing 3D reconstruction, the terrain
characterization is incrementally stabilized as more images are
continuously incorporated, thereby mitigating the fluctuation
in camera views and external disturbances from mobile obsta-
cles, even in the absence of any learning process. Concurrently,
by integrating Visual-Inertial Odometry (VIO), human walking
information is explicitly considered, ensuring the maintenance
of prediction accuracy across different subjects, regardless of
alterations in walking directions and step size. Nevertheless,
for successful implementation of locomotion mode prediction,
the proposed VIO needs to (1) function efficiently within the
computational power of wearable configurations; (2) display
resilience under the randomness and abruptness inherent in
human motions, especially when the camera is mounted on the

head; and (3) uphold estimation precision in spite of sparse
features, considering terrains frequently comprise vast planes.
These prerequisites are comprehensively addressed within the
framework of the proposed D-VIO.

The contributions of this paper are concluded as follows:
(1) The proposition of a novel highly accurate learning-free
method for locomotion mode prediction. This approach, for
the first time, incorporates both terrain reconstruction and
VIO, allowing for robust performance across diverse sub-
jects and terrains. Remarkably, it maintains robustness despite
variations in camera view, walking direction, step size, and
disturbances from moving obstacles. (2) The development of
the D-VIO algorithm, specifically tailored to meet the demands
of locomotion mode prediction application. The algorithm
is designed to be computationally efficient while exhibiting
resiliency against random and abrupt human motions as well
as sparse features. Its effectiveness on accuracy and time con-
sumption is demonstrated through tests using an open-source
dataset and closed-loop evaluations. (3) The undertaking of
comprehensive experiments to assess the effectiveness of
the proposed method for locomotion mode prediction. These
comprehensive trials include different subjects, scenarios, sen-
sor mounting types, camera views, walking step sizes and
directions, along with the influence of moving objects as
disturbances.

II. METHOD

The pipeline of the proposed method is described in Fig. 1.
The terrain information is reconstructed from an environ-
mental map, which is sourced from the Truncated Signed
Distance Function (TSDF) algorithm [18]. By implementing
the Ray Casting algorithm [19] for point cloud smoothing
and localization, and introducing continuity and voting con-
straints during updates, our proposed method is capable of
reconstructing the terrain despite various parameter variations
and external disturbances. Walking information, such as the
walking direction and step size, is explicitly considered within
our proposed D-VIO. This approach demonstrates commend-
able performance even with sparse visual features and the
intermittence and unpredictability characteristic of human
motions.

A. Related Works
VIO has gained considerable attention as an effective tech-

nique for the estimation of kinematic states and the subsequent
extraction of walking information for egocentric objects [20].
Certain methodologies, such as ORB-SLAM3 [21] and VIP-
SLAM [22], strive for precise estimations contingent upon
adequate computational capacity. In contrast, others, notably
VINS-Mono [23] and OKVIS [24], prioritize computa-
tional efficiency. Among the lightweight VIOs, VINS-Mono
distinguishes itself due to its high update frequency, robust ini-
tialization process, and facilitation of secondary development.
This led to further advancements, namely VINS-RGBD [25]
and VINS-Fusion [26], which seek to enhance the accu-
racy of VINS-Mono while maintaining marginal additions
to computational load. However, for locomotion mode pre-
diction applications, maintaining VIO accuracy presents a



ZHAO et al.: LEARNING-FREE METHOD FOR LOCOMOTION MODE PREDICTION 3897

Fig. 1. The pipeline of the proposed locomotion mode prediction method.

significant challenge due to the randomness and abruptness
of motion [27], coupled with the lack of environmental
features, which need to be well addressed in our proposed
method.

Extensive research has been conducted in the realm of real-
time 3D reconstruction. One prevalent approach involves the
application of learning-based implicit representation methods
designed to establish relationships with 3D coordinates [28].
These techniques have exhibited advantages in settings encom-
passing large-scale scenarios when adequate computational
power is accessible [29], [30]. Conversely, another category
focuses on the integration of weighting and merging processes
for single-shot depth information to bolster robustness against
external disturbances such as moving objects, typically uti-
lizing a Truncated Signed Distance Function (TSDF) [18].
This latter category generally presents lower computational
demands and has demonstrated efficacy in local mapping
applications, deeming it suitable for tasks involving loco-
motion mode prediction. Prominent reconstruction algorithms
that adopt this methodology include ElasticFusion [31] and
BundleFusion [32].

B. Notations
The sensor inputs for the D-VIO system consist of RGB

images IC , depth images I D , and raw data from an Inertial
Measurement Unit (IMU), including angular velocity ω and
linear acceleration a, which are used to calculate the IMU
preintegration measurement ẑ. The D-VIO initializes a global
coordinate G and an initial kinematic state X0, which consists
of position GpI, velocity GvI and pose GqI . The odom-
etry then continuously estimates kinematic state X . Using
temporal estimated states X and divided gait phases, the
D-VIO calculates the walking direction v̄nm and step size δnxt .
Additionally, the 2D footprint position ppd is computed. The
TSDF-based mapping algorithm aligns coordinates for each
one-shot depth image and merges them into an integrated 3D
map S. Finally, the terrains are reconstructed into concise
descriptions T by detecting atomic elements (planes η) and
updating information from S. The locomotion mode is pre-
dicted directly by fusing the walking and terrain information.

TABLE I
FREQUENTLY USED TERMINOLOGIES

We provide a list of frequently-used terminologies in
TABLE I.

C. Visual Inertial Odometry (VIO)
This section proposes a D-VIO algorithm to estimate the

kinematic state vector of human walking X in real time,
in a gravity-aligned coordinate G using RGB-D images and
IMU data. The proposed D-VIO algorithm is structured
around VINS-Mono [23], due to its inherent benefits in
lightweight computation, high update frequency, robust ini-
tialization process, and facilitation of secondary development.
The introduction of supplementary constraints at both the ini-
tialization and estimation stages allows the proposed D-VIO to
attain superior performance under conditions characterized by
sparse visual features and erratic human motions - conditions
that are typically encountered in locomotion mode prediction
applications.

The VINS-Mono framework consists of two main compo-
nents: a visual feature tracker and a kinematic state estimator.
During initialization, the system is initialized with a sliding
window XW = {⟨Xi ,X e

i ⟩}
M
i=1 consisting of M keyframes

selected according to the visual difference, where X e
=

⟨ba, bg⟩ denotes the accelerometer and gyroscope biases.
The visual feature tracker uses the Kanade–Lucas–Tomasi
(KLT) [33] optical flow algorithm to detect and track visual
features, or landmarks, in the RGB image sequence. The
state estimator solves the vision-only Structure-from-Motion
(SfM) and visual-inertial alignment problem to estimate the
kinematic state, which is constructed using visual projection
constraints and solved using a nonlinear optimization method.
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The visual projection factor rVi j of the landmark G l j in frame
i can be formulated as

rVi j (
GRIi ,

G pIi ,
G l j )

=
1
Z

[
I RT

C (GRT
Ii
(G l j −

G pIi ) −
I pC )]xy − um (1)

and the visual projection cost can be formulated as

CV =

∑
1≤i≤M

∑
1≤ j≤|L|

ρ(∥rVi j (
GRIi ,

G pIi ,
G l j )∥

2
6V ), (2)

where Z denotes the depth of landmark, G l j ∈ R3 denotes
the position of landmark; GRIi is the rotation matrix form
of GqIi ∈ X ; I RC and I pC denotes the extrinsic param-
eters between the IMU and camera; um ∈ R2 denotes the
normalized plane position of the feature point; L = {

G li }n
i=1

denotes the set of the landmarks; 6V represents the covari-
ance matrix of visual re-projection measurement error; ρ(·)

denotes the robust kernel function; [·]xy denotes the operator
that extracts the first two elements of a three-dimensional
vector.

In our D-VIO system, we leverage depth measurements,
which serve to eliminate outliers, expedite the optimization
process, and enhance the robustness of the initialization pro-
cess, to augment the VINS-Mono. The depth measurements
enable the formulation of a depth-enhanced SfM problem,
consisting of two types of factors: visual projection fac-
tors and depth measurement factors. The depth measurement
factor rDi j of the landmark G l j in frame i is formulated
as

rDi j (
GRIi ,

G pIi ,
G l j )

= [
I RT

C (GRT
Ii
(G l j −

G pIi ) −
I pC )]z − dm (3)

and the corresponding cost is formulated as

CD =

∑
1≤i≤M

∑
1≤ j≤|L|

ρ(∥rDi j (
GRIi ,

G pIi ,
G l j )∥

2
6D ), (4)

where dm ∈ R denotes the measurement value of the feature
depth; [·]z denotes the operator that extracts the third element
of a three-dimensional vector; 6D represents the covariance
matrix of depth measurement error. Therefore, the nonlinear
optimization problem is composed of two components shown
as

min
XW

CV + CD, (5)

where XW = ⟨X0,X e
0 ⟩.

After the initialization stage, VINS-Mono solves the
visual-inertial bundle adjustment in the sliding window to
update the kinematic state X continuously. This process con-
siders all temporal factors, including the prior factor, the IMU
preintegration factor, and the visual projection factors. The
prior factor CP is defined as

CP = ∥rP − HPX∥
2, (6)

where rP denotes the prior residual and HP denotes
the prior hessian matrix, which is calculated using the
marginalization factor including prior information from visual
projection factors, depth measurement factors, and IMU

preintegration factors. The IMU preintegration factor rB is
formulated as

rB(Ik ẑ Ik+1 ,Xk,Xk+1,X e
k ,X e

k+1)

=



Ik RG

(
GpIk+1 −

G pIk −
G vIk 1t −

1
2

g1t2
)

−
Ik α̂ Ik+1

2 ·

[(
Ik γ̂ Ik+1

)−1
⊗ q

(GRIk

)−1
⊗ q

(GRIk+1

)]
xyz

Ik RG
(GvIk+1 −

G vIk − g1t
)
−

Ik β̂ Ik+1
baIk+1

− baIk
bgIk+1

− bgIk


(7)

and the visual projection factor rsw
Ci j

is formulated as

rsw
Ci j

(XIi ,XI j , ξl , um j )

= [
I RT

C (GRT
I j

(GRIi (
I RC

1
ξl

π−1(umi ) +
I pC ) +

G pIi )

−
GpI j ) −

I pC ]xy − um j , (8)

where π−1(·) is the back-projection function, ξl is the inverse
depth of landmarks in the host frame which is the first frame
that observes the landmark, g denotes the gravity vector, q(·)

denotes the equivalent quaternion of a rotation matrix, u is
the observation of visual feature. In equation (7), Ik ẑIk+1 ={

Ik α̂ Ik+1 ,
Ik β̂Ik+1 ,

Ik γ̂Ik+1

}
is preintegration measurement rep-

resenting 3D positions. In equation (8), frame i is the host
frame of the landmark l, and frame j is a co-visible frame.
The corresponding IMU preintegration cost CB is formulated
as

CB =

∑
k∈B

∥rB(Ik+1 ẑ Ik ,Xk,Xk+1,X e
k ,X e

k+1)∥
2
6Pk

k+1

(9)

and visual projection cost Csw
V is formulated as

Csw
V =

∑
(l, j)∈C

ρ(∥rsw
Ci j

(XIi ,XI j , ξl , um j )∥
2
6V ). (10)

To enhance the estimation accuracy and adapt to the ran-
dom motions, we construct depth measurement factors in the
proposed D-VIO system. In the host frame, the host depth
measurement factor is formulated as

rDh (ξl) =
1
ξl

− dm (11)

which is a residual between inverse depth ξl and host depth
measurement dm . Between the co-visible frame i and j ,
projection depth measurement factors are formulated as

rsw
Di j

(XIi ,XI j , ξl , dm j )

= [
I RT

C (GRT
I j

(GRIi (
I RC

1
ξl

π−1(umi ) +
I pC )

+
GpIi ) −

G pI j ) −
I pC ]z − dm j . (12)

Their corresponding costs, CDh is formulated as

CDh =

∑
l∈L

ρ(∥rDh (ξl)∥
2
6D ), (13)
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and Csw
D is formulated as

Csw
D =

∑
(l, j)∈C

ρ(∥rsw
Di j

(XIi ,XI j , ξl , dm j )∥
2
6D ). (14)

Totally, the final nonlinear optimization problem is formulated
as

min
XW

CP + CB + Csw
V + Csw

D + CDh . (15)

After the sliding window optimization, all host depth mea-
surement factors rDh are dropped directly because they do not
contribute to the subsequent optimization process. All projec-
tion depth measurement factors rsw

Di j
are used to construct the

prior hessian matrix and prior residual in the marginalization
process. The kinematic state X is then updated at a high
frequency by combining the pre-integration result of IMU with
the optimization result. Notice that global coordinate is set as
default in the notations, thus omitted in the rest of this paper
for simplicity. For example, GpI will be denoted as p.

D. Walking Information Prediction
This section uses the estimated kinematic states X to extract

and estimate the walking information, e.g. step size, walking
direction, and footprint of the subject. Force-sensitive insoles
are adopted for footstep division assistance. Once the pressure
signal is detected, the position and velocity are recorded. As a
result, division positions {p̄t

i }
ntp
i=1 and corresponding velocities

{v̄t
i }

ntp
i=1, which can represent the walking direction simultane-

ously, are cached as time series. The step size between two
adjacent division positions is calculated using

δ = ∥p̄t
i − p̄t

i−1∥, (16)

where p̄t
i−1 and p̄t

i are two adjacent elements in {p̄t
i }

ntp
i=1. With

the last two step sizes δntp and δntp−1, the size of the next
step δnxt can be calculated by a 1st-order calculation method,
which is represented by

δnxt = 2δntp − δntp−1. (17)

Then, the footprint position can be predicted with δnxt and
v̄t

ntp
as

ppd
= p̄t

ntp
+ v̄nm

ntp
· δnxt , (18)

where the unit vector v̄nm
ntp

=
v̄t

ntp
|v̄t

ntp |
guarantees the

scale-invariance of δnxt . The left and right feet are distin-
guished by adding specific offsets to ppd respectively.

E. Environment Mapping
This section proposes an approach to integrate depth images

I D into a consistent 3D map to eliminate duplicate informa-
tion, filter out disturbances caused by moving objects, and
average sensor noise. We utilize a TSDF-based algorithm [18]
to construct a 3D map S. S comprises evenly distributed
voxels, which have two attributes, a TSDF value λ and a
weight W . Once a new depth image is received from the
camera, the TSDF value and the weight of every voxel are
updated accordingly. Finally, the surfaces of entities in the

map, which contains the terrain information we need, are
represented by the set of voxels with zero value.

The updating policy is composed of three steps: (1) Calcu-
lating the Signed Distance Function (SDF) value of each voxel
as

SDF(ι j ) = dι j − dc, (19)

where ι j denotes the voxel, dι j identifies the projection depth
from the voxel to the camera optical center, dc represents
the voxel-corresponding depth value; (2) Updating the TSDF
value from the SDF value, which involves (i) calculating
the temporary TSDF value λ′

ι j
by truncating SDF value into

[−1, 1] as

λ′
ι j

= max (−1, min(1,
SDF(ι j )

tδ
)), (20)

where tδ is a preset threshold, and (ii) calculating the TSDF
value by weighting the existing TSDF value λι j and the
temporary TSDF value with

λι j =

W jλι j + w jλ
′
ι j

W j + w j
, (21)

where w j is a preset parameter; (3) The weight of each voxel
is updated with

W j = min (W j + w j , Wmax ), (22)

where Wmax denotes the preset upper bound of weight.

F. Terrain Reconstruction
This section endeavors to progressively develop a succinct

representation of terrain information, utilizing updates from
the 3D map outlined in Section II-E. Firstly, in an effort to cur-
tail superfluous computation, the Ray Casting algorithm [19]
is implemented upon each update of the 3D map. This strat-
egy ensures that the refinement of the terrain representation
coincides solely with the acquisition of new information from
the camera, which are subsequently presented as a smoothed
depth image, denoted as I s

D .
Secondly, planes are extracted from the smoothed depth

image I s
D , which will later serve as foundational elements

of terrain representation. The extraction process employs the
Agglomerative Hierarchical Clustering (AHC) algorithm [34],
which comprises three main steps: (1) The depth image I s

D
is divided into cells of dimensions Hp × Wp; (2) Each cell
is fitted with a plane using Principal Component Analysis
(PCA), excluding cells exhibiting apparent discontinuity; (3)
Cells are then clustered based on the similarities of the fitted
planes, characterized by attributes including the position of
the plane center, the direction of the plane normal vector, and
the plane fitting error. Upon completion of these steps, each
cluster of cells forms a newly detected plane, represented as
ηi

:= ⟨ci , ni , ai , si , wi
⟩ for the i th cluster. Here, ci specifies

the plane center, ni represents the plane normal vector, ai

indicates the plane area, si identifies the plane ID, and wi

refers to the score value, which will be expounded upon in
the ensuing step.

Thirdly, the newly detected planes are used to update the
existing plane set for terrain representation, i.e. adding a new
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plane, merging multiple planes or deleting an existing plane,
by evaluating the score value of each existing plane. Before
calculating the score value of each function, we first pair each
newly detected plane with every existing plane and calculate
the Intersection over Union (IoU) as

I oUi j =
ηi

n ∩ η
j
e

ηi
n ∪ η

j
e
. (23)

The process of adjusting the scores of existing planes involves
three distinct conditions: (1) In the event of a newly detected
plane exhibiting a high IoU with an existing plane, the newly
detected plane is merged into the existing one, and the score
value of the latter is incremented by 1; (2) If a newly detected
plane does not possess any pair with an existing plane, the
newly detected plane is added to the set of existing planes
with an initialized score value of 1; (3) If an existing plane
in the scope of I s

D does not possess a paired newly detected
plane, its score value is decremented by 1. Any existing planes
that exhibit a score value of zero are subsequently removed
from the set of existing planes.

Finally, we reconstruct representations of terrain informa-
tion with the set of existing planes. Ramps and level grounds
are extracted directly based on slope θ and area a, while
stairs are constructed iteratively from at least two planes with
two preset thresholds, the distance of centers di j = |ci − c j |

and the vertical distance hi j = |zi − z j |. Terrains consist
of links between planes and are organized as hash tables,
enabling easy projection of predicted footprints to grounds,
and direct application of any updates to the planes. The
succinct representation of terrain information is denoted by
T = {T := ⟨τ, s, 0⟩}, where τ denotes the type, s indicates
the terrain ID, and 0 refers to the corresponding planes.

III. EXPERIMENTS SETUP

A. Experiment Preparation
Our proposed method is implemented in the experiment

with Intel Realsense D455 as the sensor module, which
contains an RGB-D camera and an internal IMU. The sensor
module is attached to the human body with two configurations:
mounted on a helmet or mounted on a chest bag. The gait
phase is captured by a pair of force-sensitive insoles. All
sensors are connected to a PC and the multi-thread commu-
nication is realized within the structure of Robot Operating
System (ROS), as shown in Fig. 2. By conducting optimization
on memory reading and writing, the prediction time consump-
tion can be constrained within 34ms.

A total number of 15 subjects are recruited for the experi-
ments, with a large variation of heights: group I (three subjects
(165.10 cm, 165.50 cm, 164.80cm, average of 165.13 cm),
group II (three subjects (170.80 cm, 172.00 cm, 171.10cm,
average of 171.30 cm), group III (three subject (175.80 cm,
175.20cm, 174.10cm, average of 175.03 cm), group IV
(three subjects (181.50 cm, 180.80 cm, 183.10 cm, average
of 181.80 cm), and group V (three subjects (188.00 cm,
186.90cm, 188.20cm, average of 187.70 cm). All subjects
signed the informed consent before experiments, and the
experiments have been approved by the Local Ethics Com-
mittee of Peking University. It is important to underscore

Fig. 2. The hardware and software implementation. ROS structure is
applied to realize multi-thread communications among various sensors
and processors.

that while participants were categorized into five groups, each
group underwent the identical set of experiments. Conse-
quently, each experimental condition involved 15 participants,
yielding statistically significant data. The rationale for this
grouping was solely to ensure a diversity of participant heights,
thereby testing the robustness of our proposed algorithm across
different camera positions and step sizes.

B. Experiment Protocol
1) Generality Test: One major advantage of our proposed

method is generality, which means that it can conduct accurate
predictions for different subjects, terrain parameters, walking
patterns, and even mounting positions with the same algorithm
and only one set of fixed parameters. No tuning is required
when transferring to different scenarios. Therefore, this gen-
erality test experiment aims to verify the robustness of our
method to condition variations on human and the environment.
Four types of condition variations are considered in this
experiment.

a) Terrain type variation: This experiment selects three
ramp slopes (11.8◦, 15.8◦ and 17.8◦), and three stair heights
(15 cm, 20 cm, and 25 cm).

b) Subject height variation: The variation in subject heights
can cause differences in sensor position and step size. As men-
tioned in the previous subsection, we recruit five groups of
subjects with heights ranging from 164.80 cm to 188.20 cm.

c) Sensor position variation: This experiment selects two
most popular sensor mounting positions: (1) on the head or
(2) in front of the chest. Different mounting positions will
greatly affect the sensing region. The head-mounting configu-
ration also introduces additional disturbances to sensing from
the frequent random movements of head.
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Fig. 3. Experiment protocols. (a) Unconventional Camera View: The subject walks upwards when frequently changing the camera view in a large
angle so that the terrain is only partially captured. (b) Multi-direction and Outdoor Walking: The subject walks upwards while switching between two
adjacent parallel terrains in the outdoor environment. (c) External Disturbance: The subject is walking on the stairs while two volunteers walking
around the subject in different directions to partially or even largely block the camera view.

TABLE II
THE MEAN PREDICTION ACCURACY (%) OF EACH CONDITION COMBINATION IN THE GENERALITY TEST EXPERIMENTS

d) Walking pattern variation: Each subject is asked to walk
in three different patterns: wandering, regular walking, and
jogging. This can cause fluctuations in walking speed and also
step size.

Five different locomotion modes are predicted in our exper-
iments, including Level Ground (LG), Stair Ascending (SA),
Stair Descending (SD), Ramp Ascending (RA), and Ramp
Descending (RD). Each group of subjects are asked to walk in
the LG → SA → LG → SD → LG procedure for each stair
height, and LG → RA → LG → RD → LG for each ramp
slope. Each terrain type is combined with every sensor position
and walking pattern to form one condition combination. Each
experiment is repeated three times to ensure repeatability.
Therefore, a total number of 180 condition combinations and
thus 540 experiments are conducted in this generality test.

2) Unconventional Camera View: Conventionally, the terrain
information should largely occupy the central area of the cam-
era view, and the view angle should be near-front. However,
in many practical applications, the desired terrain may be only
partially observed at a near-side or large-angle view, and may
only occupy a corner of the camera view. This experiment is
to show that, by applying terrain reconstruction techniques,

our method is able to make a stable prediction even for these
aforementioned unconventional camera views. The experiment
protocol is shown in 3(a), where the subject is asked to walk
with a large and changing view angle to the terrain, and make
an abrupt change of walking direction in the middle of the
path. A considerable percentage of the camera view during
the walking is occupied by the wall on the sides. Each subject
is requested to repeat the process three times.

3) Multi-Direction and Outdoor Walking: Another advantage
of the proposed method is that VIO can detect the walk-
ing directions in the 3D space, so that accurate prediction
can be made even if the subject changes walking directions
and thus selects different terrain types. The importance of
multi-directional walking and selection of terrain has been
well addressed in [15]. In addition, it is also important to
verify the effectiveness of the vision-based method in outdoor
environments. The experiment protocol is shown in Fig. 3(b),
where the subject walks outdoors while frequently switching
between two parallel adjacent terrains, which contains switch-
ing among LG, SA and RA. Each subject is requested to repeat
the process three times.
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4) External Disturbances: One advantage of using terrain
reconstruction instead of detection is that the terrain recogni-
tion results from reconstruction are very robust against various
external disturbances, of which moving objects are represen-
tative. This set of experiments aims to test the robustness of
our method in the existence of external moving obstacles that
largely disturb the image input in a certain period of time. The
experiment protocol is shown in Fig. 3(c). The subject walks
along the LG → SA → LG path. Two volunteers walk around
the subject in different directions to partially or even largely
block the sensor view. Each subject is requested to repeat the
process three times.

5) Odometry Performance: The efficacy of the proposed
D-VIO is assessed through an open-source dataset focused on
estimation accuracy and temporal efficiency, and a closed-loop
test targeting estimation drift. As previously noted, the
VINS-Mono framework was chosen due to its computational
efficiency, high update frequency, robust initialization process,
and provision for secondary development. Consequently, the
objectives of this performance evaluation are two-fold: firstly,
to conduct an ablation study demonstrating the enhancements
made from the original VINS-Mono algorithm; and secondly,
to engage in comparative analysis with other prominent VIO
systems based on the VINS-Mono framework.

a) Open-source dataset test: The famous open-source
dataset, EuRoC MAV [35], is applied. The proposed D-VIO is
compared with VINS-Mono, VINS-RGBD, and VINS-Fusion
on accuracy (measured by the Root Mean Square Error
(RMSE) of Absolute Pose Error (APE) of the estimated
trajectory) and time consumption. Depth information can be
extracted from stereo images from the dataset.

b) Closed-loop test: Each subject is asked to complete
a looping trajectory from the identical starting and ending
points with the proposed hardware in this paper. The loop
drifts of D-VIO, VINS-Mono and VINS-RGBD from the same
trajectory are calculated for comparison. It should be noted
that VINS-Fusion is not included in this test due to the inability
of the RGB-D camera used in the experiment to provide stereo
inputs.

IV. EXPERIMENT RESULTS

A. Generality Test
1) Prediction Results: The experiment results of the

180 condition combinations in the generality test are demon-
strated in TABLE II. The average accuracy of all experiments
reaches 99.00% ± 0.95%. The prediction accuracy for each
type of terrain, each motion pattern, and each sensor mounting
position is concluded in TABLE III. It can be witnessed that
the proposed method reaches high accuracy under all six
types of terrains, three walking patterns, and two mounting
positions. On the other hand, it can be shown in Fig. 4(a)
that the proposed method reaches high accuracy in all five
locomotion modes. Both show that our method is general to
condition variations, such as terrain types, motion patterns,
sensor positions, and subject heights.

2) Condition Variations: The condition variations are also
measured explicitly in the experiments. The average sensor
mounting height of the five subject groups are 1.64 m,

Fig. 4. (a) Confusion matrix of prediction accuracy in the generality
test; (b) Histogram of camera pitch variation in the generality test;
(c) Histogram of subject velocity variation in the generality test.

1.68 m, 1.75 m, 1.79 m, and 1.84 m for the head-mounting
configuration, and 1.11 m, 1.11 m, 1.18 m, 1.24 m, 1.28 m
for the chest-mounting configuration. The pose of the sensor
fluctuates greatly during walking, especially for the head-
mounting configuration, which leads to a large difference in
camera views. As shown in Fig. 4 (b), the camera pitch angle
has an average pitch of 0.14 rad, but ranges from −0.66 rad to
1.18 rad with a standard deviation of 0.26 rad. The variation
of walking pattern and subject height leads to a variation of
subject velocity, as shown in Fig. 4 (c). The subject velocity
in the generality test experiments has an average of 0.78 m/s,
but ranges from 0.05 m/s to 2.12 m/s with a standard deviation
of 0.27 m/s.

B. Unconventional Camera View
The average prediction accuracy for all subjects in the

unconventional camera view experiment in Fig. 3(a) is
99.07% ± 1.41%, which reaches the accuracy of the conven-
tional camera views shown in Section IV-A. This demonstrates
that our method is able to fully handle the disturbance intro-
duced by the large and abrupt changes of camera views.

C. Multi-Direction and Outdoor Walking
The average prediction accuracy for all subjects in the

multi-direction and outdoor walking experiment in Fig. 3(b) is
98.18% ± 1.76%, which is of the same level with indoor, one-
direction walking experiments. This verifies that our method
is robust to direction change and the outdoor environment.
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TABLE III
THE MEAN PREDICTION ACCURACY (%) FROM DIFFERENT CONDITION VARIATIONS

TABLE IV
ODOMETRY TESTS ON THE EUROC MAV DATASET

D. External Disturbances
The average prediction accuracy for all subjects in the

external disturbance experiment in Fig. 3(c) is 98.59% ±

1.91%, which shows the same level of accuracy with other
experiments. This shows that our terrain reconstruction tech-
nique can circumvent the negative influence of moving objects
that block the camera views.

E. Odometry Performance
1) Open-Source Dataset Test: The accuracy and time

consumption of D-VIO, VINS-Mono, VINS-RGBD and
VINS-Fusion are shown in TABLE IV. It can be witnessed
that the proposed D-VIO presents comparable or slightly supe-
rior performance than other VINS series in all test sequences,
while significantly reducing the time consumption.

2) Closed-Loop Test: The loop drifts of D-VIO,
VINS-Mono and VINS-RGBD are shown in TABLE V.
The drift of VINS-Mono grows rapidly, as the locomotion
mode prediction application has sparse visual features and
human motion randomness. The proposed D-VIO shows
comparative yet slightly better performance in contrast with
the VINS-RGBD in the test case.

3) Time Consumption: As mentioned in TABLE IV, the
proposed D-VIO demonstrates an approximate reduction of
50% on time consumption with other VINS-series VIOs for
the EuRoC MAV Dataset.

4) Ablation Study: The ablation study is conducted on
the open-source dataset test and closed-loop test, on both
estimation accuracy and time consumption. Compared with
the original VINS-Mono, the proposed D-VIO significantly
improves the estimation accuracy and reduces the time con-
sumption by half. The closed-loop test also shows that

VINS-Mono faces challenges on locomotion mode prediction
applications with sparse features and random motions.

V. DISCUSSION

Locomotion mode prediction has been a fundamental task
for the assistance applications of lower-limb wearable robots,
such as prostheses and exoskeletons. The basic idea is that the
locomotion assistance strategy differs for different locomotion
modes, which typically include ground walking, and ascending
or descending on ramps and stairs. Compared with IMU-based
algorithms [5], [6], [7], [8], [9] that recognize the locomotion
mode by identifying and classifying the walking pattern,
the vision-based algorithms [11], [12], [13], [14], [15], [16]
release the burden of multiple-sensor deployment, advance the
time instance to complete each prediction, and improves the
robustness under individual variations on walking pattern for
the same locomotion mode. With advanced ML techniques, the
State-of-the-Art (SOTA) vision-based algorithms reach high
accuracy under variations of terrain appearance.

This paper presents a learning-free method for vision-based
locomotion mode prediction, by employing terrain recon-
struction techniques. The walking information of subjects is
explicitly measured and considered in the prediction with
the introduction of VIO. Compared with other algorithms
based on ML techniques, this method releases the workload
of data collection through real-world experiments [7] or data
augmentation [12], while reaching the same level of prediction
accuracy (99.00% ± 0.97%) with SOTA ML-based techniques,
under comprehensive variations of terrain appearance, walking
pattern, subject heights and camera deployment, as shown in
Section IV-A and also TABLE III.

Although the significance of walking information, such
as step size and walking direction, has been emphasized in
previous works, only limited ML-based works have taken
it into consideration, either by introducing additional sen-
sors [15], or setting constraints on motion [16]. Our method,
by introducing VIO for the explicit consideration of walking
information, shows commendable robustness under variations
of step size and walking direction, as shown in Section IV-B
and Section IV-C. The terrain reconstruction technique makes
the proposed method robust to single image inconsistencies.
As a result, the proposed method avoids the calibration process
of camera position and pose [16]. Actually, the camera for our
method can be mounted with different heights and poses, even
on the head where the mounting position and pose remain
fluctuating during the prediction, without any requirements
for the modification or tuning of parameters, as verified
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TABLE V
LOOP DRIFTS IN THE CLOSED-LOOP TEST

Fig. 5. The proposed terrain reconstruction method can (a) improve
the completeness of the terrain surface under various lighting and envi-
ronmental conditions. (b) provide robust terrain representation under
external disturbance, such as a moving obstacle.

experimentally in TABLE III. This also indicates that our
method can remain functional with external disturbance to
camera images, such as moving obstacles, e.g. other people
passing by and blocking the terrain in a certain period of time.
This is demonstrated in the experiment in Section III-B4.

Our proposed method for the first time introduces VIO
and terrain reconstruction in the field of wearable robots
for locomotion mode prediction. However, the pipeline and
internal algorithms need to be specially designed to achieve
high performance for this specific scenario. As for VIO, the
implementation on wearable configuration requires lightweight
computation demand, robustness under random and abrupt
human motions, and stability in accuracy under sparse fea-
tures. Therefore, although researchers continue proposing
novel algorithms with increasing performance, [22], [32], [36],
this study adopts the VINS-Mono framework [23] for its com-
prehensive advantages to leverage accuracy and computation
demand. In this paper, we present the D-VIO algorithm, which,
by adding additional depth constraints on both initialization
and estimation stages, greatly improves the accuracy and
robustness under our specific scenario with random motion and
sparse features. An ablation study is conducted to show our
advantages from VINS-Mono, as shown in Section IV-E. The
proposed D-VIO is also tested with the famous open-source
dataset EuRoC MAV and also with closed-loop experiment
on accuracy and time consumption, in contrast with other
prestigious VIOs under the VINS-Mono framework, such as
VINS-RGBD and VINS-Fusion. The results in TABLE IV and
TABLE V show that the proposed VIO achieves better perfor-
mance in accuracy and time in our application of locomotion
mode prediction. As for terrain reconstruction, two major
concerns are the stable and succinct representation of terrain
information, and the robustness under external disturbance.
By conducting Ray Casting and IoU-based plane updating
algorithms on the TSDF mapping, the proposed method is

able to extract smooth and relatively complete terrain surface
under various lighting and environment conditions, as shown
in Fig. 5(a), and also remain robust under external disturbance
such as obstacles, as shown in Fig. 5(b).

One interesting finding of our experiment results is that,
although high accuracy is maintained in all designed condition
variations, the corner cases occur mostly in the wandering
and jogging motion patterns, as indicated in TABLE III. The
reason is that the subjects sometimes become bewildered when
forced to walk in a pattern they are not familiar with, especially
near the transition region between different terrains. In these
cases, spikes in velocity occur and the walking information
becomes unpredictable. This shall be largely improved in real
applications, when people walk in a more natural and thus
continuous manner.

VI. CONCLUSION

This paper proposes a novel locomotion mode prediction
method, which incorporates terrain reconstruction and VIO
techniques to build robust descriptions of the terrain and
walking information, so that the data generation and training
process in machine learning-based algorithms are omitted. The
specially designed D-VIO and terrain reconstruction algorithm
allow for high performance in our specific scenario, with the
lack of geometric features for terrain images, and randomness
and abruptness in human motions. The proposed method is
able to maintain high accuracy (99.00% on average) with
variations of subject heights, terrain geometric parameters,
walking speeds and patterns, and also the mounting position
and pose of the camera. Results also show that the accuracy
can be maintained in the outdoor environment, multi-direction
walking, or in the presence of moving objects to disturb the
image inputs. Future works may include extracting gait phase
information from the VIO results [37], converting the loco-
motion modes to parameterized continuous description and
designing corresponding controllers for better performance in
assistance, developing lightweight detection and representation
technologies to facilitate the computation and storage level of
embedded systems, and establishing an open-source dataset
with a diversified group of subjects conducting locomotion
on different terrains, under different walking patterns, with
different camera types, positions and poses, so that a fair
comparison can be conducted among different locomotion
mode prediction algorithms.
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