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Graph Signal Smoothness Based Feature
Learning of Brain Functional Networks

in Schizophrenia
Xiaoying Song , Member, IEEE, and Li Chai , Member, IEEE

Abstract— In this paper we study the brain functional
network of schizophrenic patients based on resting-state
fMRI data. Different from the region of interest (ROI)-level
brain networks that describe the connectivity between
brain regions, this paper constructs a subject-level brain
functional network that describes the similarity between
subjects from a graph signal processing (GSP) perspective.
Based on the subject graph, we introduce the concept of
graph signal smoothness to analyze the abnormal brain
regions (feature brain regions) in which schizophrenic
patients produce abnormal functional connections and
to quantitatively rank the degree of abnormality of brain
regions. We find that in the patients’ brain networks, many
new connections appear and some common connections
are strengthened. The feature brain regions can be easily
found according to the value of connection differences.
Finally, we validate the learned feature brain regions by
the results of two types of statistical analyses (ROI-to-ROI
analysis and seed-to-voxel analysis), and the feature brain
regions derived from graph signal smoothness are indeed
the brain regions with significant differences in the sta-
tistical analysis, which illustrates the potential of graph
signal smoothness for use in quantitative analysis of brain
networks.

Index Terms— Brain functional network, graph signal
processing (GSP), graph signal smoothness, feature brain
regions, schizophrenia.

I. INTRODUCTION

SCHIZOPHRENIA is a complex mental disorder with
unknown etiology that often strikes in late adolescence

or early adulthood. Its diagnosis is mainly based on clinical
observation of symptoms, and there is no clear biological
marker for diagnosis so far [1]. Mental disorders can cause
sustained and significant abnormalities in various aspects of
a patient’s activities, such as cognition, willpower, behavior,
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and emotions. Due to overlapping symptoms and a lack
of standard biologically-based clinical tests, the differential
diagnosis of this disease has become a challenging task [2].
In this sense, the study of brain functional network and the
related biological indicators is of great significance for the
research, diagnosis and treatment of the disease.

Due to the heterogeneity of schizophrenia, there may
be great differences between different patients and different
courses of the same patient, which brings great difficulties to
the study of schizophrenia. The advancement of neuroimaging
technology has enabled the measurement of human brain
structure and function in a non-invasive manner [3], [4].
Among them, functional magnetic resonance imaging (fMRI)
indirectly estimates brain activity at approximately every sec-
ond in the form of blood oxygenation level dependent (BOLD)
signals [5]. The non-invasive, repeatable and scalable nature
of fMRI has made it an ideal method for investigating patterns
of the function of the brain [6], [7], [8].

In the functional brain network, the brain is modelled as an
undirected weighted graph, where vertices can describe atlas-
based regions or voxels, and edges describe the functional
connectivity of statistical relationships between the activity
time series (BOLD signals) of the two vertices, and this
graph structure helps enhancing our understanding of the
brain as a complex system [9]. Pearson correlation, coherence
and wavelet correlation are typically used to define statistical
relationships between regional activity time series. This is the
brain graph at the brain region of interest level (ROI-level
graph). The network analysis can also be used to explore
the basic principles of brain network organization and reveal
the meaningful information of the topological structure of
brain functional network, including small-worldness, cluster-
ing coefficient, etc [10], [11], [12], [13], [14]. Studies have
found significant differences in the brain working patterns
of healthy subjects and schizophrenics, and schizophrenia is
increasingly being considered as a disorder or disconnec-
tion syndrome of brain networks with abnormal topological
features.

Widespread abnormalities of brain regions and abnormal
connections between brain regions in schizophrenic patients
have been reported [15], [16], with the robust abnormal brain
regions being found in the frontal lobe, parietal lobe and
occipital lobe, etc. [17], [18], [19]. Specific findings include:
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TABLE I
ALL ABBREVIATIONS COVERED IN THE PAPER

decreased functional connectivity in the medial prefrontal
cortex [20], [21], dorsal lateral prefrontal cortex [22], and
orbital frontal cortex [23]; increased or decreased functional
connectivity in the temporal lobe with protrusions in the
left superior temporal gyrus [20], [24], etc. Other reported
brain regions with functional abnormalities include left poste-
rior cingulate, right cerebellum, parietal cortex, hippocampal,
amygdala and occipital gyrus. These findings offer help in
the early treatment of schizophrenia and provide the basis for
understanding the pathogenesis of the disorder, yet quantitative
analysis of these abnormal brain regions is lacking.

Considering brain graph as the underlying network struc-
ture, BOLD signals at each brain regions can naturally be
regarded as high-dimensional signals in this graph. The emerg-
ing tools in the field of graph signal processing (GSP) are cus-
tomized for dealing with such signals and are used to address
issues related to analyzing and extracting information from
irregular data defined in non-Euclidean spaces [25], [26], [27].
It provides a new perspective for network data processing and
has great potential for applications in brain networks [28]. The
basic GSP methods commonly used to analyze brain networks
and signals are the graph Fourier transform (GFT) and the
corresponding graph frequency components and graph filters.
The fact that the GFT encodes a notion of variability similar to
what the Fourier transform for temporal signals encodes is one
of the GFT’s key properties. The total variation of the graph
signal, that is, the graph signal smoothness, has been widely
used as a measure of how much the graph signal changes with
respect to the network, and researchers have even defined the
total variation of the eigenvectors to analyse the fluctuation
of the eigenvectors on different types of connections in the
brain network [28], [29]. Low and high temporal variability
have proven to be important in the analysis of neurological
disorders and behaviours [30], [31]. The goal of this paper is
to quantitatively analyse brain functional networks using the
tool of graph signal smoothness.

Different from the ROI-level graph mentioned above, this
paper constructs a subject-level graph structure, referred to
as the subject graph, which is a higher-level graph structure
with subjects as vertices and the correlation between the

subjects’ BOLD signals as the edges. For each vertex, the
subject’s BOLD signal represents the high-dimensional signal
at the vertex, and brain regions represent the feature variables.
On the basis of the subject graph, we apply the tool of
graph signal smoothness to learn the feature brain regions
that show the greatest differences between normal subjects
and schizophrenic patients, which are the predominant regions
that generate abnormal connections. By quantitatively ranking
the degree of abnormality in brain regions, we provide a
quantitative basis for the qualitative analysis of brain networks.
On the other hand, based on CONN and SPM12 toolboxes,
we perform statistical analysis to infer the attributes of the
control group and the patient group in the context of voxel-
based and ROI-to-ROI measures. Finally, the feature brain
regions learned from the graph signal smoothness are verified
by the statistical analysis results.

The paper is organized as follows. Section II compares two
ways to construct brain graphs. Section III presents materials
used and the proposed method. Sections IV presents the
applications of the proposed method in two public datasets
and analyzes the feature brain regions. Sections V and VI
give the discussions and conclusions on the results of the
paper, respectively. All abbreviations covered in this paper are
summarized in Table I.

II. TWO WAYS TO CONSTRUCT BRAIN GRAPH

A. Brain Region as Vertex
This is the most widely used method for constructing

the brain graph, which describe the functional connectiv-
ities among brain regions in each subject. These connec-
tivities are mathematically described by a weighted graph
G1 = {V1, E1, W1} where V1 = {v1, v2, · · · , vN } is the
set of N vertices associated with specific brain regions and
W1 ∈ RN×N is the weighted adjacency matrix. The element
of W1, wi j , denotes the weight of the edge between brain
regions i and j , ei j . If there is no connectivity between
brain regions i and j , then wi j = 0, i.e., there is no edge
between them, otherwise wi j ̸= 0. The structure of G1 can
also be described by another unweighted adjacency matrix A1,
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Fig. 1. Brain atlas and example brain signals.

where ai j = 1 indicates an edge between brain regions i and j ,
and ai j = 0 indicates no edge between brain regions i and j .

The brain regions encoded in the nodes of V1 are macro-
scale parcels of the brain. A variety of brain parcellation
schemes exist, depending on the resolution, location of ROIs
[32], [33], and the way the ROIs is defined (cytoarchitecture,
anatomy, function, connectivity, etc.) [34], [35]. The larger the
value of N , the higher the resolution is. A parcellation scheme
including N = 132 ROIs is used in this paper, which will be
detailed in Section III-A. The schematic diagram is shown
in Fig 1(a).

For one subject, the graph signal xt ∈ RN quantifies the
neural activity of the entire brain at a given moment t , and its
kth component xtk describes the activity of the kth brain region
at moment t . BOLD signals for all the N brain regions over
T successive time points can be represented as X ∈ RN×T .
An example of brain signal matrix for one subject is shown
in Fig. 1(b).

The element wi j in the weighted adjacency matrix
W1 describes the functional connectivity between region i and
region j , which is usually measured by the correlation between
BOLD signals on the two brain regions.

B. Subject as Vertex
In this paper, we construct the brain graph from the

subject perspective, that is, subject is taken as vertex, and
edges describe the correlation between subjects. In this graph
G2 = {V2, E2, W2}, V2 = {v1, v2, · · · , vM } is the set of M
vertices associated with specific subjects and W2 ∈ RM×M

is the weighted adjacency matrix. The element of W2, wi j ,
denotes the weight of the correlation between subjects i
and j , ei j . If there is no correlation between subjects i and j ,
or the absolute value of the correlation is less than a preset
threshold, then wi j = 0, i.e., there is no edge between them,
otherwise wi j ̸= 0. The unweighted structure of G2 can be
described by A2, which is defined in the same way as A1.

Taking the N = 132 brain regions as feature variables, the
construction method of graph signal on subject graph G2 is
shown in Fig. 2. In the setting of graph G2, the original signal
on each vertex (subject) is a signal matrix consisting of BOLD
time series from all brain regions. In order to adopt graph
signal processing approaches it is necessary to dimensionally
reduce this signal matrix into a column vector, i.e. a high-
dimensional signal on each vertex (instead of a signal matrix),
and this operation also enables each feature variable to be a
real number (instead of a vector).

A common method of dimensionality reduction is to average
the BOLD signals over each brain region [29], and in this
paper we use the power of the BOLD time series over

Fig. 2. Dimension reduction of data on an example subject graph G2
(there are 5 subjects, of which 3 are patients and 2 are healthy subjects).

Fig. 3. For the COBRE dataset used in experiments, the comparison
of these two graphs.

each brain region to obtain more accurate information. Let
Xk = [Xk1, Xk2, · · · , XkT ] ∈ R1×T , k ∈ N = {1, 2, · · · , N }

be the kth row of X , that is, the BOLD time series on the
kth brain region. The average power of this time series over a
length time of T is x̄(k) =

1
T

∑T
t=1 |Xkt |

2. Then, we get a high-
dimensional signal x̄ = [x̄(1), · · · , x̄(k), · · · , x̄(N )]

T
∈ RN for

each subject.
Signal matrix X̄ = [x̄1, · · · , x̄i , · · · , x̄M ]

T collects all high-
dimensional signals x̄i ’s in its M rows, and its kth column, X̄k ,
describes the graph signal of all subjects on the kth brain
region.

For the COBRE dataset used in the following experiments,
the comparison of these two graphs are shown in Fig. 3.

III. MATERIALS AND METHODS

A. Data and Preprocessing
Two public datasets on schizophrenia are used in this

paper. COBRE dataset1 from NITRC contains 72 patients
with schizophrenia and 75 healthy subjects. Due to the
length of volumes is not consistent with the others, two
subjects are deleted. In the end, 71 patients with schizophre-
nia (patient group) and 74 healthy subjects (control group)
are analyzed for this dataset. The resting-state fMRI images
are obtained with the following parameters: TR (repe-
tition time) = 2000 ms, TE (echo time) = 29 ms,

1http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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TABLE II
SUBJECT INFORMATION FOR TWO DATASETS

matrix size = 64 × 64, flip angle = 77◦, voxel size =

3 × 3 × 4 mm3, T = 150 volumes.
OpenNEURO dataset [36], [37] is obtained from the

OpenfMRI database, which is a large study funded by the
UCLA Consortium for Neuropsychiatric Phenomics LA5c
Study. This dataset contains three types of diseases, of which
only 49 patients with schizophrenia and 117 healthy subjects
are analyzed in our experiments. The resting-state fMRI
images are obtained with the following parameters: TR
(repetition time) = 2000 ms, TE (echo time) = 30 ms, matrix
size = 64 × 64, T = 152 volumes.

Table II shows the information of subjects for these two
datasets. For these two datasets, the resting-state fMRI data
are used in this paper. In the resting scan, participants are
asked to remain relaxed and keep their eyes open for 5 minutes
(COBRE) and 5 minutes and 4 seconds (OpenNEURO). They
are not presented any stimuli or asked to respond during the
scan.

Resting-state fMRI data of all subjects are preprocessed
according to the standard preprocessing pipeline provided by
the CONN2 and SPM123 toolboxes, including: realignment
and unwarp (subject motion estimation and correction), slice-
timing correction (correction for inter-slice differences in
acquisition time), outlier detection (identification of outlier
scans for scrubbing), segmentation and normalization (simul-
taneous grey/white/CSF segmentation and Montreal Neuro-
logical Institute (MNI) normalization), spatially smoothing
(Gaussian kernel of 8 mm full width half maximum (FWHM)),
etc. After these conventional preprocessing steps, the influence
of potential confounding effects in the measured BOLD signal
is linear regressed out. These noises come from the combina-
tion of physiological effects (white matter and CSF), outliers,
and residual subject-motion factors (12 parameters).

According to the CONN’s built-in atlas template, a total of
N = 132 non-overlapping ROIs are mapped to cover the whole
brain. Among which, 91 Cortical regions are derived from
the FSL Harvard-Oxford Atlas maximum likelihood cortical
atlas and are divided into left/right hemisphere (91 ROIs);
15 subcortical regions are derived from the FSL Harvard-
Oxford Atlas maximum likelihood subcortical atlas, ignoring
the Cerebral White Matter, Cerebral Cortex and Lateral Ventri-
cal areas (15 ROIs); 26 cerebellar regions are derived from the
Automated Anatomical Labeling (AAL) Atlas (26 ROIs). The
signal matrix X ∈ RN×T describes the signals on all ROIs of

2version 20b, https://www.nitrc.org/projects/conn
3http://www.fil.ion.ucl.ac.uk/spm/

each subject. For COBRE and OpenNEURO dataset, the signal
matrix is X ∈ R132×150 and X ∈ R132×152, respectively.

B. Feature ROIs Learning
Given a brain graph G = {V, E, W }, no matter which way

it is constructed, conventional degree and Laplacian matrices
are used [38]. The degree matrix is defined as D := diag(di ),
where di =

∑
j ai j is the degree of the vertex vi . The

Laplacian matrix can be defined as L = D − A, which is
a real symmetric semi-positive definite matrix that can be
decomposed using eigenvalues,

L = V 3V −1. (1)

The eigenvector matrix is defined as V := [v1, v2, · · · , vN ].
The diagonal eigenvalue matrix is defined as 3 := diag
(λ1, λ2, · · · , λN ) and its eigenvalues {0 ≤ λ1 ≤ λ2 · · · ≤ λN }

are defined as the spectrum of the graph. The spectrum
carries a specific notion of frequency, with the eigenvectors
associated with higher eigenvalues fluctuate more rapidly (high
frequency).

Given a graph signal y (xt or X̄k we state above), according
to the 2-Dirichlet form of y, its global smoothness relative to
the intrinsic structure of the graph G can be defined as

φ(y) = yT Ly =

∑
(i, j)∈E

ai, j [y( j) − y(i)]2. (2)

The global smoothness is a measure of how much the
graph signal y changes with respect to the graph. Given the
structure of the graph, then the adjacency matrices W and A
are determined, the smaller the value of φ(y), the slower the
signal changes with respect to the graph and the more low-
frequency components of the signal, that is, the smoother the
signal y. The signal y is more likely to be smooth when the
values of the signal y at the connected vertices are similar,
or when two vertices with very different values of the signal
y are not connected. We also notice that φ(y) is equal to zero
if and only if y is constant across all vertices (the boundary
case of completely non-connected graphs is not considered).

In the setting of the subject graph G2, brain regions rep-
resent the feature variables on each vertex, with N = 132
ROIs (features) per vertex. For the graph signal X̄k , the
corresponding φ(X̄k) characterizes the similarity of activity
on the kth brain region for all subjects. Based on subjects’
performance on all ROIs, we can explore those brain regions
that differ most between healthy subjects and patients, and
these abnormal brain regions (referred to here as the feature
ROIs) give rise to abnormal connectivities in the patient’s
functional brain network. We construct the weighted adjacency
matrix W2 of G2 based on the Pearson correlation between
subjects. If the Pearson correlation coefficient is less than a
given threshold, the two subjects are considered unrelated. The
larger the threshold, the sparser the structure of G2.

Let the Laplacian matrix of G2 be L2, and for simplicity,
the smoothness of the signal matrix X̄ can be defined as

8 = tr(X̄ T L2 X̄), (3)
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where 8 = {φ1, φ2, · · · , φk, · · · , φ132}, and φk describes the
smoothness of signals of all subjects on the kth brain region
(ROI_k).

Larger φk values indicate that patients and healthy subjects
show a large difference in ROI_k, and this region can be
regarded as a feature brain region. Conversely, a small φk
value indicates that patients and healthy subjects show similar
performance on ROI_k, and this region can be regarded as
a non-feature brain region. To remove the effect of within-
group variance on the results, separate networks Gc and G p
are constructed for the control and patient groups, based on
which 8c and 8p are calculated and subtracted from 8 as the
within-group variance to obtain the final

8̃ = 8 − 8c − 8p. (4)

Sorting 8̃ = {φ̃1, φ̃2, · · · , φ̃k, · · · , φ̃132} in descending order,
we can focus on the top few most important brain regions and
the least important ones. Furthermore, we can set a threshold
Tφ for the ranked 8̃. The top k ranked brain areas with
φ̃k > Tφ are considered feature brain regions, whereas the
other (132 − k) brain regions at the bottom of the ranking are
considered non-feature brain regions.

C. Statistical Analysis
To validate the learned feature brain regions derived from

graph signal smoothness, we quantify the level of functional
integration in different brain regions from two aspects: 1) seed-
to-voxel analysis, which aims to investigate the functional
connectivity properties of individual regions; 2) ROI-to-ROI
analysis, which aims to analyze connectivity patterns among
multiple regions.

The seed-to-voxel analysis uses seed-based connectivity
(SBC) maps to represent the level of functional connectivity
between a seed ROI and each voxel in the brain, calculated
as the Fisher transform of the Pearson correlation coefficients
between the BOLD time series of the seed ROI and voxels.
Similar to the voxel-based analysis, we also investigate the
entire connectivity network of the brain using the ROI-to-ROI
analysis, which characterizes the level of functional connec-
tivity between all passible pairwise ROIs with ROI-to-ROI
connectivity (RRC) matrices, defined as the Fisher transform
of the bivariate correlation coefficient between pairs of ROI
BOLD time series.

Further, instead of focusing on individual voxels, we analyze
the functional connectivity differences between the control
and the patient groups on a cluster level based on statistical
tests (t-test or F-test) to make more meaningful inferences.
Using the standard general linear model analysis for the SBC
connectivity map, we analyze the clustering of the connections
of the two groups based on the generated statistical parametric
maps (corresponding T- or F- values). We define clusters
using Gaussian Random Field Theory (RFT) parametric statis-
tics [39]. This standard employs a combination of RFT and
an uncorrected height threshold of p < 0.001 to define clus-
ters of interest from the original statistical parametric maps,
and selects those considered to be significant in the result-
ing clusters using a FDR-corrected cluster-level threshold of

p < 0.05. The characteristic of each cluster is determined by
its size, measured in the number of voxels, and the uncorrected
p-value of clusters deemed significant is p < 0.001.

Similar to the voxel-based analysis scenario, when there
are many ROIs, it is frequently more convenient to focus on
clusters of close or related connections that share comparable
effects rather than on individual connections between every
conceivable pair of ROIs. Applying multivariate paramet-
ric statistics based on functional network connectivity [40],
we analyze the entire set of connections between ROIs,
both from the perspective of within and between clusters of
connections. The standard employs a FDR-corrected cluster-
level threshold of p < 0.05 to select significant connection sets
from all group-to-group connection sets, and characterizes the
patterns of individual connections that show the largest effects
within each significant set using a post-hoc uncorrected height
threshold of p < 0.05. The criterion uses a FDR-corrected
p < 0.05 cluster-level threshold to select among all group-
to-group connectivity sets those deemed significant, together
with a post-hoc uncorrected p < 0.05 height (connection-
level) threshold to help characterize the pattern of individual
connections that show some of the largest effects within each
significant set.

IV. RESULTS

A. Feature ROIs
We set a two-sided threshold to ensure that the subject graph

G2 has the same connection density during quantitative and
qualitative analysis.

For the COBRE dataset, we find that the most impor-
tant brain regions are: ROI_28, ROI_27, ROI_69, ROI_124,
ROI_68, ROI_90, ROI_91, ROI_30, ROI_123, ROI_29,
ROI_125, ROI_63, ROI_62. The least important brain regions
include: ROI_13, ROI_14, ROI_96, ROI_97, ROI_98, ROI_99,
ROI_54, ROI_78, ROI_79, ROI_55.

For the OpenNEURO dataset, we find that the most
important brain regions are: ROI_27, ROI_69, ROI_28,
ROI_68, ROI_125, ROI_123, ROI_124, ROI_62, ROI_63,
ROI_30, ROI_29, ROI_132. The least important brain regions
include: ROI_76, ROI_77, ROI_14, ROI_13, ROI_97, ROI_96,
ROI_54, ROI_78, ROI_79, ROI_53.

Taken together, these findings indicate that the most impor-
tant feature ROIs are consistent on both datasets. Based on
the above results, for schizophrenic patients, we can draw the
following conclusions:

1) ROI_27-30 (inferior temporal gyrus), ROI_68-69 (tem-
poral fusiform cortex), ROI_124-125 (cerebelum 10 (right),
vermis (1 and 2)), and ROI_62-63 (parahippocampal gyrus)
are the main areas with abnormal connections.

2) Brain regions such as ROI_13-14 (precentral gyrus),
ROI_96-97 (putamen) and ROI_78-79 (central opercular cor-
tex) have little impairment in function.

B. Seed-to-Voxel Analysis Results
The results of the statistical analyses are basically the same

for both the COBRE and openNEURO datasets, similar to the
results of the numerical calculations above. Only the results
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Fig. 4. The SBC maps with two temporal fusiform cortex seeds of
control and patient groups.

Fig. 5. The RFT cluster-level inferences of the temporal fusiform cortex
of control and patient groups.

from the COBRE dataset are analysed due to the length of the
paper.

1) Temporal Fusiform Cortex: Taking the anterior right
(ROI_68, φ̃68 = 4453.37) and anterior left (ROI_69, φ̃69 =

5801.63) division of the temporal fusiform cortex as seed
regions, we use seed-based analysis to analyze functional
connectivity levels between these two seeds and each voxel
in the brain.

The average SBC map with these two seeds across
71 patients and 74 healthy subjects are shown in Fig. 4(a)
and Fig. 4(b), respectively. The connectivity pattern of
one seed ROI usually includes this region. Comparing
figures 4(a) and 4(b), we can see that the control group has a
stronger level of connectivity homogeneity across the temporal
fusiform cortex. In addition, the connectivity pattern of the
control group includes more distant regions, indicating that
the temporal fusiform cortex of the control group has stronger
strength of inter-regional connectivity.

The report of RFT cluster-level inferences for the temporal
fusiform cortex of control and patient groups are shown in
Fig. 5(a) and Fig. 5(b), respectively. The control group has
four significant activation clusters, the largest of which con-
tains 65167 voxels, while the patient group has seven signifi-
cant clusters, and the largest of which contains 37082 voxels.

2) Inferior Temporal Gyrus: Taking the anterior right
(ROI_27, φ̃27 = 12217.05), anterior left (ROI_28,
φ̃28 = 17745.50), posterior right (ROI_29, φ̃29 = 848.80),
and posterior left (ROI_30, φ̃30 = 1517.62) division of the

Fig. 6. The SBC maps with four inferior temporal gyrus seeds of control
and patient groups.

Fig. 7. The RFT cluster-level inferences of the inferior temporal gyrus
of control and patient groups.

inferior temporal gyrus as seed regions, we exactly use the
same SBC map and RFT parametric statistics to analyze
functional connectivity levels between these four seeds and
each voxel in the brain. The comparison of results between
control and patient groups are shown in Fig. 6 and Fig. 7.

The control group has a stronger level of connectivity
homogeneity across the inferior temporal gyrus. The control
group has more significant activation clusters. The number
of voxels contained within the largest cluster is basically the
same for the control and patient groups, 81020 and 84740,
respectively.

3) Parahippocampal Gyrus: Taking the anterior right
(ROI_62, φ̃62 = 703.75) and anterior left (ROI_63, φ̃63 =

942.32) division of the parahippocampal gyrus as seed regions,
we adopt SBC map and RFT parametric statistics to analyze
functional connectivity levels between these two seeds and
each voxel in the brain. The comparison of results between
control and patient groups are shown in Fig. 8 and Fig. 9.

The patient group has a stronger level of connectivity
homogeneity across the parahippocampal gyrus. The patient
group has more significant activation clusters. The largest
cluster for the control group contains 63514 voxels, whereas
the largest cluster for the patient group contains 44075 voxels.

4) Precentral Gyrus: Taking the right (ROI_13, φ̃13 = 4.44)
and left (ROI_14, φ̃14 = 4.15) division of the precentral gyrus
as seed regions, we adopt SBC map and RFT parametric
statistics to analyze functional connectivity levels between
these two seeds and each voxel in the brain. The comparison
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Fig. 8. The SBC maps with two parahippocampal gyrus seeds of control
and patient groups.

Fig. 9. The report of RFT cluster level inferences of the parahippocam-
pal gyrus of control and patient groups.

Fig. 10. The SBC maps with two precentral gyrus seeds of control and
patient groups.

of results between control and patient groups are shown in
Fig. 10 and Fig. 11.

In numerical calculations, there are no significant differ-
ences between the control and patient groups in these two brain
regions, which are considered to be non-feature brain regions.
Seed-to-voxel analysis reveals only two significant activation
clusters in both groups, and both clusters contain a comparable
number of voxels (larger cluster: 118089 vs. 128845, smaller
cluster: 303 vs. 707), suggesting that the control and patient
groups are performing almost identically in these two brain

Fig. 11. The report of RFT cluster level inferences of the precentral
gyrus of control and patient groups.

Fig. 12. The SBC maps with two cuneal cortex seeds of control and
patient groups.

regions. Thus, the statistical results confirm the validity of the
numerical results calculated from graph signal smoothness.

5) Cuneal Cortex: In order to determine a suitable threshold
Tφ for the sorted 8̃ to find out all the abnormal brain regions,
we select two seed regions with smoothness 8̃ sorted between
60 and 70 (close to 50% of 132): ROI_58 (the right division of
the cuneal cortex, φ̃58 = 34.40) and ROI_59 (the left division
of the cuneal cortex, φ̃59 = 23.74), and analyze the SBC
maps of the control group and the patient group based on
these two seed regions, and the results are shown in Fig. 12.
We can observe that the largest cluster in the control group
has 78663 voxels and covers 86% of the precuneus cortex,
56% of the lateral occipital cortex (superior division right),
50% of the lateral occipital cortex (superior division left), and
other regions. Similar to the control group, the largest clusters
in the patient group has 77158 voxels and covers 97% of the
precuneus cortex, 78% of the lateral occipital cortex (superior
division right), 56% of the lateral occipital cortex (superior
division left), and other regions.
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Fig. 13. Average RRC matrix of control and patient groups.

We also show the difference map for the two groups
(patient-control) in Fig. 12(c). There is only one cluster in the
difference map, which has only 606 voxels and mainly covers
the thalamus. Considering the small number and size of the
cluster in the difference map, it is feasible to take the threshold
Tφ = φ̃58, i.e., the brain regions with a smoothness ranking
in the top 62 (the ranking of ROI_58) can all be regarded as
feature brain regions, and all the brain regions ranked after
63 can naturally be regarded as non-featured brain regions.
Of course, based on the SBC analysis, we can further increase
the value of Tφ to reduce the number of feature brain regions.

C. ROI-to-ROI Analysis Results

The average 132-ROIs RRC matrix across 71 patients and
74 healthy subjects are shown in Fig. 13(a) and Fig. 13(b),
respectively.

For atlas N = 132, there are a maximum of 8646 con-
nections, and the 132 ROIs are grouped into 22 clusters
using a priori order of the CONN atlas. We perform the
analysis using multivariate parametric statistics, and the results
of the cluster-level inference of functional network con-
nectivity between the patient and control groups (patient-
control) are shown in Fig. 14(a), and the corresponding RRC
matrix is shown in Fig. 14(b). Compared with healthy people,
we derive the following cluster-based inferences for patients
with schizophrenia.

1) The Thalamus group shows increased/strengthened con-
nectivity with pDMN, IDMN, sLOC, DAN, Visual. Primary,
Visual. Secondary, Motor, Auditory, STG, and Cerebel-
lum/pPaHC groups, and decreased/weakened connectivity with
Cereb Crus and FPN groups.

2) The Lang(R) group shows decreased/weakened connec-
tivity with Limbic/aPaHC, Salience, and Auditory groups, and
increased/strengthened connectivity with Motor, DAN, and
sLOC groups.

3) The connections between DAN, cerebellum/pPaHC,
Cereb Crus, Cerebellum (ROI_124), and Visual groups are
increased/strengthened.

4) The change of the connection between the Salience group
and other groups is complex. In multiple groups, such as
STG, Limbic/aPaHC and IDMN, there are both increased and
decreased connections.

5) The Autitory group shows decreased/weakened connec-
tivity with STG, Limbic/aPaHC, aDMN, and Lang(R) groups.

Fig. 14. The functional network connectivity and the correspond-
ing RRC matrix of the difference between patient and control groups
(patient-control).

6) The Limbic/aPaHC (ROI_68, ROI_69, ROI_62, ROI_63,
ROI_125) group shows decreased/weakened connectivity with
Lang(R), FPN(R), Auditory, Motor, Salience, and STG groups,
with the largest reduction in connectivity with Motor.

7) The ITG (ROI_27, ROI_28, ROI_29, ROI_30) group
shows increased/strengthened connectivity with the FPN (R)
group.

Overall, patients have more increased/strengthened con-
nections than decreased/weakened connections in the brain
networks. The numerical calculation results are generally con-
sistent with the statistical analysis results in CONN, verifying
the effectiveness of the graph signal smoothness based method.

V. DISCUSSION

Schizophrenia is a comprehensive mental disease, which
contains a variety of symptoms and subtypes. There are still
many difficulties in clinical research and treatment. Its etiology
is very complex, and there is no clear conclusion so far. The
study of brain functional network can provide a powerful
target for clinical diagnosis to a certain extent. The brain’s
functions stem from the functional connectivity of statistical
relationships between the BOLD signals of brain regions, and
the highly complex structure and functions of the brain are
the main focus of research [41], [42]. Developments in neuro-
science have identified key roles for certain connections in the
development of positive, negative, and cognitive symptoms,
particularly those involving frontal, temporal, and mesostriatal
brain regions.
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The development of graph theory provides the basis and
analytical methods for brain network research [43]. The
emergence of the combination of network neuroscience and
graph theory helps us better understand the relevance between
network structure and cognitive function. In recent years, brain
network research combined with graph theory [12], [13] have
been developed to study the functional connection between
multiple brain regions.

Schizophrenia has been investigated by comparable
approaches. In addition to the graph Fourier transform and
graph filtering, which are often used to analyze brain networks,
this paper introduces another graph signal processing tool,
graph signal smoothness, to learn the abnormal brain regions
and abnormal connections between brain regions, and attempt
to rank the importance of abnormal brain regions. The feature
brain regions learnt from the graph signal smoothness are
verified in the statistical analysis results in the context of
voxel-based and ROI-to-ROI measures.

In the following, we discuss our results with those of
existing neural and medical studies on schizophrenia. The
feature brain regions ROI_27-30 (inferior temporal gyrus)
and ROI_68-69 (temporal fusiform cortex) have been widely
reported by existing work [15], [16], [17], [19], [20], [24].
The feature brain regions ROI_124-125 (cerebelum 10 (right),
vermis (1 and 2), φ̃124 = 6187.81, φ̃125 = 819.36) have
been reported by many work [16], [17], [18]. The feature
brain regions ROI_62-63 (parahippocampal gyrus) have also
been reported in [15]. All the above 10 feature brain regions
reported in literature are within the top 17 feature regions
according to the ranking of graph signal smoothness with
φ̃ ∈ [500, 17745.50]. It is reasonable to believe that the
other 7 regions not reported in literature are also important
for schizophrenia research. There are 20 regions with φ̃

between 100 and 500, which we regard as secondary feature
regions, and it is also reasonable to believe that these brain
regions should be considered in future research as potential
abnormal regions of schizophrenia patients. The remaining
95 regions have φ̃ values less than 100, which is very small
compared to the φ̃ values of the feature brain regions, so it is
reasonable to treat them as non-feature brain regions. In this
sense, the proposed method can be used to discover new
feature brain regions and non-feature brain regions, which
has great potential application as AI-assisted research of
schizophrenia.

VI. CONCLUSION

We have applied the tool of graph signal smoothness to ana-
lyze functional brain networks of patients with schizophrenia
during resting state and have established the subject graph to
learn the feature brain regions. The results have shown that
the numerical results calculated based on the graph signal
smoothness are generally consistent with the results of the
statistical analyses, and the featured brain regions learnt in this
paper are also in agreement with the findings of the existing
work, which proves the potential value of the application of
the graph signal smoothness for quantitative analyses in the
field of brain sciences.
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