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Exploring Adaptive Graph Topologies and
Temporal Graph Networks for EEG-Based

Depression Detection
Gang Luo , Hong Rao , Panfeng An , Yunxia Li, Ruiyun Hong, Wenwu Chen, and Shengbo Chen

Abstract— In recent years, Graph Neural Networks
(GNNs) based on deep learning techniques have achieved
promising results in EEG-based depression detection
tasks but still have some limitations. Firstly, most exist-
ing GNN-based methods use pre-computed graph adja-
cency matrices, which ignore the differences in brain
networks between individuals. Additionally, methods based
on graph-structured data do not consider the temporal
dependency information of brain networks. To address
these issues, we propose a deep learning algorithm that
explores adaptive graph topologies and temporal graph
networks for EEG-based depression detection. Specifi-
cally, we designed an Adaptive Graph Topology Generation
(AGTG) module that can adaptively model the real-time
connectivity of the brain networks, revealing differences
between individuals. In addition, we designed a Graph Con-
volutional Gated Recurrent Unit (GCGRU) module to cap-
ture the temporal dynamical changes of brain networks. To
further explore the differential features between depressed
and healthy individuals, we adopt Graph Topology-based
Max-Pooling (GTMP) module to extract graph representa-
tion vectors accurately. We conduct a comparative analysis
with several advanced algorithms on both public and our
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own datasets. The results reveal that our final model
achieves the highest Area Under the Receiver Operat-
ing Characteristic Curve (AUROC) on both datasets, with
values of 83% and 99%, respectively. Furthermore, we per-
form extensive validation experiments demonstrating our
proposed method’s effectiveness and advantages. Finally,
we present a comprehensive discussion on the differences
in brain networks between healthy and depressed individ-
uals based on the outputs of our final model’s AGTG and
GTMP modules.

Index Terms— Depression detection, EEG, adaptive
graph topology, graph neural network.

I. INTRODUCTION

MAJOR depressive disorder (MDD), as a prevalent psy-
chiatric condition, is often accompanied by symptoms

such as anxiety, irritability, and insomnia. Moderate to severe
depression has been associated with self-harm behaviors,
including suicide [1], [2], [3]. The global prevalence of
depression has been increasing steadily over the years, with
the number of cases rising from 171 million in 1990 to
258 million in 2017, indicating a growth rate of 49.86%
[4]. Moreover, the outbreak of the COVID-19 pandemic has
exacerbated the situation, leading to a surge in depression
cases worldwide [4], [5], [6], [7]. Currently, clinical diagnosis
of depression relies primarily on specialized physician inter-
views and various psychiatric rating scales, such as the Patient
Health Questionaire-9 items (PHQ-9), Back Depression Inven-
tory (BDI), and Hamilton Depression Scale (HAMD). How-
ever, specialized physician interviews are time-consuming and
labor-intensive, while rating scale assessments are susceptible
to deception. Consequently, the quest for a more objective and
efficient diagnostic modality for depression is imperative.

Electroencephalography (EEG) boasts high temporal resolu-
tion, non-invasiveness, and low data collection costs, rendering
it a commonly used tool in clinical settings for disease diag-
nosis. Psychological and cognitive sciences have evinced that
most psychological and cognitive functions can be reflected
via EEG signals [8], [9], [10]. Previous studies have employed
techniques such as dimensionality reduction or extraction of
frequency band signals in advance as features, followed by
applying machine learning methods as classifiers to perform
relevant tasks [11], [12], [13], [14]. However, the effective-
ness of such methods heavily relies on the accuracy of the
selected features, and there is no correlation between the
classifier and the pre-extracted features. Furthermore, EEG
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signals, characterized by high randomness and nonlinear-
ity, pose challenges for traditional methods in effectively
extracting features. Presently, deep learning technology has
showcased remarkable performance in image recognition,
natural language processing, and other fields, leveraging its
powerful nonlinear fitting capacity and end-to-end learning
benefits [15], [16]. Existing research endeavors have sought
to apply deep learning techniques to EEG signals for tasks
such as emotion recognition, motor imagery, and disease
diagnosis [9], [17], [18]. Various studies have attempted to
mine effective biomarkers from EEG for depression detec-
tion [19], [20], [21]. Among them, the used deep learning
methods can be broadly categorized into CNN(Convolutional
Neural Network)-based and GNN(Graph Neural Network)-
based. CNN-based algorithms view EEG signals as images
and design various convolutional kernels to extract features
from them [22], [23], [24], [25], but do not entirely consider
the relationship between different channels. On the other hand,
GNN-based algorithms map EEG signals into graph-structured
data and use pre-calculated graph adjacency matrices to rep-
resent the relationships between different channels. These
methods holistically contemplate the potential spatial struc-
tural relationships among diverse channels [26], [27], [28],
thereby facilitating the extraction of cross-channel-related
features. However, pre-calculated methods can only generate
fixed adjacency matrices, which cannot reflect the differences
in individual brain networks and the dynamic changes in
network connections. For instance, during rapid eye movement
sleep, small-world networks change in depressed patients [29].
Yao et al. [30] found that the cross-hemisphere functional
connectivity of corresponding brain regions in patients with
mental illness was abnormally reduced, indicating differences
in brain networks between depressed and healthy individuals.
Moreover, the connectivity of brain networks may be time-
varying [31], implying dynamic changes in brain network
connections.

Therefore, the existing GNN-based algorithms still face
the following challenges. Firstly, there are variations in the
brain networks among different individuals, and the neural
mechanisms of the human brain are highly complex. The
current methods fail to accurately construct comprehensive
brain network topological structures, particularly in simulating
the dynamic changes of the brain network. Secondly, the
existing research has not integrated the temporal dependency
information of brain networks. To address these two challenges
more effectively, we propose the following two improvement
strategies:

1). In light of the correlation between the strength of func-
tional links among brain hemispheres and distance, we intro-
duce a universal graph adjacency matrix based on the distance
to depict the universal connectivity status of the subject’s brain
network employing the spatial distance amid various elec-
trodes. To consider the individual differences in brain networks
and the variability of brain network connections, we propose
using learnable parameters to compute the correlation matrix
among various channels and mutually correct the correlation
matrix and universal adjacency matrix. Finally, during train-
ing, the model adaptively adjusts the learnable parameters to

construct the final graph adjacency matrix, thereby generating
corresponding adjacency matrices for different EEG slices.

2). We integrate GNN and Gated Recurrent Unit (GRU)
to capture spatiotemporal dependencies in EEG signals. We
employ the GNN to aggregate node features in graph data
for obtaining spatial correlations, and the GRU is utilized to
capture the dynamic changes of brain networks and obtain
time series correlations.

Furthermore, we introduce the self-attention graph pooling
idea [32] and propose a Graph Topology-based Max-Pooling
(GTMP) module for further enhancement. Pooling layers are
commonly utilized in deep learning models to reduce the num-
ber of model parameters, enhance computational efficiency,
and improve the robustness of feature extraction. However, the
conventional pooling function is too simplistic and overlooks
the rich topological structure information present in the graph.
Differing from conventional pooling functions, we calculate
node importance scores founded on graph topology and
generate a node mask, retaining the feature vector of the
highest-scoring node as the representation vector of the graph.

In summary, we propose a deep learning method for depres-
sion detection based on EEG signals. Our contributions are as
follows:

• We adroitly model the connectivity status of brain net-
works based on EEG signals to acquire a supple and
accurate depiction of the graph structure.

• We integrate the GRU architecture to grasp the temporal
variation information of brain network connectivity. To
the best of our knowledge, we are the first to consider
the connectivity changes of brain networks in depression
detection.

• To bolster the efficacy of our proposed method, we intro-
duce a GTMP module that can acquire the feature
representation of the graph more accurately.

The rest of the paper is organized as follows: Section II briefly
delineates related research. In Section III, we elaborate on
our proposed methodology and specifics. Section IV include
experimental setup and results. We discuss the brain network
structure and pooling nodes in Section V. Finally, the conclu-
sion of the paper is presented in Section VI.

II. RELATE WORK

A. EEG-Based Brain Network Topology
Many studies have mapped EEG signals as graph-structured

data, and the adjacency matrix is the explicit core feature
of graph-structured data. Existing research on the topolog-
ical relationship of brain networks can be roughly divided
into two categories, adjacency matrices based on predefined
and adjacency matrices based on neural network generation.
Adjacency matrices based on predefined methods calculation
formula is designed according to prior knowledge, such as
biomedicine. The adjacency matrix is explicitly defined before
deep learning model training. For example, Chen et al. [28]
designed the adjacency matrix of the brain network according
to the local correlation and global correlation between multiple
electrodes and designed three kinds of connections across
hemispheres. Tang et al. [27] designed the adjacency matrix
of the two graphs according to the spatial position of the
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Fig. 1. Overall model architecture diagram.

electrodes and the normalized cross-correlation of different
channels. However, none of these methods considers individual
brain network connectivity differences.

The method based on neural network generation adopts the
design of learnable modules inside the model and adaptively
generates the adjacency matrix. For example, GraphSleepNet
adaptively learns the internal connection between different
EEG channels according to the input features, uses rectified
linear unit to ensure the non-negative adjacency matrix, and
defines the loss function to control the sparsity of graph
topological connections [33]. Song et al. [34] divided the
original EEG signal into frequency bands to calculate the
adjacency matrix under different frequency bands to obtain a
more accurate representation of the topological structure of
the brain network. Different from modelling the adjacency
matrix and then calculating the laplacian matrix, the work [35]
proposes to learn the embedding representation of the nodes
and then define the graph structure through the node similar-
ity. This method directly generates a symmetric normalized
Laplacian matrix to avoid unnecessary double calculations.
Wang et al. [36] have employed temporal convolutional blocks
to extract temporal features of channels as node attributes
and subsequently represented the connectivity between nodes
using parameterized adjacency matrices. Although the exist-
ing research methods have achieved acceptable results,
they have not explored the dynamic variability of network
topology.

B. EEG-Based Temporal Feature Fusion
As natural high-time resolution data, the EEG signal has

a time dimension. Many studies are constantly exploring the
time series dependence in the EEG signal, which is used to
realize tasks such as emotion recognition and disease diagno-
sis, and have achieved acceptable results. Existing research can
be roughly divided into two categories: models with stacked
time series modules and time series hybrid models. The
model with a stacked time series module can mine the timing
relationship in features by adding individual timing modules
in the processing flow. For example, Hu et al. [37] adopts the
tunable Q-factor wavelet transform preprocess of the epileptic
seizure features extracted by the deep convolutional variational
autoencoder, then input into the stacked bidirectional LSTM to
detect epilepsy. Xing et al. [38] proposed using the linear EEG

mixed model of stacked autoencoder to decompose the source
EEG signal, extract serialized features, and then input LSTM
to capture time-series related information to realize emotion
classification.

Time series hybrid models that integrate multiple network
structures directly fuse the time series model structure and
other network structures to construct a new hybrid model to
extract features in multiple dimensions. For example, Xu et al.
[39] proposes a hybrid deep learning model GRU-Conv based
on GRU and CNN to extract sleep classification features and
perform well on SEED and DEA datasets. ST-GCLSTM is
equipped with a spatial graph convolutional network module
and an attention-enhanced bidirectional LSTM module, which
extracts crucial spatiotemporal features from continuous EEG
signal data for emotion recognition [40]. Similarly, Wu et al.
[41] designed a spatiotemporal convolution block based on
the Graph Convolution (GConv) block and Time Convolution
(TConv), and cyclically applied the GConv block and TConv
blocks are used to capture both spatial and temporal features.
ATDD-LSTM is integrated into the timing module LSTM to
extract timing features while considering the nonlinear channel
relationship [42]. In addition, Kumar et al. [43] also used
the time-series features based on EEG signals to predict the
trend of EEG changes in patients with depression at the next
moment. Although existing studies have achieved competitive
results in many EEG tasks, they cannot be directly applied to
EEG-based MDD detection tasks. As mentioned earlier, in the
case of variable brain networks in patients with depression,
the challenge of simultaneously fusing spatial structure and
temporal dependence information is still the focus of our
research.

III. METHOD

This section introduces the overall architecture of the
model. Fig. 1 illustrates the general framework of the model,
which consists of three stages. First, we explore the brain
network connectivity status reflected by EEG and calculate
the adjacency matrix. Then, we use multi-layer GCN and
GRU to fuse multi-dimensional information, exploring the
spatial correlation between different channels and the temporal
dependency of brain network changes. Finally, we compute
node importance based on graph topology and retain the most
representative nodes for predicting depression.
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A. Adaptive Graph Topology Generation
Diagnosing depression using GNN typically necessitates

pre-calculating the adjacency matrix, which overlooks the
distinctions in brain network connectivity between depressed
and healthy subjects. To tackle this issue, we propose an
Adaptive Graph Topology Generation (AGTG) module that
constructs the topological connections of a graph based on
EEG signals in an adaptive manner, i.e., adjacency matrix gen-
eration. Our method aims to obtain more flexible and precise
connectivity by integrating spatial distance and correlations
between different channels.

Firstly, we introduce a distance-based universal graph adja-
cency matrix Acom that characterizes the universal connectivity
state of brain networks. We calculate it using the spatial
distance between various electrodes and express it as follows:

Acom = {A|Ai j = norm(dis(i, j))},
(i, j = 1, 2, . . . , E) (1)

Here, norm denotes the normalization function, and dis(i, j)
represents the Euclidean distance between electrodes i and
j according to the EEG electrode placement. E denotes the
number of nodes in the graph structure, that is, the number of
EEG channels.

Next, for the input EEG signals X , we left-multiplies
the matrix P to capture the correlations between different
channels and right-multiplies the mapping matrix Q to map
the correlations onto an E-dimensional matrix Acor . We use
the absolute value function to capture the mutually exclusive
or synchronous correlations between different channels and
obtain the correlation matrix Acor , which we express as
follows:

Acor = abs(P X Q + b) (2)

Here, abs denotes the absolute value function, and P ∈ RE×E

and Q ∈ RF×E are learnable parameter matrices, where F
denotes the feature dimension and b is the bias value.

Finally, we allow the universal graph adjacency matrix
and the correlation matrix to mutually correct each other to
determine the final graph adjacency matrix, defined as the
following formula:

A = Relu(Acor + Acom ∗ d) (3)

Here, d denotes the learnable weight parameter of the universal
graph adjacency matrix, and the Relu function ensures that all
elements in the matrix are non-negative.

B. Graph Convolutional Gate Recurrent Unit
In this section, we present the Graph Convolutional Gate

Recurrent Unit (GCGRU) module, as illustrated in Fig. 2. The
GCGRU module combines the GCN structure and the GRU
structure to perform spatiotemporal feature extraction on the
graph structure generate by the AGTG module and capture the
dynamic changes in brain network connectivity. Specifically,
for each EEG sample X i , we partition it into a series of fixed-
length EEG sub-slices X t

i . We then utilize the AGTG module
to generate a graph adjacency matrix G t

i for each sub-slice,
with the original time-domain data acting as the node features
of the graph. Finally, the EEG sample X i was transformed

Fig. 2. GCGRU structure.

into a series of graphs Gi = (G1
i , G2

i , . . . , G t
i ), and we stack

multiple GCGRU to capture the spatiotemporal dependency
features in Gi . Specifically, at each time step t , we input the
corresponding G t

i into the GCGRU and use the last GCGRU
output Ht as the input for the next module. The design of the
GCGRU module is depicted below:

r t
= σ(Wr

[
F(X t

i ), H t−1
]

+ br )

ut
= σ(Wu

[
F(X t

i ), H t−1
]

+ bu)

ct
= tanh(Wc

[
F(X t

i ), (r
t
⊙ H t−1)

]
+ bc)

H t
= ut

⊙ H t−1
+ (1 − ut ) ⊙ ct (4)

where H t−1 denotes the hidden state of the previous time
step, r t and ut represent the reset gate and update gate of the
GCGRU, respectively, and ct represents how much informa-
tion from the input X t

i will be retained in the hidden state
vector H t . The function F() represents the multiple layers
of GCN, and Wr , Wu , Wc, br , bu , and bc are the parameter
matrices and bias values for each calculation formula.

To further improve the model’s feature extraction capability,
we introduce the idea of residual networks [15] and design a
cross-layer concatenation operation in the multiple layers of
GCGRU to fuse outputs from different layers. The formula for
the two-layer GCN is shown below:

F(X) = cat
[

f1(X), f2(X)
]

f1(X) = Relu( ÂX W1)

f2(X) = Relu( ÂRelu( ÂX W1)W2) (5)

where X symbolizes the feature matrix, A stands for the
adjacency matrix engendered by the AGTG module. Â =

D̃−1/2 ÃD̃−1/2 represents the pre-processing step. Here, Ã =

A + IN is the matrix of self-connection structures. D̃ refers to
the degree matrix, and D̃ =

∑
j Ãi j . W0 and W1 denote the

parameter matrices for the first and second-layer graph con-
volutions, respectively. Furthermore, Relu() is the activation
function, and cat () denotes the feature concatenation function.

C. Graph Topology-Based Max-Pooling and MDD
Prediction

To further enhance the model’s performance, we introduce
the idea of self-attention graph pooling [32] and devise a
Graph Topology-based Max-Pooling (GTMP) module that
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TABLE I
COMPARE WITH OTHER EXISTING MODELS ON PUBLIC DATASET. USE

BOLD FOR BEST RESULTS. P-VALUE OF OUR METHOD OVER THE

METHOD: * INDICATING (P < 0.05), ** INDICATING (P < 0.01),
*** INDICATING (P < 0.001)

considers both node features and graph connectivity, thereby
accurately extracting the representations of the graph.

In this module, we first evaluate the significance of each
node in the graph based on the output Ht of the GCGRU
module. We assume that if a node is involved in the feature
aggregation of several other nodes, it indicates a higher
degree of importance. Therefore, we execute feature aggre-
gation based on the graph topology structure to compute the
importance score Snode of each node, as per the following
expression:

Snode = Relu( ÂHt W + b) (6)

where Ht ∈ RE×h represents the graph feature matrix pro-
duced by the GRU module, where h is the hidden state
dimension. Â is the symmetrically normalized laplacian matrix
corresponding to the graph feature Ht ; W and b are the
parameter matrix and bias value, respectively.

Next, we sort the nodes based on their importance scores
and return the indices of the top num nodes, denoted by Nidx .
Since we employ max-pooling, num = 1. Nidx is defined as
follows:

Nidx = top − rank(Snode, num) (7)

where top − rank() is a function that returns the indices of
the top num nodes with the highest scores.

Finally, we generate a node mask based on the node’s index
Nidx and apply it to the graph feature matrix Ht , retaining the
most important node feature vector as the graph representation
vector Vgraph , defined as follows:

Vgraph = mask(Nidx ) ⊙ Ht (8)

where mask() is a mask generation function that constructs a
node mask vector based on the node indices.

After that, we input the graph representation vector Vgraph
produced by the GTMP module into a fully connected layer
to calculate the depression probability.

IV. EXPERIMENT AND RESULTS

A. Datasets
1) Dataset 1: Resting-State Depression Dataset: The Uni-

versity of New Mexico collected the resting-state depression
EEG dataset [45]. The participants were recruited from a broad
survey of the BDI taken in an introductory psychology course

TABLE II
COMPARED WITH OTHER EXISTING MODELS ON OUR OWN DATASET.
USE BOLD FOR BEST RESULTS. P-VALUE OF OUR METHOD OVER THE

METHOD: * INDICATING (P < 0.05), ** INDICATING (P < 0.01),
*** INDICATING (P < 0.001)

at Arizona State University. All the participants provided their
written consent after the approval of Arizona State Univer-
sity. The dataset comprises 122 subjects, of which 46 are
depressed or have high scores on the BDI. The participants’
BDI scores were kept stable throughout the testing and exper-
imental evaluation phase. Information such as age, gender,
BDI, Spielberger Trait Anxiety Inventory, and cognitive and
affective subscale scores were recorded during the experiment.
EEG data were collected using 66 Ag/AgCl electrodes, with
bandpass filtering set between 0.5Hz-100Hz, and a sam-
pling rate of 500Hz, with impedance < 10k�. We selected
63 subjects as experimental data, including 33 depressed
patients and 30 healthy subjects. The dataset can be found
at: https://openneuro.org/datasets/ds003478/versions/1.1.0

2) Dataset 2: Our Depression EEG Dataset: We collaborated
with the Third People’s Hospital of Jian City, China, improved
the HAMD, and gathered EEG data from subjects. The Third
People’s Hospital of Ji’an City recruited subjects and obtained
Written Informed Consent Forms.

• Inclusion criteria for subject: age between 18 and 60 years
old; right-handedness. Depressed patients who meet the
International Classification of Diseases (ICD-10) diagnos-
tic criteria.

• Exclusion criteria for subject: the presence of severe
organic diseases such as malignant tumors and a history
of cardiovascular or cerebrovascular diseases, pregnant
women, individuals with neurological disorders or a
family history of mental illness, and individuals with
communication impairments.

The dataset was recorded using the international 10-20 system,
comprising 16 effective recording electrodes and two reference
electrodes, with a sampling rate of 500Hz. Each subject’s EEG
data consisted of two eyes-open and closed periods, typically
between 6 and 8 minutes. After collecting EEG data, the
subjects completed the HAMD questionnaire. We collected
data from 40 subjects, including 18 depression patients and
22 healthy subjects.

3) Data Processing: In order to mitigate the impact of
data quality and the number of EEG channels on the model
performance assessment, we extract the common EEG data
from 16 channels across two datasets. These channels include
Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5,
and T6. We apply identical preprocessing steps to both datasets
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Fig. 3. ROC curves of all models on different datasets. The left figure is a comparison chart of the ROC curve on the public dataset, and the right
is the comparison chart of the ROC curve on our own dataset. Each ROC curve plotted therein takes the mean of a five-fold cross-validation.

as follows: considerate the potential of the gamma rhythm
within the frequency range of 40Hz-100Hz as a promising
biomarker for MDD, and to retain the integrity of the common
EEG frequency bands, we utilize a bandpass filter to extract
EEG signals ranging from 0.5Hz to 100Hz. Additionally,
we utilize a notch filter at 50Hz or 60Hz to remove power
line interference. To reduce the number of data points while
preserving the information within the signal, we resample the
EEG signals to 200Hz. Lastly, we employ the Faster algorithm
[46] to automatically remove artifacts such as eye movement
and muscle activity from the EEG signals.

B. Implementation Details
In order to ensure that the model evaluation is not affected

by class imbalance, we select a nearly equal number of
individuals with depression and healthy individuals for the
experiment dataset. We construct the class labels based on
the depression scale scores of the participants, considering
participants with scores below seven as healthy individuals
and those with scores greater than or equal to 17 as individuals
with depression. We use a sliding window strategy to segment
the clean EEG data to build the dataset. Since deep learning
models typically require a large number of data samples for
training, we utilize an overlapping sliding window technique to
augment the sample size. Specifically, we employed a window
length of 6 seconds and slid it over the participants’ EEG
data with a step size of one-third of the window length, which
is 2 seconds. Each EEG slice was assigned a binary label
based on the participant’s class label. It is important to note
that since we employ an individual-based train-test split, EEG
slices from the same individual belonged to the same class.
Finally, we obtained 15,150 and 14,462 EEG slices from the
public and our own datasets.

We determine the following hyperparameters based on the
best performance on the validation set: (a) EEG slice length
and sub-slice length; (b) dimension of the GRU hidden state;
(c) the number of GCGRU layers. The remaining hyperpa-
rameters of the model were set as follows: initial learning rate
of 2e-4 with automatic adjustment using the cosine annealing

algorithm. We used a batch size of 40 EEG clips, training
epochs of 50, and a dropout probability of 0.7. We utilize the
Binary Cross Entropy with Logits Loss as the loss function to
train the depression detection model. All experimental results
in this study were based on five-fold cross-validation.

C. Comparison With Other Methods
To validate the efficacy of our proposed method, we con-

ducted a comparative analysis with various existing methods
on both public and our datasets, including ShallowCon-
vNet [23], DeepConvNet [23], EEGNet [24], TSception [22],
T-GCN [47], DCGRU [27], and LGGNet [44]. We first provide
a brief overview of the similarities and dissimilarities between
our proposed method and the other methods.

1) CNN-Based: Conventional CNN algorithms treat EEG
signals as images and apply diverse convolutional kernels
to extract features. We compared four CNN-based methods.
The study [23] proposed a universal convolutional architecture
based on EEG and implemented two cases. DeepConvNet
comprises five convolutional layers and a softmax function,
while ShallowConvNet consists of temporal and spatial convo-
lutional layers and then squaring function, an average pooling
layer, and a logarithm function. EEGNet leverages deep and
separable convolutions for feature extraction and demonstrates
exceptional robustness across various BCI paradigms. TScep-
tion employs multi-scale convolutional kernels within the
designated time and spatial learners to acquire distinct time
or spatial feature representations.

2) GNN-Based: Similar to our model, T-GCN accounts for
both temporal and spatial dependent features. It constructs
graph-structured data founded on regional location and traffic
velocity, which is employed for spatiotemporal traffic predic-
tion. The study [27] devised two graph adjacency matrices
based on prior knowledge, utilizing EEG temporal features
or logarithmic amplitude after Fourier transformation as the
feature of each graph node. DCGRU combines diffusion
convolution and gated recurrent units and attains exceptional
seizure detection and classification performance. Ding et al.
[44] introduced neuroscientific prior knowledge and defined
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TABLE III
ABLATION EXPERIMENTS FOR AGTG, GCGRU, AND GTMP MODULES. AMONG THEM, “✓” MEANS TO INCLUDE THE POLICY, AND THE SYMBOL

“-” MEANS TO DELETE THE POLICY. TO IMPROVE THE CLARITY AND READABILITY OF THE MODELS, WE NUMBER THE VARIOUS MODELS

ACCORDING TO DIFFERENT EXPERIMENTAL SETTINGS: S1–S8. THE BEST RESULTS ARE INDICATED IN BOLD. P-VALUE OF OUR

METHOD OVER THE METHOD: * INDICATING (P < 0.05), ** INDICATING (P < 0.01), *** INDICATING (P < 0.001)

three types of local-global graph structures, which were uti-
lized for feature fusion in the graph learning block based on
local and global connections.

We implement identical data preprocessing and
cross-validation strategies to those of other models and
conduct experiments on two datasets. The results are reported
in Table I and Table II, indicating that our proposed method
outperforms other models in detecting depression in both
datasets. Furthermore, the paired T-test is utilized for the
statistical analysis of the public and our own datasets. We
also report the p-value in Table I and Table II and illustrate
that the performance improvements of our proposed method
are statistically significant. Specifically, on the public dataset,
ShallowConvNet, DeepConvNet, EEGNet, and TSception
achieves accuracies of 68.76%, 63.17%, 65.62%, and 74.53%,
respectively. In contrast, our proposed method achieves an
accuracy of 77.78%, demonstrating the effectiveness of using
graph-structured data to represent EEG signals. Furthermore,
our proposed method outperforms T-GCN and DCGRU by
11.91% (p < 0.001) and 12.44% (p < 0.01), respectively,
confirming the superiority of our proposed model. On our
own dataset, our model achieves an accuracy of 95.61%,
which is only slightly lower than that of DeepConvNet in
other classification metrics. The accuracy of ShallowConvNet
and TSception on our own dataset are 89.49% and 93.13%,
respectively, which are lower than our method by 6.12%
and 2.48%. Although DCGRU also achieved an accuracy of
92.33%, it is still lower than our method. It is worth noting
that although DeepConvNet achieved the highest accuracy
on our own dataset, it performed extremely poorly on the
public dataset, indicating its susceptibility to the influence of
data quality. In contrast, our proposed method demonstrates
more stable and excellent MDD detection performance
on both datasets. Additionally, our method achieves the
comparable depression detection performance on two datasets
compared to the LGGNet model. Notably, our model params
(56,388) is only one-fifteenth of the LGGNet model params
(882,334), significantly reducing computational complexity
and deployment costs. We also show the Receiver Operating
Characteristic (ROC) curves of different methods on two
datasets. As shown in Fig. 3, our method achieved a True
Positive Rate (TPR) of 81.36% at a low False Positive Rate of
25% on the public dataset, while the TPR of other methods is

Fig. 4. Confusion matrix comparison of AGTG module.

all lower than 70%. Similarly, our method exhibits excellent
performance on our own dataset, achieving a TPR of 99.83%.
Furthermore, the area under the ROC curve of our model on
the two datasets is 83% and 99%, respectively, indicating that
our proposed method shows the best depression detection
performance.

D. Ablation Experiment
We conduct extensive ablation experiments on public dataset

to demonstrate the efficacy of our proposed three optimization
strategies.

1) Adaptive Graph Topology Generation: we compare the
models utilizing AGTG module (S5.) with those utilizing
predefined graph topology (S1.), under the same conditions.
As per the experimental results present in Table III, the AGTG
module (S5.) model shows a higher accuracy of 71.07%
compared to the model with the predefined graph topology
(S1). In addition to the comparison above, all models utilizing
the AGTG module always outperform the models with pre-
defined graph topology, i.e., S5 > S1, S6 > S2, S7 > S3,
and S8 > S4. Furthermore, we plot confusion matrices to
analyze the experimental results further. In order to facilitate
the analysis of the confusion matrix, we assign different
colors to different control groups and normalize each row
of the confusion matrix. Moreover, we visualize confusion
matrices for two groups based on the experimental results
to further assess the model’s performance, as depicted in
Fig. 4. Our proposed method can achieve a TPR of over 90%,
indicating that our method can detect most depression patients.
Additionally, Fig. 4 shows that the AGTG module can further
reduce the False Negative Rate (FNR). For instance, compared
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Fig. 5. Confusion matrix comparison of GCGRU module.

to S4, S8 exhibits a 25% reduction in FNR, while S5 achieves
a 5% lower FNR than S1. These experimental results suggest
that the AGTG module can accurately depict the real-time
connectivity status of the brain network, reveal the differences
in brain networks between different individuals, and enable
the model to more accurately aggregate graph node features.
Furthermore, unlike pre-calculated adjacency matrices, the
AGTG module can automatically learn an optimal adjacency
matrix without human intervention.

2) Graph Convolutional Gate Recurrent Unit: Table III also
demonstrates that temporal dependencies in brain networks
can improve the model’s performance. For instance, the model
utilizing the GCGRU module (S8.) attains an accuracy of
77.78%, which is 5.36% (p < 0.01) higher than the model not
employing the GRU structure (S6.). This trend holds for other
variants of models that integrate the GRU module, namely
S3 > S1, S4 > S2, and S8 > S6. Moreover, We plot two
sets of confusion matrices for further analysis. According to
the confusion matrices of groups (S1. - S3.) and (S6. - S8.)
in Fig. 5, We can observe that models employing the GCGRU
module demonstrate higher TPR and TNR. These demonstrate
that integrating GRU can further explore differential features
between depressed and healthy individuals while also validat-
ing the effectiveness of the temporal dependency information
in brain networks.

3) Graph Topology-Based Max-Pooling: Furthermore, our
model’s performance is improved by utilizing the GTMP
module. Table III shows that the model utilizing conventional
max-pooling (S7.) achieves a 71.05% accuracy rate, which
is 6.73% (p < 0.01) lower than the model employing the
GTMP module (S8.). Similarly, the simultaneous application
of the GTMP module alongside the AGTG module yielded
significant performance improvements in the model, i.e., S8 >

S7 and S6 > S5. The confusion matrix results in Fig. 6 also
demonstrate that the GTMP module can improve both TPR
and TNR. As a result, we believe there are differential features
between depressed and healthy participants in the structural
information, such as the graph topology information included
in this strategy. Furthermore, we compare GTMP and average
pooling under the same experimental settings, showing that
the accuracy of employing the GTMP module was 2.23%
higher than average pooling. These outcomes confirm the
effectiveness of GTMP. Unlike traditional pooling, the GTMP
module considers the topology information and node features
of the graph and can preserve the useful information in the
graph features to the fullest extent.

4) Graph Convolution Layers: In this section, we explore the
impact of the number of internal graph convolution layers L

Fig. 6. Ablation experiments for the GTMP module.

Fig. 7. Ablation experiments for the number of graph convolutional
layers.

in GCGRU on the model’s performance. As demonstrated in
Fig. 7, the effect of L on the model performance displays
a similar trend. When the number of layers is minimal, the
model’s capacity to extract features is insufficient. With an
increase in the number of graph convolution layers to two, the
model exhibits optimal performance. However, as L increases
further, such as L = 3, we observe a significant decline
in the model’s performance. One plausible reason for this
phenomenon is that the model’s complexity is insufficient
with fewer layers, making it challenging to fit the optimal
classification function. With excessive L, the model becomes
more challenging to train.

5) Ablation Experiment of EEG Slice Length and Sub-Slice
Length: We also discuss the impact of different EEG slices
and sub-slice lengths on the model’s performance, as shown
in Fig. 8. Firstly, we compare the effect of slice length on
model performance with the same sub-slice length. The results
indicate that longer slice lengths can slightly improve model
performance but significantly increase the model training time.
For example, under the setting of the 1s sub-slice, the accuracy
of the model trained with a 6s slice is 6.06% lower than that
trained with a 12s slice. Similarly, under the setting of a 2s
sub-slice, the accuracy of the model trained with the 12s slices
is 6.06% lower than that trained with the 6s slices. However,
longer slice lengths mean the number of GCGRU iterations
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Fig. 8. Ablation experiments for EEG slice and sub-slice length
selection.

increases, significantly increasing model training time. We also
compare the performance of three sub-slice length settings
under the 12s slice length setting. The results show that
excessively long sub-slice lengths can lead to poorer model
performance. For example, under the 12s slice setting, the
accuracy of the model trained with the 4s sub-slice is 6.06%
lower than that trained with the 2s sub-slice and 3.33% lower
than the model trained with the 1s sub-slice. One possible
reason for this phenomenon is that we used a bandpass filter
of 0.5Hz-100Hz in the data preprocessing stage, and the 2s
sub-slice length exactly contains a complete lowest frequency
waveform.

6) GCGRU Hidden State Dimension: This section discusses
the impact of the hidden state dimension H within GCGRU on
the model’s performance. As shown in Fig. 9, the model fails
to achieve the desired fitting level when H is relatively small.
The model demonstrates its optimal performance when H is
set to 64. However, as H continues to increase, the model’s
performance suddenly deteriorates. Despite the upward trend
in the metrics, they still fall short of the performance achieved
with H set to 128. Additionally, the model’s parameters
drastically increase as H becomes more larger. We attribute
this phenomenon to the concatenation of outputs from mul-
tiple graph convolutions within the model, which limits the
output size of each GCGRU. Specifically, a small hidden
state dimension forces the graph convolution to compress
features into a smaller dimension, which leads to the loss of
feature information. On the other hand, an excessively large
hidden layer dimension leads to a sharp increase in the overall
parameter, making the model more prone to overfitting.

7) Exploring EEG Personalized Information and Dataset Seg-
mentation Strategy: In order to probe the effect of personalized
information on the model, we conduct experiments on a public
dataset by dividing the training set based on either the personal
or slice. We report the experimental result in Table IV, which
indicate that the slice-based division of the training set result

TABLE IV
COVERAGE SLICE AND THE VALIDATION OF

PERSONALIZED INFORMATION

Fig. 9. Ablation experiments for GCGRU’s hidden state dimension.

in higher model accuracy. Thus, we believe the subject’s
personalized information within the EEG signals exists. To
be precise, when the training, validation, and testing sets
are divided by slice, some EEG slices from an individual
are included in both the training and testing sets, allowing
the model to capture the subject’s personalized information
during training. However, while such personalized information
can enhance the model’s accuracy, it can also interfere with
tasks such as disease diagnosis. Thus, we suggest dividing
the dataset by individual to ensure the model’s actual task
effectiveness.

Furthermore, we compare the impact of overlapping and
non-overlapping slice strategies on model performance during
the sliding window EEG slicing period. The experimental
findings in Table IV demonstrate that the overlapping slice
strategy somewhat improves the model’s performance. This
improvement can be attributed to the fact that the overlapping
slice strategy can obtain more training samples from the
original EEG data, leading to better model performance.

V. DISCUSSION

We thoroughly discuss the practical significance of the
AGTG and GTMP modules. To analyze the differences in
brain network connectivity between individuals with depres-
sion and healthy individuals, we visualize and compare the
adjacency matrices. To succinctly depict the connectivity,
we compute the sum of the adjacency matrix and its transpose,
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Fig. 10. Comparison of effective connectivity of brain networks in healthy and depressed subjects.

resulting in an undirected graph. We randomly select multiple
EEG slices from the subject, generate adjacency matrices, and
average them to represent the current subject’s brain network.
Previous research has indicated that the effective connectivity
of brain networks accounts for approximately 20% [48]. To
compare the differences in effective connectivity between
individuals with depression and healthy subjects, we set a con-
nection threshold of q = 0.25 to filter out weak connections in
the adjacency matrix. We conducted comparative experiments
and analysis by randomly selecting three healthy and three
depressed subjects from the test dataset. In order to provide
a more intuitive illustration of brain connectivity difference,
we calculate the corresponding difference matrix (MDD-HC
matrix) by subtracting healthy subjects’ brain adjacency matrix
from that of depressed subjects. One set of results from the
visualization is shown in Fig. 10. Compared to healthy par-
ticipants, we observe abnormal connectivity changes between
the T5 node in the temporal lobe and the frontal nodes Fp1
and Fp2 in depressed patients. We conduct a comparative
analysis of the graph connectivity patterns construct using the
AGTG module and the predefined method, revealing a greater
tendency of the AGTG module to establish interhemispheric
connections. Consistent with the research findings by Yao
et al. [30], we also found a widespread reduction in inter-
hemispheric connectivity in the brain networks of depressed
patients. For instance, in Figure 10, we observe weakened
connections such as the frontal nodes Fp1-Fp2 and the central
nodes C3-C4. Consequently, we believe that the abnormal
connectivity between the temporal and frontal lobes and the
reduced interhemispheric connections may be associated with
depression.

Furthermore, in order to investigate the relationship between
the positions of maximum pooling nodes and depression,
we conduct a statistical analysis of the pooling node locations
in both public and our own datasets. Our findings reveal that
the pooling nodes are predominantly distributed in the parietal
lobe at P3, the frontal lobe at Fp1, and the temporal lobe at
T4. The selection of Fp1 as a critical node in the max-pooling
indicates that the left frontal lobe contains more prominent
discriminative information related to depression, which may
be associated with abnormal activity in the left and right
frontal cortices observed in individuals with depression [49].
Additionally, Kesebir et al. [50] demonstrated a correlation

between depression scores and the activity of P3 and T4
delta, which explains why the GTMP module identifies these
nodes as crucial. Further improvement in depression detection
accuracy is still necessary to ensure the effectiveness and
precision of analyzing brain networks and pooling nodes.

VI. CONCLUSION

This study presents a depression detection method based on
EEG signals. We adaptively construct brain network structures
for different individuals while preserving the dynamic changes
in brain networks for depression detection. Our method relies
on two main modules: the Adaptive Graph Topology Gen-
eration (AGTG) module and the Graph Convolutional Gate
Recurrent Unit (GCGRU) module. The GCGRU module oper-
ates on the graph structure data generated by the AGTG
module, extracting and fusing spatiotemporal dependency fea-
tures. Additionally, we introduce a Graph Topology-based
Max-Pooling (GTMP) module to extract the most representa-
tive features from the graph. Extensive experiments conducted
on both public and our own datasets have demonstrated the
effectiveness of our proposed method from various perspec-
tives. The graph-based temporal method using the adaptive
brain network modeling strategy can be more accurate and
effective for EEG-based depression diagnosis in practical
applications. As for our future work, we aim to optimize the
brain network modeling method further and continue exploring
the differences in brain networks among different categories
of individuals.
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